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Abstract 
In this work we derive the excess entropy production rate for heat, mass and charge 
transport into, out of and across a surface, using as basic variables the excess densities 
proposed by Gibbs. With the help of these variables we define the surface as an 
autonomous system (i.e. a surface in local equilibrium) and find its excess entropy 
production rate. This then determines the conjugate fluxes and forces. Equivalent forms of 
the entropy production rate are given. The forms contain finite differences of intensive 
variables into and across the surface as driving forces. The general form of the force-flux 
relations is given. The expressions for the fluxes serve as boundary conditions for 
integration across heterogeneous systems. Two examples are discussed in more detail. The 
first example is the practically important coupled transport of heat and mass into and 
through a liquid-vapor surface. The second example concerns phenomena at electrode 
surfaces: the coupled transport of heat, mass and charge and a chemical reaction. By 
assuming that the two sides of the surface can be described as resistances in series, we are 
able to reduce the number of unknown transport coefficients considerably. For both 
examples it is shown that the coupling coefficients for heat and mass flow are large at the 
surface, when the homogeneous phases have a large enthalpy difference. As a consequence 
it is not sufficient to use, for instance, Fourier’s law for transport of heat across surfaces. 
Keywords: Non-equilibrium thermodynamics, local equilibrium, transport through 
surfaces, phase transitions, electrochemical reactions. 

1. Introduction 

The second law of thermodynamics says 
that the entropy change of the system plus its 
surroundings is positive for irreversible 
processes and zero for reversible processes. The 
law gives the direction of a process; it does not 
give its rate. In this work we shall use 
nonequilibrium thermodynamics to derive rate 
equations for surface area elements. 
Nonequilibrium thermodynamics assumes that 
the second law remains valid locally, also for 
such surface area elements. The entropy 
production is then obtained as an excess quantity, 
using Gibbs excess densities as a basis.  

A general expression for the excess entropy 
production rate of a surface was already given 
some time ago (Bedeaux et al., 1976; Bedeaux, 
1986; Albano and Bedeaux, 1987). That analysis 
was not only for curved surfaces, but also for 
surfaces that were allowed to move in space and 

change their curvature. The analysis was done 
using time dependent orthogonal coordinate 
systems. For a majority of systems this leads to 
unnecessary complications, however, so we find 
that a more dedicated presentation may be useful. 
We have thus chosen to present equations of 
transport of heat, mass and charge for transport 
into and across surfaces where reactions take 
place, in much more detail than before, and for 
some important specific cases. The general 
framework mentioned above (Bedeaux et al., 
1976; Bedeaux, 1986; Albano and Bedeaux, 
1987) will be followed, however. It adds to 
similar results for continuous (de Groot and 
Mazur, 1984) and discontinuous systems 
(Katchalsky and Curran, 1975). A surface does 
not exist without its bounding phases, and the 
transport processes in question therefore address 
a heterogeneous system: the system made up by 
two homogeneous (bulk) phases and the surface 
(or interface) between these. The aim of the 
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present work is to contribute to the 
understanding and modeling of such 
heterogeneous systems with transport of heat, 
mass and charge with the possibility of chemical 
reactions at surfaces. We shall conclude that it is 
not enough to invoke the first law in the 
modeling of such systems, as is common in the 
literature according to a recent review of fuel cell 
modeling (Weber and Newman, 2004). Also the 
second law need be used to obtain a 
thermodynamically consistent model of non-
isothermal systems.  

Heterogeneous systems with transport of 
heat, mass and charge are important in industry 
as well as in nature. Evaporation or condensation 
is one such central example of heat and mass 
transport. The phase transformations of water in 
nature, and of organic liquids in the distillation 
industry are thus widely studied (Pao, 1971; Pao, 
1971, Cippola Jr. et al., 1974; Cippola Jr. et al., 
1974, Bedeaux et al., 1990; Bedeaux et al., 1992; 
Fang and Ward, 1999a; Fang and Ward, 1999b; 
Røsjorde et al., 2001; Kjelstrup and deKoeijer, 
2003). All electrochemical cells have such 
transport processes at their electrodes. Here 
chemical reactions take place at the electrode 
surfaces during conversion of electric into 
chemical energy or vice versa. We shall give 
general transport equations for both example 
systems, consistent with the second law of 
thermodynamics.  

We lay the foundation in Section 2 by 
presenting Gibbs’ definition (Gibbs, 1961) of 
excess mass densities for the surface. Concepts 
like the equimolar surface are introduced. The 
excess internal energy, enthalpy, entropy as well 
as the surface tension are defined in the same 
way. Gibbs gave an extensive discussion of these 
definitions for equilibrium systems. In Section 3 
we give the thermodynamic identities between 
the excess densities for the equilibrium surface. 
We introduce the hypothesis of local equilibrium 
for the surface in a nonequilibrium system in 
Section 4. For a surface element, we say that 
there is local equilibrium when the thermo-
dynamic identities discussed in Section 3 are 
valid.  

The hypothesis of local equilibrium implies 
that the nonequilibrium surface is treated as an 
autonomous thermodynamic system. We follow 
Bakker (1928) and Guggenheim (1985) in this 
respect. Whether the nonequilibrium surface is 
autonomous has been questioned by, for 
instance, Defay et al. (1966). There is, however, 
convincing evidence from nonequilibrium 
molecular dynamics simulations (Røsjorde et al., 
2000; Simon et al., 2004) and from the 
nonequilibrium van der Waals square gradient 

model (Johannessen and Bedeaux, 2003), that 
this assumption is appropriate for many systems. 
It follows, using this as a premise, that in Section 
5 we can explain how to obtain the excess 
entropy production rate for the surface. The first 
step is done in Section 6, where we give the 
energy and mass balance equations for the 
surface. In Section 7 we then find the excess 
entropy production rate for the surface, using the 
entropy balance equation given in Section 5, the 
energy and mass balance equations given in 
Section 6 and the Gibbs equation for the surface. 
This makes it then possible to give the general 
linear force-flux relations in Section 8. Some 
practical reduced forms of these equations are 
discussed first for coupled transport of heat and 
mass, and then for coupled transport of heat, 
mass and charge combined with a chemical 
reaction at the surface. The equations predict 
jumps at the surface in the temperature, and the 
chemical and electric potentials, depending on 
the magnitude of the fluxes, and imply that 
simple transport equations, like Fourier’s law, 
are not enough to correctly describe transport at 
the surface. 

 
Figure 1. Variation in the molar density of 

a fluid going from the gas to the liquid state. The 
vertical line indicates the extension of the 
surface. The scale of the x-axis is measured in 
nanometer 

2. Thermodynamic Excess Densities of a 
Surface  

A surface is the thin layer between two 
homogeneous phases. We shall use the two 
words surface and interface interchangeably. We 
examine flat surfaces and choose the x-axis 
perpendicular to the surface. The thermodynamic 
properties of the interface are given by the values 
of the excess densities of the interface. The value 
of these densities and the location of the interface 
will be defined through the example of a gas-
liquid interface. We shall correspondingly 
indicate these phases with the superscripts g or l.   
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Figure 2. Determination of the position of 

the equimolar surface of component A. The 
vertical line is drawn so that the areas between 
the curve and the bulk densities are the same 

Figure 1 shows the variation in 
concentration of A, in a mixture of several 
components, as we go from the gas to the liquid 
phase. The surface thickness is somewhere 
between a fraction of a nm and a µm. The x-axis 
of Figure 1 has coordinates in nm, it has a 
molecular scale. A continuous variation in the 
concentration is seen. Gibbs (1961) defined the 
closed surface as a transition region with a finite 
thickness bounded by planes of similarly chosen 
points. In Figure 1 such planes are indicated by 
vertical lines. The position a is the point in the 
gas, left of the closed surface where cA(x) starts 
to differ from the concentration of the gas, cA

g, 
and the position b is the point in the liquid right 
of the closed surface, where cA(x) starts to differ 
from the concentration of the liquid, cA

1 . The 
surface thickness is then δ=b-a. It refers to 
component A. Other components may yield 
somewhat different planes.  

Gibbs defined the dividing surface as ”a 
geometrical plane, going through points in the 
interfacial region, similarly situated with respect 
to conditions of adjacent matter”. Many different 
planes of this type can be chosen. While the 
position of the dividing surface depends on this 
choice, it is normally somewhere between the 
vertical lines in Figure 1. The planes that 
separate the closed surface from the homo-
geneous phases are parallel to the dividing 
surface. The continuous density, integrated over 
δ, gives the excess surface concentration of 
component A as a function of the position (y, z), 
along the surface:  

( ) ( )

( ) ( ) ( ) ( )

b
A Aa

g 1
AA

y,z c x, y, z

c a, y, z d x c b, y, z x d dx

Γ = −⎡⎣

⎤Θ − − Θ − ⎦

∫
(1) 

where d is the position of the dividing surface.  
The surface concentration is often called the 

adsorption (in mol/m2). The Heaviside function, 

Θ, is by definition unity when the argument is 
positive and zero when the argument is negative. 
Normally a < d < b. The adsorptions of other 
components are defined in the same way. Other 
excess variables, like the excess internal energy, 
the excess enthalpy, the surface tension and the 
excess entropy, are also defined in the same way.  

All excess properties of a surface can be 
given by integrals like equation (1). The excess 
variables are the extensive variables of the 
surface. They describe how the surface differs 
from adjacent homogeneous phases. It is clear 
from Figure 1 that one may shift the position a to 
the left and b to the right without changing the 
adsorption. This shows why the precise location 
of a and b is not important for the value of the 
adsorption. Given d, the adsorption has a precise 
definition, however.  

The equimolar surface of component A is a 
special choice of the dividing surface. The 
location is such that the surplus of moles of the 
component on one side of the surface is equal to 
the deficiency of moles of the component on the 
other side of the surface. The vertical line is 
drawn so that the areas between the curve and 
the bulk densities are the same, see Figure 2. The 
position d of the equimolar surface obeys 
therefore: 

  
( ) ( )

( ) ( )

d g
A Aa

b 1
A Ad

c x, y, z c a, y, z dx

c x, y, z c b, z, y dx

⎡ ⎤− =⎣ ⎦

⎡ ⎤− −⎣ ⎦

∫

∫
(2) 

According to equations (1) and (2), ΓA=0, when 
the surface has this position. The shaded areas in 
the figure are equal. In multi-component systems, 
each component has its ”equimolar” surface, but 
we have to make one choice for the surface 
position. We choose the position of the surface 
as the equimolar surface of the reference 
component. This component has then no excess 
concentration, while another component B, like 
the one sketched in Figure 3, has an excess 
concentration. Thermodynamic properties of 
homogeneous systems are usually plotted on 
scales with greater dimension than nm. In Figure 
4, cA(x) is plotted on a µm scale. The fine details 
of Figure 1 disappear, and the surface appears as 
a discontinuity. When plotted on a macroscopic 
scale, a non-zero excess surface density, like 
component B, will appear as a singularity at the 
position of the dividing surface. On this scale the 
different possible choices of the dividing surface 
are no longer visible, and the surface can be 
regarded as a two-dimensional thermodynamic 
system with properties that are integrated out in 
the x-direction and are given per surface area. 
The dependence on the coordinates y and z 
remains. 
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Figure 3. Variation of the density of compo- 
nent B across the surface. The excess surface 
concentration of component B is the integral 
under the curve in the figure 

 
Figure 4. The equimolar surface, plotted on 

a micrometer scale, appears as a jump between 
bulk densities 

For the usual interface, as for instance 
between a liquid and a vapor, the thickness is not 
more than a nanometer. In the application of the 
above methods using excess densities and fluxes 
there is no reason to restrict oneself to surfaces 
that are so thin, however. If one considers a 
polymer fuel cell and uses a carbon electrode 
with platinum catalyst, one has a three phase 
surface region of about a micron thick. This 
whole region can also be described using excess 
quantities such as the excess platinum density 
and others. On an even larger scale one may in 
fact describe the whole atmosphere of the earth, 
which is about 20 km thick, using excess 
densities of the constituents of air and describe 
the flow of air in terms of excess fluxes. This 
leads to a two-dimensional picture of the 
weather, very much like it is presented during the 
weather forecast. 

3. Local Thermodynamic Identities for the 
Surface  

When excess surface densities are defined 
in this manner, the normal thermodynamic 
relations, like the first and the second law and 

derived relations, apply for the variables (Gibbs, 
1961). The Gibbs equation for the surface 
becomes:  

  (3) 
n

s s
j

j 1
dU TdS d dN

=
= + γ Ω+ µ∑ s

j

s

s
j

where U is the internal energy, T is the 
temperature, S is the entropy, γ is the surface 
tension, Ω is the area, µj is the chemical potential 
of component j and Nj  is the number of moles of 
this component. The number of independent 
components is n. A surface property is indicated 
by superscript s. By integration for constant 
surface tension, temperature and composition, 
we obtain:  

  (4) 
n

s s
j j

j 1
U TS N

=
= + γΩ+ µ∑

The Gibbs-Duhem equation for the surface 
follows by differentiation of this equation and 
subtracting equation (3): 

 
n

s
j

j 1
0 S dT d N d

=
= +Ω γ + µ∑  (5) 

In order to use these equations in 
combination with the continuity equations, we 
need the local variables given per unit of surface 
area. These are the excess internal energy density 

s su U= Ω , the adsorptions s
j jNΓ = Ω  and 

the excess entropy density, s ss S= Ω . When we 
introduce these variables into equation (3) and 
use equation (4), we obtain Gibbs equation for 
the surface in a density form:  

 
n

s s
j j

j 1
du Tds d

=
= + µ Γ∑  (6) 

The surface excess internal energy density is:  

 
n

s s
j j

j 1
u Ts

=
= + γ + µ Γ∑  (7) 

and the Gibbs-Duhem equation becomes 

 
n

s
j j

j 1
0 s dT d d

=
= + γ + Γ µ∑  (8) 

An overview of thermodynamic relations 
for the surface is given below for the surface 
internal energy, surface internal energy density, 
Gibbs equation, Gibbs-Duhem equation, surface 
Gibbs energy density and the surface Helmholtz 
energy density, respectively:  



  (9) 

ns s s
j jj 1

ns s
j jj 1

ns s
j jj 1
ns

j jj 1
ns ss j jj 1
ns s s

j jj 1

U TS N

u Ts

du Tds d

0 s dT d d

g u Ts

f u Ts

=

=

=

=

=

=

= + γΩ + µ

= + γ + µ Γ

= + µ Γ

= + γ + Γ µ

= − − γ = µ Γ

= − = γ + µ Γ

∑

∑

∑

∑

∑

∑
All these relations are analogous to the ones 
valid in the homogeneous phases (Kjelstrup and 
Bedeaux, 2001).  

4. The Hypothesis of Local Equilibrium for 
the Surface  

We have so far considered systems that are 
in global equilibrium, i.e. the temperature and the 
chemical potentials are constant throughout the 
whole system. In global equilibrium the 
thermodynamic forces and fluxes are everywhere 
zero, so that both the total and the local entropy 
productions are zero. The central hypothesis in 
the systematic development of the theory of 
nonequilibrium thermodynamics for continuous 
systems is that the system is everywhere in local 
equilibrium. For a more detailed definition and 
discussion of this property we refer to the 
discussion in Section 8. For a surface element, 
we say that there is local equilibrium whenever 
the thermodynamic relations (6)-(8) are locally 
valid. The Gibbs’ relation (6) becomes:  
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γ

)γ

  (10) 
( ) ( ) ( )

( ) (

s s s

n
s
j j

j 1

du y,z, t T y, z, t ds y, z, t

y, z, t d y, z, t
=

=

+ µ Γ∑

The excess internal energy (7) is given by  

  (11) 
( ) ( ) ( ) ( )

( ) ( )

s s s

n
s
j j

j 1

u y, z, t T y, z, t s y, z, t y, z, t

y, z, t y, z, t
=

= +

+ µ Γ∑

and the Gibbs-Duhem equation (8) by  

  (12) 
( ) ( ) (

( ) ( )

s s

n
s

j j
j 1

0 s y, z, t dT y,z, t d y, z, t

y, z, t d y, z, t
=

= +

+ Γ µ∑

The relations are valid at any time t and positions 
y, z. Similarly, local equilibrium implies that all 
the thermodynamic relations given in equation 
(9) are valid locally. The intensive thermo-
dynamic variables for the surface are given by 
the derivatives:  

 
s

j k

s s
s s

js
j s ,

du duT and
dds Γ Γ

⎛ ⎞⎛ ⎞
= µ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Γ⎝ ⎠ ⎝ ⎠

 (13) 

The temperature and chemical potentials, 
defined in this manner, depend only on the 
surface excess variables, not on the value of 
variables in the homogeneous phases close to the 
surface. By introducing these definitions we 
therefore allow for the possibility that the surface 
has a different temperature or chemical potential 
than the adjacent homogeneous systems. 
Nonequilibrium molecular dynamics simulations 
support the validity of the hypothesis of local 
equilibrium for surfaces (Røsjorde et al., 2000; 
Simon et al., 2004). The hypothesis of local 
equilibrium, as formulated above, does not imply 
that there is local chemical equilibrium (de Groot 
and Mazur, 1984). In that case the Gibbs energy 
of the reaction is also zero. The thermodynamic 
variables for the surface depend on the position 
along the surface and the time. As we shall not 
consider transport along the surface, we shall 
further restrict ourselves to cases where the 
variables are independent of y and z and the 
fluxes are in the x-direction.  

We shall see that an essential and surprising 
aspect of the local equilibrium hypothesis for the 
surface and the adjacent homogeneous phases is 
that the temperature and chemical potentials on 
both sides of the surface may differ, not only 
from each other, but also from the values found 
for the surface. This is, however, similar to and 
compatible with the fact that an electric potential 
difference can be generated across a surface, and 
that the Nernst equation applies to the surface at 
electrochemical equilibrium.  

5. The Entropy Balance for the Surface  

The change of the excess entropy density in 
a surface is a result of the flow of entropy in and 
out of the surface element and of the excess 
entropy production rate, σs(t), inside:  

 ( ) ( ) ( ) ( )i,o o,i s
s s s

d s t J t J t t
dt

= − + σ  (14) 

where  is the asymptotic value of the 
entropy flux in the adjacent phase i left of the 
surface and into the surface, and  is 
similarly the entropy flux in the phase o to the 
right of the surface and out of the surface, see 
Figure 5. All excess properties of a surface, like 
the excess entropy production rate, are given by 
integrals like equation (1). The excess entropy 
production rate describes how the entropy 
production rate in the surface differs from the 
one in the adjacent homogeneous phases.  

i,o
sJ (t)

o,i
sJ (t)



 
Figure 5. The change of the surface entropy 

due to entropy fluxes in and out of the surface 
and the entropy production rate in the surface 

 
Figure 6. The mass balance for a surface 

with reaction 

 
Figure 7. The energy change in the surface 

with total heat fluxes and an electric current 

In order to emphasize that the two phases 
are not necessarily a gas and a liquid, we now 
indicate the two phases by i and o rather than by 
g and l. The asymptotic fluxes are defined by:  

   , (15) ( ) ( ) ( ) ( )i,o i o,i o
s s s sJ t J a, t and J t J b, t≡ ≡

compare Figure 1. The first roman superscript 
gives the phase, i, s or o in this case. The second 
superscript, o or i, indicates a value close to the 
surface in phase i or o. The combination i, o 
means therefore the value in phase i as close as 
possible to the o-phase. The excess entropy 
production rate is σs(t) ≥ 0. We shall find explicit 
expressions for σs(t) by combining:  

• mass balances 
• the first law of thermodynamics  
• the local form of the Gibbs equation.  

In the derivation we follow references 
(Bedeaux et al., 1976; Bedeaux, 1986; Albano 
and Bedeaux, 1987). We shall see that σs(t) can 
be written as the product sum of thermodynamic 
fluxes and forces in the system. These are the 
conjugate fluxes and forces for the surface. 
Electroneutral nonequilibrium systems, with and 
without chemical reactions, are of interest as 
these are the systems that we encounter most 
often in nature and also in industry. We shall 
give equations of transport for heat, mass and 
charge for surfaces where reactions occur. 
Electrochemical reactions need surfaces to occur 
and are especially important.  

The excess entropy production rate for the 
surface shall be derived along the same lines as 
for the homogeneous phase (Kjelstrup and 
Bedeaux, 2001). Consider a surface area 
element, Ω, of an electroneutral surface that is in 
local equilibrium. The surface element has a 
temperature Ts, chemical potentials µj

s
 
(j =1, 2,..., 

n for the n components), and surface tension γ. 
Electroneutrality of the surface means that the 
integral of the excess charge density is equal to 
zero. This property is valid, or more precisely, 
assumed to be valid if one extends the integration 
domain far enough to include, for instance, a 
possible double layer in an electrolyte. It does 
not depend on the choice of the dividing surface. 
The concept electroneutral surface differs in this 
respect from a concept like equimolar surface for 
a given component, which specifies the location 
of the dividing surface. 

6.  Balance Equations  

The balance equation for a neutral 
component j, when a chemical reaction takes 
place, is: 

 ( ) ( ) ( ) ( )i,o o,i s
j jj j

d t J t J t r t
dt
Γ = − ± ν  (16) 

The accumulation of component j is equal 
to the flux into the surface, Jo,i

j (t), minus the flux 
out of the surface, Jo,i

j (t), plus or minus the 
(positive) stoichiometric constants, νj, of a 
chemical reaction times its rate, rs(t), in the 
surface element. There are n neutral components. 
Straight derivatives apply because the surface 
variables depend only on the time, not on the 
position along the surface. The positive direction 
of transport is chosen to be from left to right, cf. 
Figure 6. All fluxes are given in a frame of 
reference in which the surface is at rest.  

The surface can accumulate mass and/or 
energy. The extension of the surface can and will 
always be chosen such that the integral of the 
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excess charge density is zero. The surface can 
include, for instance, the electric double layer in 
an electrolyte adjacent to the electrode. The 
surface is electroneutral with these choices. The 
conservation equation for charge in the surface is 
therefore:  

  (17) ( ) ( )i,o o,ij t j t=

The adjacent homogeneous phases are also 
electroneutral, giving ji,o(t)=ji(t) and jo,i(t)=jo(t). 
We conclude that the electric current is constant 
throughout the system:  

  (18) ( ) ( ) ( )i oj t j t j t= =

The balance equation for the internal energy 
for the electroneutral surface is:  

 
( ) ( ) ( )

( ) ( ) ( )( )

s
i,o o,i
q q

o,i i,o

du t
J t J t

dt

j t t t

= −

− φ −φ

 (19) 

The change in the excess energy density of 
the surface, dus

 
, during the time, dt, is given by 

the total heat flux into the surface from the left, 
Ji,o

q 
 
, minus the total heat flux out of the surface 

to the right, Jo,i
q  plus the electric work per area 

done to the surface, ( )o,i i,oj− φ −φ . Here o,iφ and 

are the electric potentials in the bulk regions 
close to the surface.  

i,oφ

7. The Excess Entropy Production Rate  

The surface has an excess entropy 
production rate, in line with its other excess 
variables. This shall now be derived. The Gibbs 
equation in its local form (cf. equation (10)) is:  

 
n

s s s s
j j

j 1
du T ds d

=
= + µ Γ∑  (20) 

The time derivative of the entropy density is:  

 
s s n js

js s
j 1

dds 1 du 1
dt dt dtT T =

Γ
= − µ∑  (21) 

The entropy flux in or out of the surface, Js, is 
related to the total heat flux by: 

 
n j

s q
j 1

1J J
T T=

jJ
µ

= −∑  (22) 

By introducing equations. (19) and (16) into 
equation (21), using equation (22), and compa-
ring the result to the entropy balance equation 
(14), we find the excess entropy production rate 

in the surface frame of reference:  

  

( )

s i,o o,i
q qs i,o o,i s

i,o o,is sn nj j j ji,o o,i
j js i,o o,i s

j 1 j 1

o,i i,o s s
ns s

1 1 1 1J J
T T T T

J J
T T T T

1 1j r G
T T

= =

⎛ ⎞ ⎛ ⎞
σ = − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞µ µµ µ ⎤
⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟+ − − + − − ⎥
⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟⎥
⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎥⎣ ⎦ ⎣

⎡ ⎤ ⎛ ⎞
+ − φ − φ + − ∆⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

∑ ∑
⎦

(23) 

where ∆nGs
 
is the contribution from the neutral 

species to the Gibbs energy of the reaction. The 
surface frame of reference is the frame of 
reference in which the normal velocity of the 
surface is zero. In equation (23) the entropy 
production is a sum of products of pairs of 
conjugate forces and fluxes. Using equation (22), 
we may alternatively write this expression using 
the entropy fluxes:  

 

i,s s,os i,o o,i
s ss s

n ni,s j s,o ji,o o,i
j js s

j i j 1

s s
i,o ns s

T T
J J

T T

J J
T T

1 1j r G
T T

= =

∆ ∆⎛ ⎞ ⎛ ⎞
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(24) 

For definitions of the deltas, we refer to 
subsection 7.1. Alternatively we may write this 
expression using the measurable heat flux, which 
is related to the entropy and the total heat fluxes 
by:  

 j  (25) 
n n

q s j j q j

on both sides of the surface. Here Hj is the molar 
enthalpy of component j. Using the thermo-
dynamic identity  j j( T) / (1 T) H∂ µ ∂ =  one 
may then show that:  
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 (26) 

The outcome of the derivation is that in 
equation (26), the chemical potentials must be 
calculated at the temperature of the surface. In all 
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cases the surface frame of reference is used for 
the fluxes. For the interpretation of experiments 
it is convenient to use measurable heat fluxes, 
which are independent of the frame of reference. 
This is what we shall do in the rest of the paper. 
In equations (24) and (26) the entropy production 
is written as a sum of products of conjugate 
forces and fluxes. As is clear from the derivation 
of these equations, a change in the fluxes leads to 
a corresponding change in the conjugate forces.  

It is interesting to compare equation (26) 
for the excess entropy production rate with the 
expression for the entropy production that was 
derived for a homogeneous phase (de Groot and 
Mazur, 1984; Kjelstrup and Bedeaux, 2001):  

 

n
q j

j 1

n

1 1J J
T T

1 1j r
T T

=

⎛ ⎞ ⎛ ⎞′σ = ∇ + − ∇µ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛+ − ∇φ + − ∆⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ j,T

G ⎞
⎟
⎠

 (27) 

The gradients of (1/T) and (µj,T) that are forces in 
the homogeneous phase have been replaced by 
jumps in these variables into and out of the 
surface; the fluxes are the same. The gradient of 

 has been replaced by a jump across the 
surface. These replacements represent the 
discrete nature of the surface and are typical for 
transport between different homogeneous parts 
of a system. Most of the contributions to the 
excess entropy production rate of a planar, 
isotropic surface given above are due to fluxes of 
heat, mass and charge in the homogeneous 
phases outside the surface. The contribution from 
the chemical reaction is, however, a specific 
surface contribution. For a more extended 
discussion we refer to Bedeaux (1986), Albano 
and Bedeaux (1987), Bedeaux and Kjelstrup 
Ratkje (1996).  

−φ

At the surface, the system is no longer 
isotropic in the normal direction, so that all the 
normal fluxes, unlike in a homogeneous phase, 
are scalar under rotations and reflections in the 
plane of the surface. We therefore have coupling 
between chemical reactions and fluxes of heat, 
mass and charge at a surface; coupling that does 
not exist in isotropic homogeneous phases. Mass 
transport that is fueled by energy from a 
chemical reaction is called active transport in 
biology. One may also have active transport in 
non-isotropic homogeneous media. Equation 
(26) can be used to describe active transport 
which takes place at surfaces between isotropic 
homogeneous phases. Coupling of fluxes at the 
surface is also responsible for conversion of 
chemical to electrical energy. The extended 
coupling between fluxes at the surface gives a 
very important difference between transport 

processes in a homogeneous and in a hetero-
geneous system.  

When the surface position is an equimolar 
surface for one particular component, this 
component has zero excess density in the surface 
and the flux of the component is continuous 
through the surface. The corresponding two 
contributions to the excess entropy production 
then combine into one and the constant flux has 
as a main driving force the chemical potential 
difference across the surface. When the surface 
does not move, the frame of reference given by 
the equimolar surface is the same as the 
laboratory frame of reference. Common frames 
of reference have been discussed by many 
authors, see e.g. Kjelstrup and Bedeaux (2001).  

7.1 A remark on notation  
We introduced the following notation for 

jumps in a variable at the surface, using the 
temperature as an example:  

  (28) 

o,i i,o
i,o

s i,o
i,s

o,i s
s,o

T T T

T T T

T T T

∆ ≡ −

∆ ≡ −

∆ ≡ −

The subscript T indicates a chemical potential 
difference at constant temperature. The 
differences with the surface chemical potentials 
at constant temperature are given in terms of the 
values in the homogeneous phases close to the 
surface, in points c and d, at the temperature of 
the surface: 

 
( ) ( ) (
( ) ( ) ( )

s s s i,o s
i,s j,T j j

s o,i s s s
s,o j,T jj

T T T

T T

∆ µ = µ −µ

∆ µ = µ −µ

)
T

 (29) 

 
Figure 8. Standard notation used for 

transport across surfaces 
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Each jump is written as the value to the right 
minus the value to the left. This choice gives the 
jumps the same sign as the gradients in the 
homogeneous phases for increasing or 
decreasing variables. The subscripts of ∆ refer to 
the two locations between which the difference is 
taken. The notation is further illustrated in 
Figure 8.  

8. Force-flux Relations at the Surface  

8.1 The surface coefficients  
The number of independent force-flux pairs 

in equation (26), is equal to 2n+4 (we considered 
only one reaction). The linear relations between 
these forces and fluxes therefore contain (2n+4)2 

coefficients. The Onsager symmetry relations 
reduce the number of independent coefficients to 
(2n+4)(2n+5)/2. Even for one component and no 
reaction the number of independent coefficients 
is equal to 15. It is clear that one must find ways 
to simplify the description in order to make 
progress. This is usually possible, for instance, 
by introducing stationary state conditions. This 
gives relations between incoming fluxes on one 
side of the surface and outgoing fluxes on the 
other side, and the number of independent 
coefficients reduces to (n+3)(n+4)/2. The 
original 15 coefficients have then been reduced 
to 6, a rather more manageable number. Still, 
knowledge about these coefficients is limited for 
most applications. A few exceptions exist: 
reaction rates are usually well documented. 
Kinetic theory provides some important 
expressions for liquid-vapor transitions 
(Pao,1971; Pao, 1971; Cippola Jr. et al., 1974; 
Cippola Jr. et al., 1974; Bedeaux et al., 1990; 
Bedeaux et al., 1992). Experiments (Fong and 
Ward; 1999a; Fang and Ward, 1999b) and 
molecular dynamics simulations (Rosjorde et al., 
2001) have recently become available for phase 
transitions. Apart from these studies, there is a 
lot of work still to be done to obtain surface 
transport coefficients. It may therefore be useful 
not only to examine the general flux-force 
equations, but also to consider simplifications of 
these that still contain the proper Onsager 
symmetry and are therefore compatible with the 
second law of thermodynamics. This shall be 
done in the following two subsections. A 
possibility for simplification of the linear laws, 
giving a set that still captures the major effects, is 
to neglect the resistivities that describe coupling 
across the surface, but keep the resistivities that 
describe coupling between fluxes on the same 
side of the surface. The reason for this 
simplification is that the two sides of the surface 
have, in fact, a slightly different location. 
Coupling resistivities for the forces and fluxes on 
the different sides of the surface would thus 

describe non-local effects. It seems reasonable to 
assume that these are negligible. This 
simplification is equivalent to looking at the 
surface as, in some respects, having two 
resistivity matrices in series. We want to 
emphasize that it is not necessary to make this 
simplification; it is, however, very convenient.  

8.2 Heat and mass transport at the 
surface  

As an example we now consider the 
transport of heat and one component (1) across a 
surface. The other component (2) is not moving. 
The entropy production rate is from equation 
(26):  
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(30) 

The equimolar surface of component 2 is 
used as the frame of reference. The notation of 
the forces was illustrated in Figure 8. For the 
surface temperature one superscript is sufficient. 
The forces are given as linear functions of the 
fluxes by: 

 ( )
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 (31) 

All resistivities have the dimensionality of 
the resistivities for the homogeneous phases 
times a length (the surface thickness). In 
equation (30), the matrix of resistivity 
coefficients is symmetric. We have, using these 
Onsager relations, ten independent resistivities, 
while there are three in the bulk regions. The 
resistivities have superscripts before the comma. 
The first superscript after the comma gives the 
region for which the flux is evaluated, and the 
second gives the region to which the force 
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couples. The subscripts indicate the flux involved 
in the coupling. The linear relations between 
forces and fluxes are valid as long as the system 
is close to local equilibrium. This condition has 
been found to apply also for very large 
temperature gradients (Rosjorde et al., 2001; 
Rosjorde et al., 2000). It should be emphasized 
that a system in local equilibrium can be far from 
global equilibrium (de Groot and Mazur, 1984). 
It is also important to realize that a linear relation 
between forces and fluxes, nevertheless, gives 
rise to a non-linear description of the system. 
This is due to a variety of reasons, for instance, 
the non-linear character of the equations of state 
and the dependence of the resistivities on the 
surface temperature and the adsorptions of the 
various components. The name linear 
nonequilibrium thermodynamics is in this respect 
somewhat misleading. The validity of the linear 
laws given in equation (31) is not restricted to 
systems close to global equilibrium. See also the 
discussion section regarding this matter.  

The coupling resistivities may be divided 
into three groups. The first group contains 
coupling of fluxes and forces on the incoming 
side of the surface, the second group contains 
coupling of fluxes and forces on the outgoing 
side, and the third group has resistivities that 
describe coupling of fluxes on one side to forces 
on the other side. Because entropy or enthalpy is 
carried along with the mass flux, the coefficients 
in the first two groups are important, as we shall 
see below. As we argued in the previous 
subsection, we expect the third group of 
resistivities to be negligible. We shall neglect 
these coefficients:  

  (32) 
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qq qq q q
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µ µ
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In that case the flux equations simplify to:  
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for the left side of the surface and to 
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for the right side of the surface. When the 
resistivities across the surface are neglected, cf. 
equation (32), the resistivities of the two sides of 
the surface to transport through the surface are in 

series. The approximation may in principle be 
tested, but the experiments involved are 
extremely difficult to do since it is difficult to 
control variables at the surface. We expect that a 
deviation from equation (32) is most likely for 
surfaces of molecular thickness, and that the 
assumption is good for relatively thick surfaces. 
Using the assumption, the number of 
independent resistivities decreases from ten to 
six, three for each side of the surface. A benefit 
of this formulation is that it combines well with 
corresponding equations for the homogeneous 
phases; and that the coupling coefficient is the 
same at the surface and in the homogeneous 
phases.  

The heats of transfer for both sides of the 
surface are defined in the usual way by:  
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 (35) 

The heats of transfer for the surface are ratios of 
the asymptotic values of the bulk fluxes at a 
constant (independent of position) temperature. 
They are therefore equal to the asymptotic values 
of the heats of transport in the adjacent bulk 
phases. This is a useful property as it reduces the 
number of new unknown resistivities for the 
surface to two on either side.  

Defining the Fourier thermal conductivities 
for constant molar fluxes, J1

i,o 
 
and J1

o, i, by:  
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 (36) 

we may write equations (33) and (34) as:  
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and  
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There is mass transport into the surface due 
to the temperature difference between the surface 
and the bulk, cf. equations (37b) and (38b), 
similar to the Soret effect in the bulk phase [23]. 
Conversely, there is also a heat effect associated 
with adsorption or desorption, a Dufour effect, 
cf. equations (37a) and (38a). The direction of 
this contribution to the heat flux follows the 
direction of the molar flux; it is reversible in this 
sense. These heats of transfer are accessible by 
experiment on the homogeneous phases. They 
are small in vapor mixtures, somewhat larger in 
liquid mixtures (Bird et al., 1960). In 
homogeneous phases, they can sometimes, with 
good approximation, be neglected. In the linear 
relations (37) and (38) only the four main 
coefficients, λs,i , λs,o, s,iirµµ , s,oorµµ  remain to be 
determined for the surface. To summarize so far: 
the above set of equations is required in a 
calculation which takes the surface temperature 
along as a variable. Arguing that the heats of 
transfer are relatively small quantities, one may 
then question the reason for going to this 
sophistication. We shall see below, however, that 
as soon as the mass flux becomes substantial, the 
jump in temperature and chemical potential 
across the surface become large, thereby giving a 
rationale for taking the terms containing the 
coupling coefficients along also here.  

In order to examine the behavior of the 
surface layer as a whole, we introduce the 
stationary state conditions that follow from 
equations (16), (19) and (25):  
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There are therefore only two independent fluxes. 
Using J1 and J1

’i,o  
 
in equations (37) and (38) we 

obtain:  
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for the jumps from the left side to the surface.  
For the jumps across the surface we then 

obtain:  
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where we used the thermodynamic identity:  
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In the last two identities we used equations (38a) 
and (39b). The Ts in equation (41) is due to the 
definitions of λs,i and λs,o, which contain the 
surface temperature. They can be eliminated 
using equation (40). This leads to contributions 
to the forces which are nonlinear in the fluxes. In 
the theory of nonequilibrium thermodynamics, 
such nonlinear terms should be neglected. This 
implies that one may replace Ts by either Ti,o or 
To,i.. Suppressing, furthermore, the dependence 
of the enthalpy on the temperature, which is 
small, equation (41) becomes:  
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These equations make it possible to 
calculate the jumps of the temperature and the 
chemical potential across the surface. The 
equation contains only three unknown surface 
coefficients, λs,i and λs,o and the sum s,ii s,oor rµµ µµ+ . 
This is reasonable, given the assumption we 
made in the outset that the surface behaves as 
two resistances in series. The sum s,ii s,oor rµµ µµ+

 
is 

the surface resistance to mass transfer, measured 
for isothermal conditions. The sum of the inverse 
of the thermal conductivities is the total thermal 
resistivity, measured at zero mass flux.  

We see now that in spite of and 
 *o,iq *i,oq

being small, the coupling coefficient, the 
expressions in the square brackets in equation 
(43), may become large when the enthalpy 
difference between the sides is large. Many 
systems have a large enthalpy of evaporation, 
and large surface temperature jumps and jumps 
in chemical potentials can thus be expected at 
such surfaces, as soon as the mass flux becomes 
sizeable. A mass flux will generate heat transport 
according to the term in front of J  in equation 
(43a). And conversely, a mass flux will, to a 
large degree, be affected by the presence of a 
heat flux, as expressed by equation (43b). It can 
thus not be approximated by an equation with 
one term only. It is therefore not enough to use 
Fourier’s law for heat transfer across the surface 
in these systems, when there is a simultaneous 
mass flux. Similarly, it is not enough to use 
Fick’s law for mass transport across the surface. 
Olivier (2002) estimated the error made by 
neglecting coupling terms, and found that a 20% 
error in the heat flux on the vapor side was 
common for evaporation of hydrocarbons.  

1

A special case of interest is evaporation and 
condensation for a one-component fluid. In that 
case the heats of transfer in both the liquid and 
the vapor phase are zero. Equation (43) then 
reduces to: 
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The enthalpy of evaporation, −∆i,oH1, is 
equal to 2.5RTo,i for a low density vapor or 
larger. It is therefore eminently clear that the 
coupling terms are important. Notice also that the 
coupling terms have the proper Onsager 
symmetry. In kinetic theory the resistivities for 
the liquid-vapor interface have been calculated 
(Pao, 1971; Pao, 1971; Cippola Jr. et al., 1974; 

Cippola Jr. et al., 1974; Bedeaux et al.,1990). 
Using these results one obtains with 
−∆i,oH1=2.5RTo,i, 

 

s,i i,o
mp

s,o i,o
mp

s,ii s,oo 1
wi,o

mp

1 221
55Rc v

1 161
520Rc v

2R 1 28r r
2 32c v

−
µµ µµ

π ⎛ ⎞= +⎜ ⎟π⎝ ⎠λ

π ⎛ ⎞= +⎜ ⎟π⎝ ⎠λ

π ⎛ ⎞+ = σ + −⎜ ⎟π⎝ ⎠

 (45) 

Here σw is the condensation coefficient, 
vmp=(2RTi,o/M)1/2 is the most probable thermal 
velocity and M is the molar mass. Furthermore 
ci,o

 
is the molar density in the gas close to the 

surface. For the heat of transport of the surface 
on the vapor side one finds:  

   
( )
( )

i,o

i,o s,i
q i,o 1*s,i

s,i s,o
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o,i

J H
q
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  (46) 

and on the liquid side:  

  

( )
( )

i,o

i,o

o,i
q*s,o

1
T 0

i,o
q *s,i

i,o 1 i,o 1
1

T 0

s,o o,i
i,o 1

s,i s,o

J
q

J

J
H q H

J

H 10 5 22 RT
25 104

∆ =

∆ =

⎛ ⎞′
⎜ ⎟≡
⎜ ⎟
⎝ ⎠

⎛ ⎞′
⎜ ⎟= − ∆ = −
⎜ ⎟
⎝ ⎠

λ ∆ π+
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∆  (47) 

We see that the condensation of one mole leads 
to the transport of a fraction of −∆i,oH1, into the 
liquid and the rest into the vapor, the fraction 
being given by the ratio of the thermal 
conductivity of the liquid side of the surface and 
the total surface conductivity. It is therefore 
natural that 

 *s,iq is negative, while is 
positive. It is not correct to assume that kinetic 
theory describes only the vapor side of the 
surface. The boundary conditions in kinetic 
theory contain a model of the surface, and 
contain therefore information about both 

and .  

*s,oq

*s,iq *s,oq
Common in engineering is now to solve the 

system’s conservation equations in combination 
with simple transport laws. For the stationary 
surface, the conservation equations were given in 
equation (39). By introducing Fourier’s law for 

i,o
qJ′ into equation (39a), and Fick’s law into 

(39b), we obtain:  
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o

o

c

J

j

  (48) 
i,o

1 i,1

i,o i,o
q i,

J J D

J T

= = − ∆

′ = −λ ∆

On the other side of the surface these linear laws 
imply:  

  (49) 

i,o
1 i,o1

o,i i,o
q q 1 i,o 1

i,o
i,o i,o 1 1

J J D c

J J J H

T H

= = − ∆

′ ′= − ∆

= −λ ∆ − ∆

We see then that the symmetric choice of the 
linear laws in equation (48) imply that the linear 
laws on the other side of the surface lack the 
proper symmetry required by Onsager (1931, 
1931). This set of equations can be shown to 
violate the second law of thermodynamics. 
Nevertheless, a set like this is used most often in 
engineering applications.  

8.3 Heat, mass and charge transport at 
an electrode surface  

Our next example is the anode of a polymer 
electrolyte fuel cell. The bulk anode material 
consists of porous carbon. On the surface of the 
carbon, catalytic platinum is adsorbed. The layer 
that contains the platinum is our two-dimensional 
surface. Humidified hydrogen gas comes through 
the pores in the carbon to the platinum in the 
surface, where it reacts to form protons and 
electrons. The protons go into the electrolyte; the 
proton conducting membrane, while the electrons 
go into the carbon matrix (Kjelstrup and 
Røsjorde, 2005). We consider stationary states 
from the outset. Conservation of energy across 
the interface between the porous carbon matrix 
and the water-filled proton exchange membrane 
gives for a stationary state that  

2 2

i i i,o i i,o i i,o
u q w wH H

o o o,i o o,i
q w w

J J j J H J H

J j J H

′= + φ + +

′= + φ +
 (50) 

The flux of hydrogen stops at the surface, while 
the water flux and the electric current density are 
continuous through the surface:  

  (51) i o i o
w w wJ J J and j j= ≡ = ≡

The molecular hydrogen flux is given by:  

 
2

i
H

jJ
2F

=  (52) 

There is a discontinuity in the measurable heat 
flux at the surface, so we distinguish between the 
heat flux into the surface, 

 i
qJ′ , and out of the 

surface, . Substituting equation (51) into 
equation (50) one obtains:  

o
qJ′

     (53) 
2 2

o i i i,o
i,o q q w i,o wH Hj J J J H J′ ′∆ φ = − + + − ∆ H

The enthalpy of hydrogen is, in this stationary 
process, converted into electric energy and heat. 
There is also a change in the enthalpy as water 
goes from the vapor state to the condensed state 
in the membrane. This is also converted into 
electric energy and heat. The difference in the 
electric potential between the two sides of the 
surface o i

i,oφ −φ = ∆ φ  is therefore generated by 
the heat and enthalpy changes.  

The entropy production of an electrode 
surface was given by Bedeaux, Kjelstrup and 
coworkers (1976, 1987, 1996, 1999, 2005):  

   
( ) ( )
( )
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s,i i o
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⎝ ⎠

sT
  (54) 

Subscript i,s for the thermal force means that the 
difference is taken between the surface and the 
anode backing. Subscript s,o means that the 
difference is taken between the membrane and 
the surface. The electrochemical reaction takes 
place at the surface, and the reaction rate at the 
stationary state is equal to j/F . We have also 
used the stationary state value for the hydrogen 
flux.  

We use again the assumption that the 
coupling of the forces on one side of the surface 
and the forces on the other side can be neglected 
(see subsection 8.1). The linear force-flux 
equations then become:  

 
( )
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 (55) 

for the left hand side of the surface, and:  
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for the right hand side of the surface. For the 
electric potential one obtains:  
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(57) 



The coefficients satisfy Onsager’s 
reciprocal relations. It is convenient for our 
present purpose to also give the heat and water 
fluxes in terms of their conjugate forces and the 
electric flux. Solving 

 i
qJ′ and from equation 

(55) one obtains:  
i
wJ
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for the left hand side of the surface, and for o
qJ′

 

and 
 o

wJ one obtains from equation (56)  
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for the right hand side of the surface. The 
conductivity and resistivity matrices are related 
by:  
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 (60) 

while the Peltier coefficients and the transference 
coefficient for water are given by:  
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 (61) 

where j=i or o. The ∆T and ∆µ differences are 
taken zero on the side of the surface for which 
these ratios are calculated.  

By substituting equations (58) and (59) in 
equation (57), we obtain (after some algebra) the 
potential difference across the surface:  
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(62) 

where rs is the ohmic resistivity of the surface. 

This ohmic resistivity can be found from the  5x5 
resistivity matrix by inversion of this matrix into 
the 5x5 conductivity matrix. Using capital L’s 
for the elements of this matrix, one finds that 

s s sr T Lφφ= . We furthermore introduce the 
heats of transfer:  
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The transference coefficients, the Peltier 
coefficients and the heats of transfer are all given 
as ratios of bulk fluxes. These coefficients are 
therefore equal to the coefficients that can be 
defined for the bulk phases, and have the same 
value as these coefficients have in the bulk 
regions next to the surface. This reduces the 
number of new coefficients for the surface in 
equations (58), (59) and (62) to five, being: , s,i

qql
s,i
µµl , , s,o

qql s, j
µµl  and . The equations (58) and 

(59) can finally be written in the following form:  
sr
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 (64) 

for the left hand side of the surface and:  
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 (65) 

for the right hand side of the surface. The 
stationary state thermal conductivities for the two 
sides of the surface were defined by:  

 s, j
s, j s j
qq

1
R T T

λ ≡  (66) 

By using equations (62), (64) and (65) we 
obtain expressions for the driving forces across 
the surface that contain the transference 
coefficients, 

 i
wt and 

 o
wt , the Peltier coefficients, 

iπ  and oπ , and the heats of transfer, 
 *iq and  *oq . Furthermore they contain five diagonal 

coefficients specific for the surface, , s,iλ s,i
µµl , 

s,oλ , s, j
µµl  and sr . These have to be found by 

measuring transport across and into the surface. 
As we have explained in detail in the previous 
subsection, and as follows from equation (53), 
the coupling between the forces is large, since 
thermodynamic variables like 

2H and ∆i,oH i,oHw 
appear in the expressions for the difference 
between i

qJ′
 
and o

qJ′
 
. The larger the heat flux 

and the water flux into the membrane are, and the 
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larger the electric current density is, the larger 
are the jumps in the temperature and the 
chemical potential of water across the surface. 
Indeed, relatively large temperature jumps have 
recently been measured (Vie and Kjelstrup, 
2004).  

The purpose of the derivations above has 
been to present one possible version of flux force 
relations at the anode in the polymer electrolyte 
fuel cell. Emphasis was made on how to simplify 
the rather complicated full description. In order 
to model the surface transport phenomena in 
agreement with the second law, it is mandatory 
to introduce assumptions in a way that preserves 
the Onsager symmetry relations. This was done 
above. As we explained in the previous 
subsection, this is not usually done in the 
modeling of phase transitions. In a recent review 
on fuel cell modeling, Weber and Newman 
(2004) explained that most of the transport 
properties of the surface in good approximation 
can be dismissed. Our derivations show that this 
may lead to violation of the second law.  

9. Discussion  

In the sections above we have given the 
development of a nonequilibrium thermo-
dynamics theory for surfaces that have transport 
of heat, mass and charge through and into the 
surface and chemical reactions at the surfaces. A 
heterogeneous system was divided into three- 
and two-dimensional subsystems, corresponding 
to the homogeneous phases and the surface, or 
alternatively called interface in between. The 
systematic approach designed by Gibbs, who 
defined excess densities for the surface, was 
invoked to obtain a proper thermodynamic 
description of the surface. By doing this we have 
avoided the problems posed by a completely 
continuous transport model for the total system, 
see Weber and Newman (2004). We were 
thereby able to assign to the surface properties 
that are specific to the surface.  

The governing equations that derive from 
the entropy production rate of the surface appear 
in this method as being discontinuous at the 
surface, in contrast to their counterparts for the 
homogeneous phases which are continuous. The 
force flux relations for the surface therefore have 
the form of boundary conditions to the 
corresponding transport equations that apply in 
the neighboring bulk phases. These boundary 
conditions are more complicated than those 
normally used in thermodynamic descriptions of 
heterogeneous systems, but the complications are 
required to not violate the second law of 
thermodynamics, and to properly describe the 
interaction of all transport phenomena such that 

they satisfy the Onsager reciprocal relations. One 
of the main new results of the analysis was that 
this interaction or coupling is large and cannot be 
neglected. These points can only be addressed on 
the background of nonequilibrium thermo-
dynamics, and have therefore largely been 
missing in the literature on electrochemical cells, 
see however (Kjelstrup et al., 1999; Vie and 
Kjelstrup, 2004; Kjelstrup and Røsjorde, 2005). 
The situation for one-component evaporation is 
better, as the large effort in kinetic theory has 
produced theoretical estimates for transport 
coefficients including the cross coefficient (Pao, 
1971; Pao, 1971; Cippola Jr. et al., 1974; Cippola 
Jr. et al., 1974; Bedeaux et al., 1990; Bedeaux et 
al., 1992).  

The linear force-flux relations can be used 
when the system is not too far from local 
equilibrium. This implies both, that one may use 
the usual thermodynamic relations everywhere in 
the system (the hypothesis of local equilibrium), 
and that the forces and fluxes are not too large. 
For chemical reactions this is a serious 
restriction, see e.g. (de Groot and Mazur, 1987). 
On the other hand, it is found, in molecular 
dynamics simulations, that forces like 
temperature gradients across the system, and in 
particular across the surface, can be very large, 
while the system is still everywhere in local 
equilibrium and satisfies the linear force-flux 
relations (Rosjorde et al., 2001; Rosjorde et al., 
2000; Hafskjold and Kjelstrup Ratkje, 1995). 
The validity of the linear force-flux relations 
does not imply that the description using 
nonequilibrium thermodynamics is linear. De 
Groot and Mazur emphasized this point in the 
preface of the Dover edition of their book (de 
Groot and Mazur, 1984). We quote: ”This theory 
gives rise to partial differential equations for the 
state variables which are non-linear for a variety 
of reasons, such as (i) the presence of convection 
terms and of (ii) quadratic source terms in, e.g., 
the energy equation, (iii) the non-linear character 
of the equation of state and (iv) the dependence 
of the phenomenological transport coefficients 
on the state variables. The name”linear 
thermodynamics of irreversible processes” (their 
quotes) is therefore slightly misleading. Of 
course, the formalism may be fully linearized 
and is then applicable to situations in which one 
is not only too far from local equilibrium, but 
even near to overall, global, equilibrium.” In the 
literature the phrase ”close to equilibrium” is 
generally used without specifying whether one is 
close to local or close to global equilibrium. To 
give an example we quote from the recent book 
by Demirel, page 356 (Demirel, 2002):”Linear 
nonequilibrium thermodynamics has some 
fundamental limitations..... it is based on the 
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local-equilibrium hypothesis and therefore 
confined to systems in the vicinity of 
equilibrium”. Leaving aside whether the author 
meant local (which it should be) or global 
equilibrium, it is statements like this which have 
contributed to the rather common impression that 
the range of validity of nonequilibrium 
thermodynamics is limited to systems close to 
global equilibrium. This is unfortunate. Also 
Prigogine contributes to this misunderstanding. 
Quoting from a short self-biography, reproduced 
in Appendix C from Demirel’s book, Prigogine 
says: ”From the very beginning, I knew that the 
minimum entropy production was valid only for 
the linear branch of irreversible phenomena, the 
one to which the famous reciprocity relations of 
Onsager are valid”. This is also confusing 
because the minimum entropy production 
principle has only been proven close to global 
equilibrium, while the Onsager relations are 
valid close to local equilibrium. Of course there 
are systems close to local and global equilibrium 
and systems which are far from local and global 
equilibrium. The majority of systems are, 
however, close to local equilibrium and far from 
global equilibrium. These systems satisfy the 
linear laws and are nevertheless very non-linear. 
One may, e.g., describe the transition to 
turbulence and the Rayleigh-Benard instability 
using the non-linear partial differential equations 
for the state variable which follow using linear 
nonequilibrium thermodynamics.  

Two relatively simple cases were used to 
bring out the essential features of the method, the 
coupled transport of heat and mass and the 
coupled transport of heat, mass and charge at an 
electrode surface. We did not detail the 
possibility of having a chemical reaction out of 
chemical equilibrium. This situation can also be 
dealt with in nonequilibrium thermodynamics, 
but may require a description on the mesoscopic 
level as was done by (Rubi and Kjelstrup,2003). 
Special for the surface is that the discontinuous 
description puts all transport phenomena on the 
same footing; i.e. they are all scalar phenomena. 
This is in contrast to the situation in the bulk 
phase, where heat, mass and charge transport 
phenomena are vectors, while chemical reactions 
are scalar. The fact that the normal component of 
the forces and fluxes are scalar at the surface, 
make a coupling possible between chemical 
reactions and the other fluxes. The coupling of 
scalar phenomena at the surface is special, and 
we have seen that the coupling coefficients are 
large. The existence of large coupling 
coefficients may have a bearing on the 
description of many other similar cases. It is also 
clear that a large effort is needed to find the value 
and nature of surface coefficients.  

10.  Conclusion  

We have seen above that fluxes for 
transport of heat, mass and charge into, out of 
and across surfaces are coupled with large 
coupling coefficients, when the fluxes are 
formulated in agreement with the second law of 
thermodynamics. The reason that the coupling 
effects cannot be neglected is that they contain 
contributions from thermodynamic properties 
related to the phase transition or the reaction at 
the surface, contributions which make the 
surface transport coefficient different from their 
counter values in the homogeneous phases. The 
terms must be accounted for in correct 
thermodynamic modeling of dynamic processes 
at surfaces.  
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