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Abstract 

A model for diffusion and phase separation which takes into account relaxation of the 

atomic diffusion flux to its local equilibrium state is explored. This model is described by a 

partial differential equation of a hyperbolic type that can be called “a hyperbolic model for 

spinodal decomposition”. Analysis of the hyperbolic model is given to predict critical 

parameters of decomposition (such as amplification rate of decomposition, speeds for 

atomic diffusion, and critical time for instability) in comparison with the outcomes of the 

Cahn-Hilliard theory. From the analytical treatments it is shown that the hyperbolic model 

predicts non-linearity in the amplification rate of decomposition, which is governed by the 

ratio between diffusion length and correlation length.   
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1. Introduction 

Phase transformation in which both phases 

have equivalent symmetry but differ only in 

composition is well-known as spinodal 

decomposition. This transformation was described 

by Cahn and Hilliard (1958) and Cahn (1961). It 

was widely investigated by using theoretical and 

experimental methods [see overviews of Skripov 

(1979); Beysens (1986); Binder and Fratzl (2001); 

Ustinovshchikov and Pushkarev (2006)]. 

Particularly, it has been shown that the theory has 

problems with the description of the early stages 

of decomposition.  

It has been demonstrated that experimental 

data extracted from light and x-ray scattering by 

phase-separated glasses exhibit non-linear 

behavior in dispersion relation in contradiction 

with predictions of the Cahn-Hillard theory [see 

Andreev et al. (1970)]. According to the theory, 

only systems with long-range interaction may 

behave linearly during the early stage of spinodal 

decomposition [see Binder (1984); Binder and 

Fratzl (2001)]. This theoretical result has not been 

observed experimentally in systems with short-

range interaction because non-linear or non-

equilibrium effects become important for systems 

rapidly quenched or deeply supercooled into the 

spinodal region of a phase diagram.  

Recently, the Cahn-Hillard theory has been 

modified by taking into account the relaxation of 

the atomic diffusion flux to its local steady state 

[Galenko (2001); Galenko and Jou (2005)]. The 

flux has been chosen as an additional independent 

thermodynamic variable in consistency with the 

extended irreversible thermodynamics of Jou, 

Casas-Vazquez and Lebon (2001). Using such a 

model, one can predict the very first stages of 

decomposition when the flux rapidly changes and 

relaxes to its local equilibrium steady state. Such 

description allows for prediction of the earliest 

stages of decomposition, intermediate regimes, 

and the latest stages of decomposition.  

Recently, the hyperbolic model has been 

analyzed mathematically [see Gatti et al., 2005a] 

and, especially, tested against experimental data 

[see Galenko and Lebedev (2008)]. It has been 

demonstrated that the model has good agreement 

between theoretical prediction for amplification 

rate and experimental data extracted from light 

scattering on spinodally decomposed glass.  

In the present article, the hyperbolic model 

of spinodal decomposition is further explored. 

We analyze the effect of local nonequilibrium on 

the amplification rate of decomposition, 

characteristic diffusion speeds and critical time 

for instability against perturbation of 

concentration.  
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2. Hyperbolic Spinodal Decomposition  

Consider an isothermal binary system as an 

isotropic solid solution free from imperfections 

and with the molar volume independent of both 

atomic concentrations. Then, to describe rapid 

spinodal decomposition for such a system, the 

following entropy functional is used:  

 [ ] Ω∇−= ∫Ω dcJcsS c

22

2
1),( ε

r
.  (1) 

where s is the entropy density based on the 

extended set { }Jc
r
,  of independent thermodynamic 

variables in which c  is the concentration and J
r
 is 

the atomic diffusion flux,  2
cε  the factor 

proportional to correlation length (i.e., so-called 

“gradient energy coefficient”), and Ω  is the 

volume of the considered system.  

In the functional (1) the gradient term is used 

to describe a spatial inhomogeneity within the 

diffusion field according to previously formulated 

models for phase transitions [see Ginzburg and 

Landau (1950); Cahn and Hilliard (1958); Allen 

and Cahn (1979)]. It is logical to include gradient 

terms in Equation (1) because the interest in 

description of the complete scenario from earliest 

to latest stages of decomposition is focused on 

interfaces between phases with both steep 

concentration gradients and small gradients. In 

addition to the classic approach of Ginzburg and 

Landau (1950), the entropy density s is based on 

the flux J
r
 as the independent variable from the 

set { }Jc
r
,  of the thermodynamic variables.  

Entropy density s is an additive function of 

its local equilibrium contribution )(cseq  and its 

pure non-equilibrium contribution )(Jsneq
r
, i.e.  
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Non-equilibrium contribution in Equation (2) can 

be expanded in series as follows  
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Taking linear proportionality for the derivative 

[Jou et al., 2001],  JJs J

rr
α=∂∂ / , one can omit 

terms with the power of quadratic and higher order 

in the expansion (3) for the first order of 

approximation. Then, Equation (2) holds 
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where Jα  is the coefficient independent on the 

fast variable .J
r
 

Equation (4) shows that the entropy s has a 

standard local equilibrium contribution eqs  and 

contribution neqs  explicitly dependent on fast 

variables. As it is well established in classic 

irreversible thermodynamics [see Prigogine 

(1967); Glansdorff and Prigogine (1971)], 

thermodynamic functions (entropy, free energy, 

chemical potential) are strictly defined only for 

locally equilibrium states. Therefore, Equation 

(4) can be specially explained in the following 

way. For the local equilibrium part eqs  a local 

ergodicity (that is, the system needs to sample the 

phase space) is true. However, as soon as we 

postulate diffusion flux with its own finite 

relaxation times, this means that the local non-

equilibrium contribution 2/2JJα  assumes the 

existence of slow physical processes, which are 

the thermal conduction and/or jump of solute 

atoms [Jou and Galenko (2006)]. Considering 

ergodicity of a phase space for non-equilibrium 

situation, one may well refer to statistical effects 

in fast phase transition due to the existence of 

many particles (atoms and molecules) within 

local volumes. Since we consider the phase 

transition in high frequency approximation, the 

particles have not enough time to sample all the 

phase space. Thus, the number of microstates 

accessible to each of them will be lower than in 

equilibrium. This will imply a decrease in the 

entropy with respect to the local equilibrium 

contribution eqs . This is one of the ways to 

interpret the non-equilibrium contribution neqs  to 

the entropy (4).  

Using Equation (4), the nonlinear equation 

for spinodal decomposition derived from the 

entropy functional (1) [see Galenko (2001); 

Galenko and Jou (2005)] is described by 

 ( )[ ]cfM
t
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c
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Here: t  the time, Dτ  the time for relaxation of 
the diffusion flux to its steady state, M  the 

atomic mobility, and dcdff c /' =  the derivative 

from free energy density f  with respect to 

concentration. For the initial stages of 

decomposition one can neglect all terms non-

linear in concentration. Then Equation (5) yields  
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where 22'' / dcfdf cc = .  

Equation. (6) has been characterized by 

Gatti
 
et al. (2005b) as a singularly perturbed 

Cahn-Hilliard type equation. Indeed, this 

equation is interpreted in consistency with 

classification of linear equations of the second 

order, then it might be treated as the singularly 

perturbed equation (due to assumption of a small 

coefficient Dτ  at the second derivative with 
respect to time). However, one may also consider 
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Eq. (6) as a limiting equation from the hyperbolic 

side which is characterized by a large value for the 

coefficient Dτ/1  at the first derivative with 

respect to time. In this limiting case, there are not 

singularities and Equation (6) might be considered 

as hyperbolic. 

3. Dispersion Relation 

Considering the elementary exponential 

solution of Equation (6) of the form 

 ( )[ ]tkkziactzc k )(exp),( 0 ω−=− ,  (7) 

one can write the dispersion relation  )(kω  as  
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The upper and lower signs for )(kω in 

Equation (8) correspond to the branches which are 

responsible for the wave propagation in the 

positive and negative z -directions, respectively.  

Qualitative behavior for )(kω  is shown in 

Fig. 1. The real part of )(kω  begins to exist only 

from some critical value 0kk = , Figure 1(a). This 

value defines the confluence of two branches for 

the imaginary part of )(kω , Figure 1(b). Also, one 

can define two other critical values for the wave-

vector k . The critical value ckk =  defines a point 

from which ω   takes positive values of its 
imaginary part, Fiure. 1(b). For ckk <  solution 

(7) exponentially grows in time and decomposition 

begins to irreversibly proceed. The critical value 

mkk =  gives a maximal positive value for ω , 
Figure 1(b). Frequency )( mkω  defines the mostly 

unstable mode with which a pattern evolves during 

phase decomposition.  

Note that Equations. (7)-(8) describe the 

evolution of patterns in spinodal decomposition 

under local nonequilibrium conditions. It can be 

seen by taking the real part of solution (7) in the 

following form:  

 [ ] )exp()(exp)0,(),( 0 kztkkactzc k ω=− . (9) 

Then the solution of Equation (6) is described by: 

 [ ] [ ]22''2)(1)( kfMkkk cccD ετωω +−=+ .  (10) 

From this it follows that with low frequency 

for concentration propagation, i.e. for 1<<Dωτ , 

the usually applied “hydrodynamic 

approximation” is true. In this case, one can 

neglect the term with relaxation time in Euation. 

(6). However, at a high frequency of concentration 

propagation, i.e. for 1>>Dωτ , violation of 

“hydrodynamic approxi-mation” occurs for the 

system. In such a case, approximation of local 

equilibrium relaxes within the system which has 

to be described by Equation (6). 

4. Characteristics of Spinodal Decomposition  

In the present section we summarize results 

on the main features of hyperbolic spinodal 

decomposition described by Equation (6). These 

are the amplification rate of decomposition, 

speeds for atomic diffusion (namely, phase speed 

and group speed), and critical time for instability. 

 

Figure 1. Dispersion relations for hyperbolic (the 

presently modified Cahn-Hilliard) equation, Eq. 

(8). (a) Real part of frequency, ))(Re( kω . (b) 

Imaginary part of frequency, ))(Im( kω . 

4.1. Amplification rate of decomposition 

Using a dispersion relation (8) one can find 

the  rate of decomposition which is characterized 

by the irreversibly growing wavelength of 

decomposition. For the region of phase diagram, 

in which spinodal decomposition proceeds, 

0'' <ccf , this yields [see Galenko and Lebedev 

(2008)]:  
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Equation (11) can be interpreted as the 

kinetic amplification rate for both dissipative and 

propagative regimes of atomic transport as 

described by Equation (6).  

The following notations are used in Equation 

(11):  

 2/1)( DD Dl τ=   and  2/1'' )/( ccCC fl −= ε   (12) 

are the diffusion length and correlation length, 

respectively; ''

ccMfD −=  is the diffusion constant; 

)(/)(*

mkk ωωω =  is the dimensionless 

amplification rate in which  

 

D
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k

τ
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is the dimensional amplification rate,   

 [ ]
D
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τ
εω

4
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2
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is the dimensional amplification rate at the wave 

number mk  and wavelength mλ  

 )2/(1/2 Cmm lk == λπ ,  (15) 

giving a maximum amplification rate (see Figure 

1);  

 
Ccc lk /1/2 == λπ   (16) 

is the critical wave number ck  and wavelength cλ  
(see Figure 1);  and ckkq /=  is the dimensionless 

wave number with respect to its critical value ck . 

As it follows from Equations. (15) and (16), the 

maximum amplification rate allows for the 

wavelength mλ  greater in exactly 2   times the 
critical wavelength cλ  of instability against 
fluctuations of concentration.  

Equation (11) is true for both regimes: (i) 

regime with finite Dτ  (local nonequilibrium 
situation with violation of the standard 

“hydrodynamic approximation”); and (ii) regime 

with vanishing relaxation time (local equilibrium 

situation described by the standard “hydrodynamic 

approximation”). The first regime (i) occurs for 

significant deviations from local equilibrium in the 

diffusion field. It exists at the initial stages of 

decomposition in which the short range interaction 

between atoms (particles) becomes significant. 

Therefore Equation (11) predicts the behavior, 

when the length of local nonequilibrium is larger 

or comparable with the correlation length, 

CD ll ≥ . The second regime (ii) occurs when the 

correlation  prevails in the system, DC ll >> . It is 

described by the Cahn-Hilliard scenario, which 

can be obtained from Equation (11) for the small 

ratio CD ll /  as  

 ).1(4
)(

)(1 2

22

*

q
k

k

qq m

−=⋅=
ω
ωω   (17) 

This equation exhibits linear dependence of  
2* / qω  from 

2q  which occurs only in systems 

with long range interaction [Binder (1984)] and 

practically is not observable [Binder and Frantzl 

(2001)].  

From Equations. (11)-(17) it follows that the 

ratio CD ll /  between diffusion and correlation 

lengths governs the mechanism of transition from 

a homogeneous unstable state to heterogeneous 

metastable and stable states. This fact is clearly 

shown in Figure 2. At the early stage of 

decomposition, when the effects of local non-

equilibrium plays a crucial role, the length of 

nonequilibrium Dl  is essentially larger than the 

length of correlation Cl . In this case, one gets 

CD ll >>  and non-linearity is clearly seen in the 

amplification rate (see the solid line in Figure  2). 

With the formation of developed patterns, the 

correlation length Cl  increases in comparison 

with the diffusion length Dl . With CD ll << , 

amplification rate tends to linear law predicted by 

Cahn and Hilliard (see dashed-dotted and dotted 

lines in Figure 2). 

 

Figure 2. Comparison of the function 
2* / qω  

predicted by the parabolic diffusion equation 

(Cahn-Hilliard model) and the hyperbolic 

diffusion equation (presently the modified Cahn-

Hilliard model). Curves are given for various 

values of the ratio CD ll /  between diffusion 

length and correlation length, respectively. 

4.2. Phase speed 

If the expression under square root of 

Equation (8) is positive, then the speed of 

propagation has the real finite value. Values of 

the wave vector 0k  above which relation (8) has 

the real part, Figure 1(a), is found from condition 



                                                                                            Int. J. of Thermodynamics, Vol. 11 (No. 1) 
 
25 

 ( )













−+−= ''

2
2''

2

2

0
2

1
cc

D

c

cc

c

f
M

fk
τ
ε

ε
.  (18) 

For 2
0

2 kk > , one can obtain from Equation (8) the 

real part of the phase speed:  
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This expression describes propagation in both 

positive and negative spatial directions.  

The speed pv  incorporates a motion for one 

of the separated single harmonics. It can be 

compared with the predictions of the partial 

differential equation of a hyperbolic type for solute 

diffusion without phase separation. Indeed, 

analysis of dispersion relation for mass transport 

Equation (6) at 0=cε  leads to the following 

expression [see, e.g., Galenko (2002)]: 

 
2/1

2/122 )(
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++
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−ωττ DD
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D
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Equation (19) arrives at Equation (20) with 0=cε  

and DMf cc =− '' . Using the proportionality ω∝k  

for the high frequency of disturbance's 

propagation, one can see that both expressions 

(19) and (20) lead to the same result:  

 ( ) DDp VDv == 2/1
/τ      with   ∞→ω .  (21) 

Therefore, phase speed pv  is equal to solute 

diffusion speed DV  which is a maximal speed for 

propagation of the solute diffusion disturbance 

(profile).  

The imaginary part of the phase speed, 

)2/()Im( kiv Dp τ= , specifies the amplification 

rate for a given harmonic. With 0kk < , harmonics 

do not move with possible changing of their own 

amplitudes. For both real and imaginary parts of 

pv , i.e., with 0kk > , the harmonics move and 

change their own amplitudes. The behavior is 

shown in Figure 3 for pv .  

4.3. Group speed 

Concentration disturbances propagating by 

diffusion can be considered as an undistorted wave 

packet moving with the group speed given by 

 )(/)( kWkk ±=∂∂ω .  (22) 

Using Equation (8) calculation of the group speed 

W  gives  
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cccD
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Dependence )(kW  is shown in Figure 3 and it 

specifies a speed for a concentration profiles 

envelope. One may see that, as for the phase 

speed pv , the real values for W  given by 

Equation (23) exist only at 0kk > . In contrast 

with the behavior of pv , the imaginary part of 

)(kW  may exist only at  0kk < . 

 

Figure 3. Phase and group speeds for hyperbolic 

Cahn-Hilliard equation. (a) Real part )Re( pv  of 

phase speed (solid line) and real part )Re(W  of 

group speed (dashed-dotted line). (b) Imaginary 

part )Im( pv  of phase speed (solid line), and 

imaginary part )Im(W  of group speed (dashed-

dotted line). 

4.4. Critical time for instability 

Let us evaluate the time of the transitive 

period from the beginning of instability (with the 

beginning of growth of infinitesimal perturbation) 

up to arriving into the new metastable state. For 

the fastest growth of infinitesimal perturbation 

the maximal frequency )( mkω  is responsible. 
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Therefore substitution of Equation (14) into 

dispersion relation (8) leads to  

 
[ ]

[ ].))/(1(1
2

)/)(1(1
2

)(

2/12

2/122''

CD

D

cccD

D

mm

ll
i

fM
i

k

+±−=

+±−=

τ

ετ
τ

ω
  (24) 

Equation (24) adopts both real and imaginary 

parts for ω  and, using the maximal frequency 
(24), solution (7) can be rewritten as  

 )/exp()exp(),( 0 ck ttikzactzc =− ,  (25) 

where 
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is the time for developing coherent structure due to 

instability in the system under spinodal 

decomposition. Equation (26) can be used to 

evaluate the transitive period from one metastable 

state to the other one.  

If the time for decomposition is of the order 

of or smaller than the relaxation time, Dct τ≤ , 

then the effects of local nonequilibrium in the 

diffusion field become pronounced. Therefore, 

using Equation (26), one can predict that the effect 

of local non-equilibrium on decomposition 

becomes very significant if one has the following 

inequality: CD ll 22> . In this case, the 

traditional “hydrodynamic approximation” (which 

is true for long wavelengths and low frequencies 

of disturbances propagation) breaks and the 

system needs to be described by the local 

nonequilibrium model. The simplest model with 

local nonequilibrium effect of atomic diffusion on 

spinodal decomposition is presented by the 

hyperbolic Equations. (5) and (6).  

Within the local equilibrium limit, 0→Dτ , 

one can expand square root in Equation (26) for  

1)/(/)( 222'' <<= CDcccD llfM ετ . In this case, we 

arrive at the following approximation 

 
2''

2

)(

4

cc

c

c
fM

t
ε

= .  (27) 

This expression for the time of instability is found 

from the predictions of the pure diffusion theory 

(parabolic transport equation) of Cahn and 

Hilliard. 

5. Conclusions 

Following the thermodynamic approach to 

rapid phase transitions, a model for kinetics of fast 

spinodal decomposition has been further 

developed. The present model gives the modified 

Cahn-Hilliard equation, Equation (5), which 

describes the spinodal decomposition for both 

diffusion and wave propagation of atoms. In such 

a case, the equation predicts a rate for fast 

separation which is compatible with the atomic 

diffusion speed.  

The analysis leads to the obtaining of the 

phase and group atomic speeds. The real values 

for the speeds define the finite propagation of a 

single harmonic (for the phase speed) and a 

packet of harmonics (for the group speed). The 

group speed always has a finite value. Thus, we 

consider the present equation for spinodal 

decomposition (6) as a limiting equation from the 

hyperbolic side but with a large coefficient at the 

first derivative with respect to time.  

The model is able to give prediction for 

scenario from very earliest up to latest stages of 

spinodal decomposition. Particularly, for 

CD ll >>  and Dct τ≤ , the usual “hydrodynamic 

approximation” breaks and one has to describe 

the process by taking into acoount local 

nonequilibrium. In the present work we used a 

hyperbolic model adopting the final diffusion 

speed (so-called “modified model of Cahn and 

Hilliard”). Such a model works properly at the 

very first stages of decomposition under local 

nonequilibrium conditions. It predicts a gradual 

transformation from local nonequilibrium 

decomposition existing at the very first stages to 

the latest stages existing with CD ll <<  and 

Dct τ>> . The latter inequalities characterize the 

standard “hydrodynamic approximation” 

describing parabolic type of equation for 

diffusion and phase separation during spinodal 

decomposition (classic Cahn-Hilliard model).  

As a final note, several generalizations of 

the present model can be outlined. First, an 

introduction into the model fluctuations in a 

manner of Cahn-Hilliard-Cook model [see Cook 

(1970)] can be made. As an extension of the 

present linear Equation (6), fluctuations can be 

introduced using analysis of a generalized 

diffusion equation as described by Jou and 

Galenko (2006). It might give partial contribution 

from local non-equilibrium effects and partial 

contribution of fluctuations into non-linearity of 

the main characteristics (such as amplification 

rate, structural factor, etc.) of spinodal 

decomposition. Second, solutions of the non-

linear equation (5) have to be tested with regard 

to the influence of non-linear effects during initial 

stages of decomposition. It might be treated, e.g., 

in a manner of the “decoupling approximation” of 

Langer et al. (1975) or using “power's expansion” 

suggested by Grant et al. (1985). Comparison of 

the outcomes from  non-linear hyperbolic model 
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and from the well-known non-linear theories based 

on the parabolic diffusion equation [see Cook 

(1970); Langer et al. (1975); Grant et al. (1985)] 

can be seen as a very attractive point of 

investigation. 
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Nomenclature 

ak amplitude for concentration 

 (atomic fraction) 

c concentration (atomic fraction) 

D diffusion constant (m
2
/s) 

f   free energy density (J/m
3
) 

i imaginary unit  

J
r
 vector of atomic diffusion flux 

 (atomic fraction m/s) 

k wave – vector (m
-1
)  

kc critical wave-number for beginning of the 

irreversible growth of instability (m
-1
) 

km wave-number for the selected maximum 

wavelength (m
-1
)  

0k  value for wave vector above which 

dispersion relation has a real part (m
-1
) 

lC correlation length (m) 

lD diffusion length (m) 

M  atomic mobility (m
5
(atomic fraction)

2
/s/J) 

q dimensionless wave number
 

S total entropy in a system (J/K) 

s  entropy density (J/K/m
3
) 

seq equilibrium part of the entropy density 

(J/K/ m
3
) 

sneq non-equilibrium part of entropy density 

(J/K/ m
3
) 

t  time (s)  

tc time for instability (s) 

pv  phase speed (m/s) 

VD diffusion speed (m/s) 

W group speed (m/s) 

z spatial coordinate (m) 

Greek 

Jα  thermodynamic coefficient 
 (Js

2
/m
5
/(atomic fraction)

2 
) 

2
cε  factor proportional to correlation length 

(“gradient energy coefficient”) (m/J
1/2
m
3/2
) 

cλ   critical wavelength of instability (m) 

mλ  maximum wavelength of the irreversibly 
growth pattern (m) 

π  mathematical constant, 3.1415926… 

Dτ  time for relaxation of the diffusion flux (s) 

Ω  the volume of the considered system (m
3
)  

)(kω  dispersion relation (cyclic frequency of the 

planar wave,s
-1
)  

*ω  dimensionless amplification rate 
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