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Abstract 
A novel variational derivation of the Navier-Stokes equations for incompressible flows is 
presented and discussed. The Lagrangian density is obtained from the exergy balance 
equation written for both the (Lagrangian) steady and quasi-stationary isothermal flows of 
an incompressible fluid. The exergy of a fluid mass (composed of a kinetic, a pressure-
work, a diffusive, and a dissipative portion, the latter being the result of viscous 
irreversibility) is derived first, and it is then shown that a formal minimisation of the 
exergy variation (i.e. destruction) generates, without recurring to “local potentials”, the 
Navier-Stokes equations of motion under the given assumptions. The acceleration being 
held constant, the proposed variational method can be classified as a “restricted” principle.  
The problem is also briefly discussed both in its historical perspective and in its possible 
formal and practical implications. 
Keywords: Navier-Stokes variational, Navier-Stokes Lagrangian, Exergy-based 

Lagrangian 

1.  The Problem of the Variational Formulation 
of the Equations of Fluid Motion  

The quest for a variational principle 
regulating the motion of a fluid is certainly not a 
recent one: a first formulation may be derived 
directly from the D’Alembert-Lagrange principle 
and leads, for an inviscid fluid, to the statement 
that “A  perfect  fluid  moves  in  such  a way that  

v
V

dUδw ρ dxdU 0
dt

− =∫  

is satisfied for all virtual displacements dx that 
satisfy continuity” (see Serrin, 1959). This 
Lagrangian formulation applies to compressible 
fluids as well, provided due account is taken for 
the varying density (i.e., if variations are taken 
with respect to the density as well).  

The theoretical usefulness of this kind of 
statement for the field of fluid dynamics is 
limited though: as long as the integrand is in the 
form of a generic “internal force”, no new insight 
is gained about the phenomenology of the flow. 
But if the integrand could be shown by 
independent (and a priori) reasoning to represent 
a physical quantity, then the optimization of such 
a quantity would lead to a deepening of our 
phenomenological interpretation of the fluid 

motion, because it would provide a direction in 
which the motion develops (e.g., maximising 
entropy, or minimising kinetic energy, etc.).  

Unfortunately, the search has proven to be 
an elusive one: not only the existence of a simple 
general Lagrangian of motion for a viscous fluid 
as asserted by some and negated by other authors 
but even the methods adopted for a correct 
positing of the problem do not enjoy universal 
acceptance. A complete critical review of the 
abundant literature on this topic exceeds the 
limits of this paper, and interested readers are 
referred to Sciubba (2004) and Sieniutycz 
(1994), both of which include previous reviews 
by Serrin (1959) and Schecther (1967). A 
somewhat restricted view will be adopted here, 
and only a brief account of the debate on the 
specific issues related to whether or not the 
Navier-Stokes equations admit of a variational 
formulation will be provided. In other words, we 
will not delve into any technicality related to the 
admissibility of the proposition that “the general 
equation of motion of a viscous fluid is derived 
from a variational formulation in which a 
functional ∫V L dV is minimised under the proper 
boundary and accessory conditions”. We shall 
assume that the above question is admissible (i.e. 
it makes sense from a physical point of view), 
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and report only the debate related to the problem 
of existence and uniqueness. 

It is well known that the problem of the 
existence of a Lagrangian of motion for ideal 
fluids was solved long ago: already in 1766 
Lagrange [as quoted by Serrin (1959) but also 
see http://www-history.mcs.st-andrews.ac.uk/ 
Mathematicians/Lagrange.html] obtained a 
solution for a compressible perfect fluid by 
means of a “multiplier”, λ, an initially unknown 
function that was to be determined as a part of 
the solution and that turned out to be the 
pressure. A more modern derivation was offered 
by Herivel (1955), who showed that a suitable 
Lagrangian could be what we now call the 
stagnation enthalpy. Of course, in the realm of 
ideal fluids, there are two other well-known 
results. The first is the so-called Kelvin principle 
(“the irrotational motion of a perfect 
incompressible fluid has the least kinetic energy 
of all possible motions for a specified mass flow 
rate”). The second is a much less known 
formulation due to Clebsch (1857) who, by 
means of a coordinate transformation, obtained a 
statement (that he presented in a rather obscure 
form) more general than the one derived a 
century later by Herivel. Clebsch uses a 
“potential” to express the velocity field, and this 
potential can be restated in terms of entropy and 
rothalpy: thus, his Lagrangian applies to 
rotational fluids as well. 

To this author’s knowledge, the first 
general answer on the matter of the possible 
existence of a variational form of the viscous 
equations of motion was provided by C. B. 
Millikan (1929). He noted that if the integrand L 
is a functional of only the velocity components ui 
and their spatial derivatives i j , then it can 
at best represent a variational formulation for the 
class of steady flows in which inertia terms (u

u x∂ ∂

                                                

iuj) 
may be neglected. Perhaps not independently1, 
Bateman (1929) showed that the integral of the 
functional p+ρ⎟U*U⏐, under the constraints of a 
prescribed mass flux and of the continuity 
equation, is minimised over a certain domain D if 
and only if U is irrotational.  

Both of these statements in reality 
constitute generalisations of the so-called 
minimum dissipation theorem derived by 
Helmholtz (1869) half a century earlier and later 
reframed by Rayleigh (1913), which states that  
“If in the motion of an incompressible viscous 
fluid the rotor of the vorticity admits of a 
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1 Millikan writes in his paper that the “idea” for his 
derivation had been suggested to him by Bateman. But 
in Bateman’s paper published some six months later 
there is no mention of Millikan’s work. 

potential (i.e., ∇×ω = ∇Φ), then that motion has 
the minimal dissipation of any other motion 
consistent with the same boundary conditions”.  
We can now take this statement as a starting 
point to more precisely define the object of the 
present quest: is it possible to extend the 
Helmholtz-Rayleigh theorem to all viscous 
flows? We can anticipate here the conclusions 
that we shall draw after critically reviewing some 
of the existing literature and state the general 
answer to this question seems to be affirmative. 
However, useful and concretely applicable 
formulations have been obtained only by 
“restricted” formulations (in a sense that will be 
clarified below).  

Let us begin though with an opposite 
opinion: Finlayson and Scriven (1967), in a very 
aggressively worded paper, begin by stating an 
undisputable fact, namely, that the existence of a 
variational formulation for an operator F is 
linked to its self-adjointness. If F is self-adjoint, 
G (F’s stationary functional) exists “by 
definition”; if F is not self-adjoint, the existence 
of a stationary G is not guaranteed (it may though 
exist for “special” forms of F and the boundary 
conditions of the problem). This premise is 
correct: but Finlayson and Scriven stretched it 
somewhat to negate the validity of what they call 
“restricted” or “pseudo-“ variational methods 
proposed for dissipative systems. Specifically, 
they negate the general validity of the Onsager 
(1931), Glansdorff and Prigogine (1954, 1962, 
1964), Rosen (1953), and Biot (1970) approaches 
and insist that all these “approximate” methods 
are in effect weaker variations of a general 
Galerkin-like method. We shall return soon to 
the problem of “restricted” variations. 

This radically negative position (which was 
taken also by other researchers, see for instance 
Gage et al., 1965), was soon to be disproved: 
about a decade later, Tonti succeeded in devising 
a general procedure to transform any non-self-
adjoint operator into a self-adjoint one by means 
of another operator acting as an “integrating 
factor”. Tonti’s results (1984) went virtually 
unnoticed, but they are very relevant for the 
problem examined in this paper: he indeed 
proved that it is always possible to formally 
derive any non-linear operator from a properly 
constructed functional. The problem with Tonti’s 
approach is that in most cases the 
phenomenology is completely lost in his 
mathematical derivation: the integrating factor 
does not necessarily resemble any physical 
quantity; and indeed, even if it is true from a 
formal point of view that “what is essential is not 
the form of the equation but the solution”, in the 
case of the Navier-Stokes equations, we are 
really interested in physical principles and not 

http://www-history.mcs.st-andrews.ac.uk/
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only in the specific form of the solution. Tonti’s 
work, therefore, serves only to reassure us that 
our search has (at least) one necessary solution: 
but it does not provide us with a link to the 
relevant physical principles. 

Let us step back for a moment and 
reconsider the physical issue: in three of the 
formulations that would (and two of them did!) 
fall under Finlayson’s and Scriven’s criticism, 
the underlying principle is the principle of 
minimal entropy production. The problem was 
addressed by Prigogine and co-workers 
(Glansdorff et al., 1954; Rosen, 1953; and later 
by Gyarmaty, 1970): assuming the validity of the 
Onsager relations, these authors did indeed 
derive a Lagrangian of motion for a viscous fluid 
from the formal, “restricted” minimisation of the 
entropy generation. “Restricted” is a word coined 
by Rosen to denote a variation in which one of 
the relevant parameters (e.g., a force) is kept 
constant during the variation of the other (a flux). 
Onsager (1931) had already used this procedure, 
when in his famous work on entropy generation, 
he varied only with respect to the fluxes and kept 
the forces constant without elaborating on the 
procedure. Rosen did not as well but simply 
stated that results similar to Onsager’s could be 
obtained by varying the forces instead, while 
keeping the fluxes constant, and that the 
principle of “restricted” variations can be used to 
construct an endless number of integral 
functionals.  

In contrast to Onsager and Rosen, it is also 
clear that Glansdorff and Prigogine see their own 
“method of local potentials” (in which they keep 
one of the relevant variables, say ϕ, fixed at its 
yet unknown “minimising value” ϕο, and then 
relax ϕο το ϕ after the formnal integral derivation 
is completed) as a “consistent scheme of 
successive approximations” (Glansdorff and 
Prigogine, 1964).  

Gyarmati (1970) goes a step further than 
Glansdorff-Prigogine in that he derives a 
“general equation of motion” in variational form 
for a very broad class of flows and fluids. 
However, his derivation also calls for separate 
variations with respect to fluxes and forces 
(holding forces constant while varying with 
respect to fluxes and vice versa) and, thus, 
employs, in effect, a restricted variational 
approach.  

The importance of the Glansdorff-Prigogine 
and Gyarmati formulations lies beyond their 
mathematical formalism in the fact that they both 
subsume a very basic assumption of the greatest 
physical significance: that any “motion” of any 
system is realised under the fundamental 

constraint of minimum entropy production (or its 
equivalent, of minimum energy dissipation).  

This aspect is recovered in Sieniutycz’s 
approach (Sieniutycz, 1994). He suggests that, 
though it is clear that the approaches by 
Glansdorff-Prigogine and Gyarmati yield 
“restricted” variational formulations, the physical 
principles on which their derivation is founded 
are so relevant to the known phenomenology that 
it is important to try to capitalise on them and 
proceed to develop similar functional methods in 
a more mathematically sound way. Sieniutycz 
adopts a standard Lagrangian approach (one in 
which integrating factors are used) and uses the 
entropy generation as the basic functional (the 
integrand L) with (some of) the constitutive 
equations appearing as constraints, i.e. 

 ∫V L dV−∫V Σ λ f dV = minimal in V (1) 

where the λ are now the lagrangian multipliers 
that must be also obtained in the course of the 
minimisation procedure.  

Such an approach was also independently 
proposed by Ecer (1980), who was indeed able to 
obtain a complete set of solutions valid for the 
Navier-Stokes equations and by Geskin (1989), 
who developed Gyarmati’s ideas under a 
standard Lagrangian formalism. Sieniutycz’s 
formulation is more general though, and it also 
tackles the more difficult problem of including 
non-stationary considerations, i.e. his quest goes 
a step further than the one posed here in that he 
seeks a truly general equation of motion that 
would regulate both the behaviour of systems 
near equilibrium and that of systems “far” from 
equilibrium relaxing to it.  

We can now conclude this short (and 
evidently incomplete) review by stating that, in 
view of the above, it is certain 

1) That a general equation of motion can 
indeed be formulated in variational form for 
viscous compressible and incompressible 
flows (Tonti, 1984; Sieniutycz, 2004; Ecer, 
1980); and 

2) That - at least in a restricted sense 
(Glansdorff et al., 1962; Gyarmati, 1970; 
Sieniutycz, 1994) - the functional contains 
the entropy generation, i.e. that the 
underlying physical principle is that a fluid 
moves in such a way as to minimise its 
entropy production under the given external 
constraints (including boundary 
conditions).  

What is missing is a step definitely secondary 
from a substantial point of view but of great 
importance from a physical point of view: an 
explicit derivation in which the known equations 



(continuity, momentum, and energy) are not 
employed as lagrangian constraints, but are 
derived in the course of the procedure. This is the 
purpose of the present paper.  

We must clearly state that the derivation 
presented here is limited to a certain sub-class of 
motions (see Section 2 below) and that its 
extension to other types of flow (for instance, 
compressible) is neither straightforward nor 
certain and is not implied here in any sense. 
However, for the realm of viscous 
incompressible Newtonian flows, the present 
derivation has the merit of explicitly linking a 
measurable and well-known thermodynamic 
function (flow exergy) to the standard form of 
the Navier-Stokes equations: some 
phenomenological consequences of this 
connection are outlined in the Conclusions.  
Furthermore, it is reasonable to assume that it 
should also be possible to extend a similar 
derivation (based on minimum exergy 
destruction) to compressible flows and, with the 
necessary adjustments, to non-isothermal flows 
as well. 

2.  Exergy Accounting for a Fluid in Motion 

Consider the flow of a viscous fluid in a 
channel of known geometry and in which the 
physical parameters of the fluid are constant. In 
the most general situation, the act of motion is 
driven by a set of well-defined external fields 
(pressure, external force, and temperature) and 
by the inertia of the mass under examination and 
is affected by some “dissipative” effects related 
to the real viscosity and thermal conductivity of 
the fluid. Dissipation is associated with entropy 
production or, as in the considerations that 
follow, to the exergy destruction of the flow. 
Flow exergy is an extensive thermodynamic state 
function defined as (Kotas, 1985; Moran, 1989)  
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  (2) 0 0 0e = h h T (s s )− − −

where T0 is a properly chosen reference state 
temperature, usually that of a large 
“environment” with which the system - here, the 
flowing fluid - may eventually come into 
thermodynamic equilibrium. A representation of 
the work and heat interactions of a system in 
terms of exergy has the advantage of unifying 
both work/heat interactions and dissipative 
effects into a unified framework. Thus, for any 
dissipative system, a theorem of “exergy 
destruction” applies, which states that if the 
system undergoes an irreversible process, its 
specific exergy content is destroyed (annihilated) 
at a rate given by: 

  (3) 0 irre = T sλ& &

The interpretation of equation (3) is straight-
forward: every real (irreversible) process 
destroys exergy at a rate proportional to the 
irreversible entropy generation. For a general 
exposition of the paradigm of Exergy Analysis, 
see Kotas (1985) and Moran and Shapiro (2000).  

Consider now a unit mass of fluid 
undergoing a completely specified act of motion. 
In a small interval of time dt, the exergetic 
content of the unit mass will be modified by four 
different contributions: 

1) an exergy variation rate equal to the 
exchanged mechanical power (can be 
positive or negative) [W/kg]: 

 w reve = w =& &
pU U U U B
ρ

⎡ ⎤∇
⋅ + + ⋅⎢ ⎥

⎣ ⎦
&  (4) 

2) an exergy destruction rate proportional to 
the viscous dissipation function of the flow 
field (always negative, i.e. corresponding to 
an exergy sink) [W/kg]: 

 λ,visc visce = νD−&  (5) 

3) an exergy variation rate proportional to the 
reversible thermal entropy exchange 
(positive or negative) [W/kg]: 

  (6) Q,rev 0 reve = (T- T )s& &

4) an exergy destruction rate proportional to 
the irreversible thermal entropy production 
(always negative) [W/kg]: 

 l,therm 0 irr,therme = T s−& &  (7) 

Thus, the total exergy change per unit mass of 
the fluid in time dt is [J/kg] 

 

fluid j

visc

0 rev 0 irr

pe dt e dt [ U U + U

+ U B D
(T T )s (T T )s ]

ρ
ν

∇
∆ = = ⋅

⋅ −

+ − − −

∑ &&

& &

 (8) 

Notice that once the flow variables are exactly 
known at each time t and at each point in the 
flow domain, the quantity defined by equation 
(8) can be computed exactly locally and, if 
necessary, integrated over the entire domain to 
yield the global variation of the exergy of the 
flow. This is indeed often done to assess the 
efficiency of technical flows like turbine nozzles, 
turbine and compressor blades (Iandoli and 
Sciubba, 2003). The reverse is obviously not 
true, as infinitely many flow fields may display 
the same value of the exergy destruction rate at 
any instant of time. Our goal is to show that if we 
assume that, at every instant of time, the fluid 
motion is governed by the minimisation of the 
exergy destruction given by equation (8), the 



resulting equations of motion are indeed the 
Navier-Stokes equations. Notice that such an 
assumption is in line with the statement made by 
Serrin (1959) that a credible Hamiltonian for a 
viscous fluid ought to include the energy 
equation in some form. 

3.  Variational Derivation of the Flow Field 

Consider the steady (in a Lagrangian sense) 
and isothermal flow of a viscous homogeneous 
fluid with constant properties. As stated above, 
our basic assumption is that the fluid moves in 
such a way that its exergy destruction is at its 
minimum at each instant of time, compatible with 
the assigned external constraints. It can be easily 
shown by means of the so called “Gouy-Stodola 
lost-work” theorem (Bejan, 1982), that this 
assumption corresponds to the minimum entropy 
generation principle. The “external constraints” 
are the imposed boundary conditions and the 
specified work and heat interactions. Neglecting 
for the moment the boundary conditions (we 
shall assume that “natural” boundary conditions 
apply), it is clear that the external energy 
exchanges are completely specified in a 
quantitative and qualitative manner by the 
expression for the exergy variation of the fluid 
mass (equation (8) above). That is, imposing the 
condition of constrained minimum exergy 
destruction is equivalent to searching for the 
minimisation of a functional whose integrand is 
the total exergy change of the unit fluid mass 
given by equation (8). Therefore, we can write 
that 

 L = pU U U U B νD
ρ

⎡ ∇
⋅ + + ⋅ −⎢ ⎥

⎣ ⎦
& ⎤  (9) 

and  

 ∫V L dV=minimal in V  (10) 

We see, thus, that the exergy formulation offers 
(at no extra computational cost) the advantage of 
the formal positing of an unconstrained problem. 
If different boundary conditions are to be 
imposed, the integral in equation (10) must be 
augmented as needed (via a surface integral 
extended to the domain boundary).  

The Euler-Lagrange equations for the 
problem so posed are 

 
k j k j

0
u x ( u / x )

⎛ ⎞∂ ∂ ∂
− =⎜⎜∂ ∂ ∂ ∂ ∂⎝ ⎠

L L
⎟⎟  (11) 

Using for the viscous dissipation function the 
standard expression: 

 Dvisc = 
2

ji

j i

uu1
2Re x x

⎛ ⎞∂∂
+⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (12) 

system (11) results in the following set of 
equations: 

 
2

k k
k

k i i

du u1 p B ν 0
dt ρ x x x

⎛ ⎞∂∂
+ + − =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (13) 

which are indeed the Navier-Stokes equations of 
motion. A detailed derivation in a three 
dimensional Cartesian domain is presented in 
Section 3.1 below. Notice that, aside from the 
flow deformation work that is kept constant 
along the variation (see equation (15)), no “local 
potential” is employed here. The method is 
“restricted”, however, in the sense that the 
minimisation is performed in space, but not in 
time, i.e. the time derivative of the velocity is not 
subjected to the variation (this corresponds to the 
“steadiness” assumption listed at the beginning 
of this section).  

4. Explicit Variational Derivation of the 
Navier-Stokes Equations 

The present derivation is carried out in a 
three-dimensional Cartesian, Galilean frame. For 
more generality, the Lagrangian of equation (9) 
is made dimensionless by dividing the right-hand 
side by U3/L, where U and L are representative 
velocity and length scales for the flow domain. 
The procedure develops along the following 
steps: 

1) Expand L in the three components x, y, and 
z (the suffix indicates the relevant 
component), namely, 

 L x
x

du= u + up + D/ 3
dt

 (14a) 

 L y
y

dv= v + vp + D/ 3
dt

 (14b) 

 L z
z

dww + wp + D/
dt

= 3  (14c) 

2) Augment the Lagrangian density by 
including the deformation work (here, 
power), which is not varied during the 
derivation, i.e. 

Laug=U. (Mo.Uo) =
yo zo o

xo zo o

xo yo o

0 u uu u
v v 0 v v
w w w 0 w

× ×  

                           
o y o z

o x o z

o x o y

uv u +uw u

= u vv +vw v
u ww +v ww

 (15) 
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3) The explicit expression for the dissipation 
function is given by 

( )
( ) ( ) ( )

2 2 2
x y z

2 2 2
y x z y z x

2D= u +v +w +
Re
1 u +v + v +w u +w

Re
⎡ ⎤
⎢ ⎥⎣ ⎦

 (16) 

4) We first expand equations (14) and (15) 
(incorporating the nonessential factor of 1/3 
into Re) so that 

   

x 2
t x y z x

2 2 2
x y z

2 2 2
y x y z z x

uu +u u +uvu +uwu +up

2 2 2+ u + v + w
Re Re Re
(u +v ) (w +v ) (u +w )

+ + +
Re Re Re

=L

(17a) 

    

x 2
t x y z y

2 2 2
x y z

2 2 2
y x y z z x

vv +uvv +v v +vwv +vp

2 2 2+ u + v + w
Re Re Re
(u +v ) (w +v ) (u +w )

+ + +
Re Re Re

=L

(17b) 

    

z 2
t x y z z

2 2 2
x y z

2 2 2
y x y z z x

ww +uww +vww +w w +wp

2 2 2+ u + v + w
Re Re Re
(u +v ) (w +v ) (u +w )

+ + +
Re Re Re

=L

(17c) 

5) Then we separately compute the terms in 
the Euler-Lagrange (“E/L”) equations 
(equa-tions (11)) to yield 

 Lx
u t x y zu +2uu +vu +wu +p= x  (18a) 

 Lx
ux

2
x

4u + u
Re

=  (18b) 

 Lx
ux,x x

42 uu + u
Re

= xx  (18c) 

 Lx
uy y

2 2uv+ u + v
Re Re

= x  (18d) 
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 Lx
uy,y y y yy x

2 2uv + vu + u + v
Re Re

= y  (18e) 

 Lx
uz z

2 2uw+ u + w
Re Re

= x  (18f) 

 Lx
uz,z z z zz

2 2uw + wu + u + w
Re Re

= xz  (18g) 

(the remaining terms are symmetrical with the 
“x” terms derived above). After some 
manipulation and making use of the 

incompressible continuity equation (imposed as a 
constraint), we obtain the following: 

 

x
t y z x

xx yy zz

(E/L)  = u uv uw + p

2 (u + u + u )
Re

− −

−
 (19a) 

which, augmented with the Euler-Lagrange 
equation for the corresponding line of (15), 
becomes2

x x(E/L) +( )⋅ ⋅ =o oU M U  

 

t y z x

xx yy zz y z

x y z x

xx yy zz

             = u uv uw + p

2 (u + u + u ) + vu + wu
Re

= u+ uu + vu + wu + p

2 (u + u + u )
Re

− −

−

−

&
 (20a) 

i.e. the x-component of the Navier-Stokes 
equation for an incompressible isothermal fluid. 
In the other directions, we have that 

 

y
t x z y

xx yy zz

(E/L)  = v vu vw + p

2 (v + v + v )
Re

− −

−
 (19b) 

and  

 

z
t x y z

xx yy zz

(E/L)  = w wu wv + p

2 (w + w + w )
Re

− −

−
 (19c) 

which, respectively, augmented with the 
corresponding lines of equation (15), become 

y y(E/L) +( )⋅ ⋅ =o oU M U  

  

t x z y

xx yy zz x z

t x y z y

xx yy zz

             = v vu vw + p

2 (v + v + v ) + uv + vv
Re

= v + uv + vv + wv + p

2 (v + v + v )
Re

− −

−

−

 (20b) 

                                                 
2 Notice that this is the formal step that makes our 
procedure “restricted” in the Finlayson’s sense: we are 
here in effect substituting the “free varying” variables 
u, v, and w for their “frozen” values uo, vo, and wo 
appearing in equation (15). We justify this substitution 
though using the same reasoning offered by 
Glansdorff and Prigogine (1964): once a first 
approximation to the “extremal solution” has been 
found, its values can be replaced into equation (15), 
and the procedure iterated to convergence, i.e. 

until
o

o

o

u- u
v- v
w- w

ε< , with ε arbitrarily small. 



and  
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=z z(E/L)  +( )⋅ ⋅o oU M U  

 

t x y z

xx yy zz x y

t x y z z

xx yy zz

          = w wu wv + p

2 (w + w + w ) + uv + vw
Re

= w + uw + vw + ww + p

2 (w + w + w )
Re

− −

−

−

 (20c) 

These are, of course, the sought after Navier-
Stokes equations. 

5.  Conclusions 

The novelty of the derivation presented 
here resides in the physical meaning attached to 
the Lagrangian functional. Since the entropy 
minimisation (equivalent to exergy destruction 
minimisation) principle has a clear and univocal 
physical meaning, it may be used not only to 
interpret the results of our derivation but also to 
suggest possible theoretical and practical 
applications. If the principle is that every flow is 
driven by an entropy-minimising paradigm, some 
of its implications are:   

1) Realisable flows 
Not every flow field is a permissible one: if 
a certain analytically or numerically 
specified flow field respects both the mass- 
and the energy equations, but its velocity 
vector U(x,t) does not satisfy equation (10), 
it will not occur in nature nor it can be 
maintained in practice unless an external 
force field is imposed such that the final 
equation of motion is consistent with 
equation (10); 

2) Asymptotic bounding 
If the boundary conditions are varied after 
an initial transient, the flow will approach a 
configuration that satisfies equation (10). 
This can be used to set upper and lower 
bounds to some of the flow-derived 
quantities (heat transfer, deliverable work, 
etc.); 

3)  “Physically correct” time marching 
Once an initial flow field is known, equation 
(10) can be solved for the (Lagrangian) 
velocity U(x,t+dt), and the Eulerian field 
marched in time by successive application of 
the minimum exergy destruction principle. 
Under the quasi-stationary assumption 
implicit here, such a procedure would 
guarantee stability irrespective of the 
numerical method adopted. 
To put the procedure proposed in this paper 

to a formal and substantial test, applications will 
have to be developed to specific cases and tested 

o n known flow fields (experimental, analytical, 
and numerical). An even more important step 
would be that of extending its validity to non-
isothermal and compressible flows.  

Nomenclature 

B=(bx,by,bz) body force vector, N 
D flow dissipation function, m2/s3

D fluid domain 
e specific exergy, J/kg 
h enthalpy, J/kg 
L Lagrangian density 
p pressure, Pa 
s entropy, J/(kg*K) 
t time, s 
T temperature, K 
U=(u,v,w) velocity vector, m/s 
V integration volume 
w specific work, J/kg 
x=(x,y,z) cartesian coordinate set, m 
λ Lagrange multiplier 
ν kinematic viscosity, m2/s 
ρ density, kg/m3  
Φ potential function 
ω=(ωx,ωy,ωz) vorticity vector, s-1

Suffixes  

irr irreversible 
λ loss 
o reference state 
rev reversible 
v virtual displacement 
visc viscous 

A vector is identified by a bold case letter (U). 
The substantial time derivative is indicated by a 
dot ( ), the eulerian by s& t∂ ∂ or ut. Spatial 
derivatives are written either explicitly, as 

ix∂ ∂ , or as uxi
. ∇ indicates the gradient 

operator and “*” the scalar product.  
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