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Abstract 

This work is aimed to attract attention to monomer fraction density (MFD), the variable 

that has not yet taken its place in the theory of real gases. The work shows that this variable 

can be calculated for monocomponent real gases from experimental isothermal 

dependences of their density on pressure and can be used for calculations of Gibbs energy, 

entropy and clusters equilibrium constants in real gases. The MFD-based joint series 

expansions method for density and pressure is suggested as an alternative to virial 

expansions. This method corresponds to the chemical equilibrium theory and provides new 

non-obvious results. 
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1. Introduction 

The contemporary level of knowledge of 

interatomic or intermolecular interaction 

mechanisms does not provide in a full scale and 

effective enough utilization of microscopic 

approaches, such as the molecular dynamics 

methods, for precise calculation of the real gases 

thermophysical properties starting from the first 

principles. It is necessary to note that when the 

accepted level of precision is around 1%, the 

thermophysical properties of real systems may be 

described by many different theoretical models. 

But the precision of the contemporary 

experimental results is at the level of 10
-3 

%. To 

provide correlation between theory and 

experiment at this level of precision, a quite new 

state of the theoretical knowledge is required. 

There is a problem of correlation between 

theoretical estimations of materials properties, 

based on the traditional first principles, and 

empirical equations, put into the basis of modern 

technology. For example, Reid et al. (1977) points 

out that for any thermodynamic property (of the 

same substance) it is necessary to select its own 

pair of the link energy and the particle diameter 

entering the Lennard-Jones potential. A growing 

requirement to have precision of the technological 

processes control, however, does not permit 

relying on empirical equations and forces looking 

critically at the ‘first principles’ currently used. 

For substances, like water, with a polar 

interaction mechanism, which can be defined with  

 
rather good precision, the molecular dynamics 

(MD) methods give satisfactory results, as is 

stated in the works of Paricaud et al. (2005; 

2007). But currently used assumptions on the type 

and parameters of the van der Waals forces are 

more approximate and do not match the current 

precision of experimental data.  

One more problem is connected with a 

precise determination of the number of states in a 

multi-particle system. A general opinion, spread 

in thermodynamics literature, that the so-called 

‘excluded volume’ in monatomic real gases 

equals four own volumes of atoms, corresponds 

neither to the experiment nor to the MD 

simulation results. For example, the graphical 

results for the MD computation of the hard sphere 

model, performed by Hoover (1991, Figure 6.1), 

show that the excluded volume to the own volume 

ratio does not exceed 1.4.  

To move forward in augmenting the 

effectiveness of theory in material science and 

technology, it is necessary to improve the 

methods of the interaction mechanisms’ 

parameters computation from constantly updated 

experimental data. As an additional and efficient 

tool for the computational analysis of real gases, 

this paper suggests use of monomer fraction 

density (MFD). 

The paper develops ideas reported by the 

author to the Joint European Thermodynamics 

Conference, JETC IX, Saint Etienne, France, 
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(Sedunov, 2007a). Its aim is to describe a new 

thermodynamic approach to real gases.  This 

approach joins in one picture the pressure P, 

density D, volume V, internal energy E, Gibbs 

energy G, entropy S basing it on a very important 

variable – MFD.  

The approach is phenomenological and 

avoids assumptions about intermolecular 

interactions, but leads to fundamental results that 

help to interpret and practically use experimental 

data. One of its goals is to develop the methods of 

computational analysis of experimental 

thermophysical data for real gases capable to 

throw more light on mechanisms of 

intermolecular interactions in real gases.  

2. Physical and Virtual Cluster Fractions in 

Real Gas and Virial Expansions 

A monocomponent real gas consists of 

uniform basic particles (molecules or atoms), 

some of them being aggregated temporarily in 

compact groups (clusters) with different numbers 

k of basic particles: monomers, dimers, trimers 

and larger clusters. In this work all extensive 

values are presented for a mole of basic particles, 

independent of a status of their aggregations. 

2.1 Virial expansions and their physical 

interpretation 

Historically clusters in real gases have been 

introduced to interpret the results of virial 

expansions of P (D) or D (P). Feynman (1972) 

wrote that in the theory of virial expansions it is 

supposed that the k-order virial coefficient is 

determined by interactions inside the k-particle 

group (cluster). He introduced special diagrams to 

reflect different isomers of clusters with the same 

number of particles. 

Virial expansions play an important role in 

modern science and technology. For many 

substances they provide precise enough equations 

of state (EOS) if based on precise experimental 

data. But from a theoretical point of view they do 

not match the chemical equilibrium theory at full 

length (Sedunov, 2007b). The total density of a 

real gas, D, entering the virial expansions D (P) or 

P (D) is the sum of cluster fractions densities, and 

the total pressure, P, is the sum of partial 

pressures, Pk. Thus, the virial expansions, 

operating with total values, instead of partial 

pressures or partial densities of fractions in a real 

gas, cannot provide a detailed correlation with the 

interactions inside the clusters. Feynman (1972) 

pointed out that the formal program (of the P (V) 

calculation in all range of the real gas densities) 

has turned out to be practically unrealizable.  

As a mathematical procedure, the virial 

expansions quite correctly describe empirical 

correlations between total pressure and total 

density of real gases. But to investigate the 

particles interaction mechanism instead of the 

virial approach, the series expansion of 

thermodynamic functions with the MFD Dm as an 

argument can be recommended. This approach 

will match on a full scale the chemical 

equilibrium theory. Why it was not done before 

might be explained by difficulties of the partial 

densities determination from available 

experimental data.  

2.2 Real gas from the chemical 

equilibrium theory point of view 

As an example of the chemical reaction 

similar to formation of dimers from monomers, it 

is possible to consider the reaction of mutual 

transformations of NO2 and N2O4 described by 

Linus Pauling (1970). In this reaction the 

equilibrium concentration of N2O4 is equal to the 

second power of the NO2 concentration multiplied 

by the equilibrium constant C: 

[N2O4] = C * [NO2]
2
. 

Quite similarly, the dimer fraction density 

should be equal to the second power of the 

monomer density, Dm, multiplied by the 

equilibrium constant C2 (T). More general, 

according to the theory of chemical equilibrium, 

in a real gas the molar density Dk of every cluster 

fraction should be proportional to the k–th power 

of the MFD Dm, with an equilibrium cluster 

formation constant Ck(T).  

For the first acquaintance with this variable, 

Figure 1 illustrates the typical pressure 

dependence of the MFD in a sub-critical region.  
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Figure 1. Comparison of the density and MFD 

pressure dependences for Argon at150K. 

To build the bridge between virial and 

chemical approaches it is essential to find the way 

of deriving from available thermophysical data 

the molar density of the monomer fraction, MFD, 

and to base the theory of real gases on this value, 

as a fundamental variable.  

2.3 Monomer fraction in a real gas  

The monomer (monomolecular) fraction in a 

real gas can be defined as the part of it, consisting 

of the first-order clusters, in which molecules are 
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temporarily far enough from other molecules in 

such a way, that their interactions with the rest of 

gas might be considered negligible. The monomer 

fraction can be considered an ideal gas dissolved 

in the rest of a real gas. Its introduction into the 

theory of real gases is the next step after the ideal 

gas model. The MFD, Dm, is the number of moles 

of the monomer fraction in a unit of free from 

other particles volume. Its values may be derived 

from the D (P,T) experimental data with no 

limitations on the range of pressures. 

Quite similarly, the dimer fraction in a real 

gas can be defined as its part consisting of pairs of 

particles, temporarily joined together in a 

relatively stable formation or repulsing from each 

other, with a negligibly small interaction with the 

rest of the gas. The dimer fraction behaves also as 

an ideal gas with a complex internal movement 

depending on a type of the intermolecular 

interaction mechanism. The same is valid for 

larger cluster fractions.  

2.4 Physical and virtual clusters  

It is important to note that between 

molecules not only attraction forces, producing 

real physical clusters with a positive equilibrium 

constant Cpk (T), but also repulsion forces act. In 

series expansions of P (Dm) or D (Dm) they 

produce an appearance of some virtual cluster 

with a negative equilibrium constant –Cvk (T). 

Index p is used to mark real physical clusters and 

v - virtual clusters with a negative value of the 

equilibrium constant. So, a two-particle 

interaction of monomers results in the appearance 

of the excluded volume Cv2(T) and attraction 

volume Cp2 (T), forming the well known second 

virial coefficient, taken with a negative sign: 

C2(T) = Cp2(T) – Cv2(T). For a larger cluster its 

equilibrium constant Ck (T) also may be presented 

as a sum of physical Cpk (T) and virtual parts – Cvk 

(T):  

( ) ( ) ( )TCTCTC vkpkk −= . 

There is an active discussion in literature 

about the precise definition of the physical cluster 

(Harris and Ford, 2003; Kusaka and Oxtoby, 

1999; Schaaf, Senger et al., 1997).  But in our 

phenomenology the k-order cluster has pure 

mathematical sense, joining together its physical 

and virtual features in the k-order terms of series 

expansions D (Dm) and P (Dm). It should be noted 

that in supercritical fluids the virtual clusters play 

a more important role than the physical ones, 

because the attraction forces in the supercritical 

region are much weaker than the repulsion forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of different types of clusters, 

formed in different space-energy zones: 

physical cluster – in the attraction zone; 

virtual cluster – in the repulsion zone; 

monomer – free from interactions. 

2.5 A principal difference between 

physical and virtual clusters 

The Figure 2 shows the principal difference 

between the two types of clusters: in a physical 

cluster particles spend a relatively long time in a 

bound state, but in a virtual cluster particles cross 

the attraction zone very quickly and after collision 

fly away. And this difference in times is measured 

by many orders of magnitude. That means the 

statistical ensemble of virtual clusters is 

significantly less populated than the one of 

physical clusters. In the quantum language the 

particle in a bounded state has the large density of 

its wave function in the vicinity of the attracting 

particle, but the free moving particle has its 

density spread all over the total volume and its 

density near the colliding particle is negligibly 

small.  

Why then do the virtual clusters manifest 

themselves in the excluded volume that is of the 

same order of magnitude as the dimer formation 

equilibrium constant? It is because their 

mechanism of particles interaction is quite 

different from the mechanism of bonding in a 

physical cluster. This mechanism is of the 

collision type, and its consideration cannot be 

performed in a static picture, as in Figure 2. 

 Namely the static consideration of the 

repulsive interactions between two atoms leads to 

a false conclusion about excluded volume being 

equal to four own volumes of atoms. Only taking 

into account the dynamics of collisions is it 

possible to calculate the correct value for the 

excluded volume. And this consideration should
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influence the selection of a proper MD simulation 

algorithm. Only the MD algorithms correctly 

considering the collision dynamics may give a 

correct value for the excluded volume. 

Roughly speaking, the currently accepted 

static picture fixes atoms at their positions. Every 

fixed atom excludes from the total volume the 

hard sphere with a radius two times larger than its 

own radius and with a volume equal to eight of its 

own atom volumes. The division by two does not 

save the situation: the resulting excluded volume 

is still much higher than the experimental value. 

But in a dynamic picture, two colliding atoms 

rotate around their contact point with a radius 

equal to one atom’s radius. That results in the 

excluded volume equal to the own atom’s 

volume. Surely, this picture is too rough, but it 

shows the main difference between static and 

dynamic approaches. 

For supercritical fluids these considerations 

are of greatest importance, because for them 

collisions of particles are much more influential 

than their temporary bonding. And the author’s 

analysis of some simple supercritical fluids shows 

that their excluded volume is less than one own 

atom’s volume.  

3. Generalized Sackur-Tetrode Equation for 

the Entropy of a Real Gas 

Having in mind that the monomer fraction is 

an ideal gas, we build the MFD determination on 

the equation for the entropy Si of a monatomic 

ideal gas that has been suggested by Otto Sackur 

(1912) and Hugo Tetrode (1912), basing it on the 

old quantum theory. This equation in a compact 

form, used by Kittel (1969), is expressed as: 

 ( )( )iii  /VVR S ln   2.5  +=  (1) 

where Vi is the molar volume of an ideal gas, Vq = 

h
3
NA

4
 /(2πMRT)3/2 - the molar quantum volume 

that is proportional to the third degree of the 

thermal de Broglie wavelength, h – Plank’s 

constant, M – molecular weight in kg/mol, NA – 

Avogadro number, R – universal gas constant. 

The Sackur-Tetrode equation was a 

remarkable breakthrough from classical 

thermodynamics to the emerging quantum picture 

of nature and stimulated multiple theoretical and 

experimental investigations. It was experimentally 

confirmed with good precision for noble gases  

starting, in accordance to the third 

thermodynamics law, from S = 0 at T = 0K.  

 

 

 

 

 

3.1 Gibbs energy and entropy for 

monatomic real gases 

From Equation (1) and the thermodynamic 

equation for Gibbs energy of the monatomic ideal 

gas Gi = 2.5RT - T Si a very simple expression for 

Gi follows: 

 ( )
qii VDRTG ln=  (2) 

For one mole of basic particles Gibbs energy 

equals the chemical potential. In an equilibrium 

state the chemical potential of basic particles does 

not depend on the aggregate states. So, Gibbs 

energy Gk for k-order fraction, including Gibbs 

energy Gm for monomer fraction should be the 

same and should coincide with Gibbs energy G 

for the total real gas:  

 GGG mk == . 

So, in a monatomic real gas 

 ( )qmVDRTG ln= . 

It is a key point in the calculation of the Dm 

values based on the experimental data D (P).  

From the equation for G the equation for 

entropy S of the monatomic real gas takes a form 

of the generalized Sackur-Tetrode equation: 

 ( )qmVDRTTHS ln−=  (3) 

Here H is the molar enthalpy of a real 

monatomic gas. 

Equation (3) has been derived on a pure 

thermodynamical basis and does not require any 

assumptions about interatomic forces. It is seen 

that the logarithmic part of the equation contains 

information only about the monomer fraction; all 

contributions of other cluster fractions enter the 

total enthalpy of the gas. It may sound surprising, 

but this equation provides an excellent correlation 

with experimental data also for supercritical fluids 

and liquids. It confirms the correctness of the Dm 

computation in all available range of pressures. 

Figure 3 illustrates high precision of the 

entropy calculation with the generalized Sackur-

Tetrode model at subcritical and supercritical 

pressures for monatomic substances. It is clear 

that deviations between theoretical and 

experimental values, being four orders of 

magnitude less than the total entropy change with 

pressure, originate from experimental, rather than 

from theoretical errors. 
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Figure 3. Entropy values and multiplied by factor 

10
4
 their deviations from the predicted by the 

generalized Sackur-Tetrode equation values for 

argon at 150K. 

3.2 Gibbs energy for molecular gas 

It is useful to divide Gibbs energy on its 

translational, Gtr, and internal movements, Gint , 

parts. The second part can be prescribed for any 

pressure as a limit of G - Gi at pressures coming 

to zero. It does not mean that the internal 

movements’ contributions in G do not depend on 

P, but all changes of these contributions with 

pressure are included in changes of the 

translational part.  

To be correct, the internal movements’ part, 

Gint, includes also reference values: E0 for energy 

and S0 for entropy, depending on the selected 

system of measurement. In our approach the 

energy measurement starts from zero energy for a 

freely moving particle, and entropy starts from 

zero value for the ground state of the substance 

under investigation at T = 0K. 

The translational part of G can be found as:   

 
intGGGtr −= . 

The translational part of Gm , Gmtr = 2.5RT – 

T Smtr, for the monomer fraction, as an ideal gas, 

can be written: 

 ( )
qmmtr VDRTG ln= . 

Therefore, the translational part of G for 

total gas corresponds to the equation: 

 ( ) ( )
qmtr VDRTSSTEHG lnintint =−−−= .  (4) 

Here H is the molar enthalpy, Eint and Sint – 

the molar energy and entropy of the molecular 

internal movements in the real gas, plus E0 , S0,  

depending on the system of measurement. 

This equation leads to the generalized 

Sackur-Tetrode equation for entropy of a 

molecular real gas: 

 ( ) ( )
qmVDRTSTEHS lnintint −+−= .  (5) 

Figure 4 illustrates high precision of the 

entropy calculation with the generalized Sackur-

Tetrode equation at subcritical and supercritical 

pressures for molecular substances. 
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Figure 4. Entropy values and multiplied by factor 

10
4
 their deviations from the predicted by the 

generalized Sackur-Tetrode model values for 

water at 500K. 

Equation (5) appeared after the author’s 

multiple attempts to find an appropriate 

approximation for S (P,T) (Sedunov, 2001).  But 

in a final version it is free from any 

approximations and assumptions about the 

intermolecular interaction mechanisms. All 

pressure dependent details of these mechanisms 

are hidden in the enthalpy of a real gas.  

High precision of the MFD based entropy 

calculation from enthalpy, density, pressure and 

temperature data permits also the computing of  

Gibbs and Helmholz energies from these initial 

values with a high precision and with no 

limitations on the pressure range. 

3.3 Master equation for MFD 

computation 

Keeping in mind that Gint is independent of 

pressure, it is possible to apply the 

thermodynamic equation  

 VPG
T
=∂∂  

only to Gtr, given by Equation (4), and to write a 

differential equation for the MFD: 

 DRTDPD mTm =∂∂ . (6) 

Equation (6) can be named the master 

equation for MFD computation utilizing a set of 

data Dj (Pj ,T) from any available database. 

 The numerical integration of this equation 

for an isothermal set of data Dj (Pj ,T) returns the 

Dmj (Pj ,T) values for the selected temperature and 

for all pressure values This integration is a very 

delicate procedure and requires a high precision 

of the initial data Dj (Pj, T) with a small enough 

value of the pressure step Pj+1 - Pj.  

It is impossible to use a simple initial 

condition Dm = D = 0 at P= 0, because it results 

in division by zero. As the initial condition for 

integration of the master Equation (6), we suggest 

the equation Dm = 2P/RT – D that can be valid 
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only in the region of small values of P, where 

ABS (P/RT – D) is much smaller than D. 

As a source of experimental data, the 

permanently updated online database of the US 

National Institute of Standards and Technology 

(NIST, 2007) for monatomic and molecular gases 

was used. This database contains comprehensive 

data for 75 substances in gaseous and fluid states 

given with 5 decimal digits.  

Negligible value of deviations between 

theoretical and experimental data for entropy, 

illustrated by Figures 3 and 4, was proven on 

several substances with hundreds of temperature 

points and thousands of pressure values. It 

provides a reliable confirmation that the 

computational method and procedures are quite 

correct. Their precision will grow together with 

growth of the initial databases precision. 

High precision both of the MFD and MFD-

based thermodynamic functions computation 

opens ways for the MFD incorporation in the 

databases for monocomponent substances. This 

incorporation may serve as an independent 

method of the calorimetric data verification and 

correction. 

3.4 MFD at high pressures 

In a supercritical fluid, where the molar 

volume approaches a constant value V0, the MFD 

grows exponentially with pressure as the 

reflection of the Gibbs energy approximately 

linear growth in this region: 

PVGG 00 += . 

Figure 5 illustrates the exponential growth of the 

MFD at high pressures.  
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Figure 5. Exponential growth of the MFD, Dm, 

and saturated growth of the density, D, at high 

pressures in the supercritical helium at 140 K. 

In the region of high pressures the precision 

of the theoretical prediction for entropy values is 

still very high, as shown in Figure 6.  
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Figure 6. Entropy values and multiplied by factor 

10
4
 their deviations from the predicted by the 

generalized Sackur-Tetrode equation values for 

supercritical helium at 140 K. 

It confirms an applicability of the MFD and 

MFD-based computations in the whole 

investigated range of pressures. There is no 

obvious and simple interpretation of the MFD 

nature at high pressures. But this difficulty should 

not become an obstacle before the practical 

utilization of the MFD. A detailed investigation of 

supercritical fluids shows that at high pressures 

the reverse to the MFD value, the particular molar 

volume, that may be named ‘gettable’, has clearer 

physical sense than MFD. But this question 

requires special investigation in a separate paper. 

4. Utilization of MFD as an Argument for the 

Density and Pressure Series Expansions 

Master Equation (6) provides a theoretical 

basis for determination of the equilibrium 

constants Ck from the coupled series expansion 

for P(Dm) and D(Dm).  

With a found set of data Dmj (Pj ,T) for a 

fixed T the total pressure P can be expressed as a 

series expansion: 

 ( ) 







+= ∑

∞

=

−

2

11
k

k

mkm DCRTDP  (7) 

that may be interpreted as a sum of partial 

pressures of fractions. As has already been noted, 

this equation contains both physical and virtual 

parts of the Ck.  

From the master Equation.(6) the total 

density D can be expressed in a similar way: 

 ( ) 







+= ∑

∞

=

−

2

11
k

k

mkm DCDD  (8) 

Here the series expansion coefficients 

contain the factor k in accordance with Equation 

(6).  
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So, for D (Dm )and P(Dm) a system of 

coherent and cross-correlated Equations. (7, 8) is 

valid. This coherence and cross-correlation help 

to find the equilibrium constants Ck (T). They 

provide the possibility of suppressing polynomial 

oscillations inherent to ordinary virial expansions. 

4.1 Experimental data processing  

At the first step, the range of Pj (T), where 

only the terms of the second and third orders are 

essential, is selected to find C2 and C3. Then, the 

working range of Pj (T) is step-by-step expanded 

to find C4 and C5 and to proceed further (Sedunov, 

2007c). 

Then the found values of Ck (T) are used to 

compare the polynomial approximations for 

pressure and density with their real values. The 

computation process may be regarded as correct, 

if the deviation of the approximation from 

experimental data is of the same order of 

magnitude as the occasional spread of the initial 

Dj (Pj , T) data.  

For the moment, the next real gases have 

been investigated: helium, parahydrogen, argon, 

nitrogen, methane, water and alkali-metal vapors. 

As an example of a typical picture, Figure 7 

shows temperature dependences of equilibrium 

constants for parahydrogen, demonstrating the 

asbsence of the fourth term in the joint series 

expansion. 
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Figure 7. Temperature dependence of equilibrium 

constants Ck  for parahydrogen with missing 

C4 constant. 

4.2 Missing terms in the joint series 

expansion 

For all investigated gases a discrete structure 

of the series expansion is discovered. That means 

an absence of some terms in the power 

expansions. So, for argon, parahydrogen, methane 

and nitrogen it was impossible to notice any 

traces of the C4 (T), but in water this coefficient 

has a noticeable value that reflects a quite 

different type  (polar instead of the van der 

Waals’) of the intermolecular interaction. The 

very possibility of throwing away the numbers k, 

not presented in the joint series expansion, 

prevents the series expansion computer program 

catching the nonexistent numbers.  

It should be noted that the discrete structure 

of the MFD-based series expansions disappears in 

ordinary virial expansions. That means the virial 

expansions provide less information for the 

cluster formation mechanism.  

The physical interpretation of the missing 

terms phenomenon is not possible at this level of 

knowledge. A wider database of Ck (T) for many 

real gases is needed to be collected, significantly 

differing one from another, just to create a solid 

basis for future generalization. But it is clear 

already now that a simple model of particles 

interaction via their attraction-repulsion potential 

depending on the distance between their centers 

cannot explain missing of some terms. Quite 

another model of particles interaction is needed to 

describe this phenomenon. 

4.3 Polynomial oscillation suppression 

Unlike virial expansion, the cross-

correlation of two coherent equations prevents 

falling into the well known problem of 

polynomial oscillation at series expansions. The 

series expansion itself may be related to a class of 

incorrect mathematical problems. That means a 

large instability of final results at small deviations 

of initial data. In series expansions this instability 

takes the form of oscillating polynomials, like 

Chebyshev’s polynomials with small amplitude in 

some range of arguments but with large series 

expansion coefficients. These error coefficients 

grow very fast with growth of the number k and 

limit possibilities of the virial expansions by the 

first two virial coefficients. For higher order virial 

coefficients, as a rule, the errors are comparable 

with their values. 

In our case, we find equilibrium constants Ck 

from a pair of Equations. (7, 8). The possible 

error polynomials are different for every equation, 

and it helps to suppress them. That results in a 

higher precision of the high order coefficients. In 

some cases it is possible to reach numbers as large 

as 10. 

4.4 Applicability of the equilibrium 

constants for the nucleation problem 

The presentation of the real gas pressure and 

density as the sums of partial quantities was used 

by Ford (1997) to estimate the clusters’ 

populations in the supersaturated region.  

When coefficients Ck (T) are found, it 

becomes possible to step from the investigated 

range of P in a supersaturated state of a real gas 

just to estimate the clusters population 

distribution in this region. It may be used for the 

nucleation processes research (Ford, 2004), 

particularly for modification of Ford’s (1997) 

method of virial coefficients utilization to 

estimate initial clusters population.  
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5. Conclusion 

The introduction of the monomer fraction 

density (MFD) expands the power of the 

computer assisted analysis of a wide series of 

thermodynamic functions of real gases that 

permits throwing more light on the interactions of 

atoms and molecules.  

Approximations for Gibbs energy and 

entropy, based on the found values for Dm and Ck, 

possess smaller spreads than the database values 

resulting from calorimetric measurements. It 

opens the way to correct the existing databases.  

The MFD sets of data can be added to 

existing databases to expand their cognitive 

power and practical value. 

The found facts inspire and provide 

directions for more profound experimental and 

theoretical studies of real gases and condensed 

matter.   

Possible practical applications of this 

research may be in the next fields: 

- more effective utilization of databases on 

thermophysical properties of real gases in 

computer aided design and control of chemical 

and material technologies; 

- an improved precision of thermo-

physical databases through the cross-correlation 

of different thermodynamic functions and MFD;  

- stimulation and targeting of new 

experimental research in order to make precise the 

details of the interatomic interaction mechanisms 

and van der Waals forces; 

- new approaches to teaching thermo-

dynamics of real gases. 

Nomenclature 

MFD  Monomer fraction  density  

MD  Molecular dynamics  

D  Molar density of a real gas, mol/l  

P  Pressure, bar 

k  Number of particles in the cluster and the 

order of the series expansion term 

Dk  Partial molar density of the k-order 

cluster fraction, mol/l  

Dm Monomer fraction density, mol/l  

Pk Partial pressure of the k-order cluster 

fraction, bar 

Ck (T) Equilibrium k-order cluster formation 

constant, reflecting both attraction and 

repulsion forces  

E  Internal energy, J/mol  

G  Gibbs free energy, J/mol 

S  Entropy, J/(mol K) 

H  Enthalpy, J/mol 

Gtr Translational part of the Gibbs free 

energy 

Gint Intramolecular part of the Gibbs free 

energy 

E0    Zero energy level for a freely moving 

particle as a reference value for the 

selected system of measurement 

S0  Zero entropy level for the ground state of 

the system as a reference value for the 

selected system of measurement 

Vi  Volume for a mole of an ideal gas, l/mol  

Vq  Molar quantum volume for the mono-

molecular fraction, l/mol  

h  Plank’s constant  

M Molecular weight, kg/mol  

NA   Avogadro’s number, 1/mol  

R   Universal gas constant, J/(mol K). 
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