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Abstract 

 
This contribution focuses on some non-classical aspects of capillary phenomena, mostly 
omitted in classical approaches, in particular the non-isothermal aspects. A systematic 
thermodynamic approach is proposed that allows a rigorous formulation of the governing 
equations in non-isothermal situations, by introducing the surface effects in the energy and 
entropy balances. The energetic quantities (work and heat) are calculated in a number of 
examples, such as adiabatic and isothermal wetting/dewetting of a porous medium, 
nanofluids heating, emulsion split, and new equilibrium criteria are derived were appropriate. 

Keywords: wetting phenomena, surface tension, thermodynamics, capillarity, energy and 
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1. Introduction 

The paper proposes a general thermodynamic 
analysis concerning the systems in which the wetting 
phenomena play a major role, a situation encountered 
when dealing with capillary systems. A capillary 
system may be defined as one composed of different 
phases (liquid(s), solid(s) and a vapour) having large 
specific contact surfaces between the phases 
(Melrose 1965, Eroshenko 1997, Laouir et al. 2003, 
Denoyel et al. 2004). A corresponding 
thermodynamic description requires  taking into 
account surface effects in the mathematical models, 
in other words surface energies and surface entropies 
must be included in the energy balance and in the 
entropy balance respectively. This will also permit 
deriving the equilibrium criteria applicable to 
capillary systems. In the present paper, some 
representative situations are examined along these 
lines. On the one hand some known classical results 
are derived but also given in more general forms, on 
the other hand new problems are treated with the 
possibility to calculate heat and work involved.   

2. Surface Energy and Entropy 

Figure 1 shows a system consisting of a solid, a 
liquid and a vapour in equilibrium. The liquid and the 

solid are dissimilar from the chemical point of view 
while the vapour is the same compound as the liquid. 
The internal energy and entropy associated to the 
liquid-vapour (lv), solid-liquid (sl) and solid-vapour 
(sv) interfaces are given by (Defay and Prigogine 
1951, Harkins and Jura 1944, Melrose 1965) 
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Figure 1. A three phase system in equilibrium. 

the subscript (**) designates the surface type (lv), (sl) 
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(or more) may be in presence with specified 
interfacial tensions llσ . It is well known that surface 

tensions are temperature dependent, but the pressure 
effect on these quantities seems to be practically 
ignored in the literature. Except for lvσ , 

experimental data concerning temperature 
dependence of surface tensions are scarce. Using 
Young's equation θσσσ coslvsvsl −= , slu  and sls  

may be expressed in the following forms:  
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The contact angle θ  of the specified solid-liquid 
couple is a thermodynamic property which is a priori, 
as surface tensions, temperature and pressure 
dependent. 

3. Energy and Entropy Balances 

Thermodynamic properties associated to the 
system shown in figure 1 involve those of the solid, 
the liquid, the vapour and those related to the contact 
interfaces discussed above. So the overall internal 
energy Ug for the system is (assuming of course some 
boundaries which need not be defined here): 

lvlvsvsvslslvvllssg AuAuAuumumumU +++++=   (4) 

us ,ul, uv are the specific internal energies of the three 
phases and usl , usv , ulv the internal energies related to 
the surfaces given by Equation (1).  Similarly, the 
overall entropy Sg  is: 

lvlvsvsvslslvvllssg AsAsAssmsmsmS +++++=      (5) 

if immiscible liquids are in presence, Eqs. (4) and (5) 
should be extended accordingly to include liquid-
liquid interactions. The general form of energy 
balance equation is: 
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Ug,  Ec and Ep are respectively the overall internal 
energy, kinetic energy and potential energy of the 

system, Q&  the rate of heat transfer, W& the 

mechanical power transfer, hg, ec and ep are 
respectively the specific overall enthalpy, kinetic and 
potential energies related to the flow stream m& . The 
overall enthalpy hg is to be defined in relation to the 
energies transferred with matter across the system 
boundary. The entropy balance equation is: 
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where Sg  is the overall entropy of the system, sg is 
the specific overall entropy of the corresponding flow 
stream and ε&  the entropy production rate which is 

zero for reversible processes. Eqs. (6) and (7) are so 
general that they allow the study of a wide range of 
problems involving surface phenomena. In the 
following sections some typical problems are 
considered to illustrate the application of these 
equations and to show the quantitative and qualitative 
results that may be expected.   

4. Equilibrium  

 Capillary systems show states (Bosworth 1950, 
Chitour  2004) that may be perceived and described 
as thermodynamic equilibrium states, such that no 
flow nor transfer occurs and nothing changes with 
time. However, the usual equilibrium criteria do not 
all apply. Temperature must indeed be uniform for 
absence of heat flows, and chemical potentials for 
absence of diffusional mass flow but on the other 
hand it should be stressed that pressure is generally 
non-uniform, because of pressure gradients across 
interfaces. The general equilibrium criteria may be 
derived by considering an infinitesimal change of 
state in the vicinity of the equilibrium point of a 
closed and non-moving system: 

 WQdEdU pg δδ +=+   and  δε
δ

+=
T

Q
dSg      (8) 

In many cases the work Wδ is zero (capillary rise, 
sessile drop…), in others it corresponds to the work 
of change in volume PdV−  (bubble in a liquid, 
equilibrium of non-wetting liquid in a porous 
solid…); the work is defined in relation to the 
pressure acting at the system boundary. At the 
equilibrium state, since no flow or transfers occur, 
the entropy production is zero, that is 0=δε . Thus , 

 
 0=−++ gpg TdSdEPdVdU              (9) 

 
the equation defines in a general form the 
equilibrium state and gives the minimum of the 
differentiated quantity. For an equilibrium achieved 
at constant T and V, 0=+ pg dEdF  and pg EF +  is 

minimum ( ggg TSUF −=  is the overall Helmholtz 

free energy of the system). If the equilibrium 
concerns an isolated system, 0=gdS , gS  is 

maximum and pg EU +  constant in this case. 

4.1 Capillary pressure 

As a first example, let us show how to establish 
a general expression for (isothermal) capillary 
pressure in a system such as that shown in figure 2 
composed of a solid, a liquid at a pressure P and the 
vapour trapped in the capillary at a pressure Pv.  
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Figure 2. Equilibrium of a liquid in a capillary. 

We are interested in determining the pressure 
difference involved in maintaining such an 
equilibrium, known as capillary pressure. To an 
infinitesimal displacement dx1 corresponds a 
displacement dx2 in the capillary, a heat Qδ and a 

work PdV−=Wδ ; for this system 0=pdE  therefore:  

 0=−+ gg TdSPdVdU                  (10) 

For the liquid and the vapour, one may write 
separately lll PdvTdsdu −=−  and vvvv dvPTdsdu −=− . 

The solid is assumed incompressible, so that 
0=− ss Tdsdu , and its mass is constant, 0 =sdm . The 

properties of the solid-vapour interface are assumed 
constant, 0=svdu  and 0=svds . The liquid and the 

vapour across meniscus 2 are in equilibrium, thus 

vvll TshTsh −=−  so vvllvlv vPPv)ss(T)uu( −=−−− . In 

addition svsl dAdA −= , vl dmdm −=  and vl dVdVdV += . 

Using these relations in conjunction with Eqs. 4 and 
5 for U and S and substituting  slsl su  and  by their 

expressions from Eqs. 2 and 3 into Equation (10), 
one gets: 

 0=−−− )cosA(d)VV(d)PP( lvsllv θσ        (11) 

Relation (11) is a general differential equation 
taking into account various aspects like the presence 
of condensable vapour, compressibility of the liquid, 
pressure effects on surface tension lvσ  and contact 

angle θ .  High pressure might change the wetting 
properties of a solid-liquid system; unfortunately 
there is practically no information that may be 
exploited about the dependence of lvσ  and θ  on 
pressure.  Keeping in mind that it is a restriction, we 
therefore assume in the subsequent sections that 

θσ coslv  does not vary with pressure. Using 

1
2
1 dxrdV π−= , )dxrdxr(dVl 1

2
12

2
2 −=π  and 

)2 1122 dxrdxr(dAsl −= π , Equation (11) reduces to: 

 










−−=−

2

1
2
2

1

2

1
2

dx

dx

r

r

r
cosPP lvv θσ       (12) 

To make this expression more explicit, and to recover 
known results, one must introduce additional 
assumptions. For example, if the liquid is assumed 
incompressible and if the vapour density remains 
practically constant one could write 

vvll v/dVv/dV −=  and ( ) 2
1

2
221  1 r/rv/vdx/dx vl−= , 

thus: 
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In general vl v/v  is small and relation (13) then 
reduces to the classical Washburn-Laplace equation 

)r/r/(cosPP lvv 12 112 −−=− θσ . 

4.2 Adiabatic capillary rise 

 In this second example, we introduce non-
isothermal effects into the classical problem of 
capillary rise. The height to which the meniscus of a 
liquid rises in a vertical capillary is given by Jurin’s 
law. We are interested in determining the equilibrium 
height if the rising process is performed adiabatically 
instead of isothermally (Laouir and Tondeur 2004). 
The thermodynamic system comprises the tube and 
the liquid above the reference level as shown in 
figure 3. The system is incompressible and there is 
no work transferred to or from the system (we 
neglect the work involved to lift the gas above the 
liquid). We assume that there is no heat transfer 
between the system so defined and its environment. 
Hence the system is isolated, 0=+ )EU(d pg  and 

0=)S(d g , while svsl dAdA −= . The energy and 

entropy balances are written: 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 3. Capillary rise. 

 

 
0             =+++

+−++

lsvsvslsl

slsvslllss

gzdmduAduA

dA)uu(dumdum
       (14) 

 
0                              =++

+−++

svsvslsl

slsvslllss

dsAdsA

dA)ss(dsmdsm
    (15) 

Heat capacities of the solid and the liquid are 

ls cc   and  so that  ,dTcdu ss = dTcdu ll = , 

 T/dTcds ss =  and T/dTcds ll = . Eliminating 

dTcmdTcm llss +  between the two previous 

equations and noting that 0=− svsv Tdsdu  in 

accordance with relations (1) we get 
0=+− lsllv gzdmdAcosθσ . If r is the capillary radius 

and lρ  the liquid density, dzrdm ll ρπ 2=  and 
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rdzdAsl π2= . Combining these relations with 

Equation (14) results in a relation of the same form 
as Jurin’s law, but involving an unknown variable, 
namely the equilibrium temperature: 

gr

)T(cos)T(
z

l

lv

ρ
θσ2

=                        (16) 

This equilibrium temperature may be calculated by 
substituting relation (16) back into the energy 
balance equation,  the initial state being defined as 

0=z , 0=slA , 0TT = . One then obtains, 

TABLE I. HEIGHTS RATIO )T(z/)T(z 0  AND 

EQUILIBRIUM TEMPERATURE T (IN 
BRACKETS) FOR CAPILLARY RISE IN THE 
SYSTEM DECANE/ SILICONED GLASS, 

C200 °=T . 
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 Eqs. (16) and (17) allow  calculating iteratively 
the height z and the temperature T at the equilibrium 
state. TABLE I shows the results for different values 
of capillary radius r and mass ratio lss /mm=ξ .  The 

tube is made of glass treated with silicone, 750=sc  

J.kg-1.K-1 and the liquid is decane, 2213=lc J.kg-1.K-

1, 724=lρ  kg.m-3 and 8500920 .T.lv +−=σ  mJ.m-2. 

The contact angle variation with temperature fits the 
relation 57.00.146 +−= Tθ as estimated from 

Neumann’s (1974) experimental data. For this solid-
liquid sytem Neumann has also shown that )T(svσ  is 

linear, so in accordance with relations (1) svu  is 
constant and 00 =− )T(u)T(u svsv  in Equation (17). In 

TABLE I, z(T)/z(T0) is the ratio of adiabatic and 
isothermal capillary rise heights with T0= 20°C. The 
difference between the two cases appears 
significantly for nmr 50<  and  50<ls m/m . The 

extreme values are shown as indications of trends. 

The adiabatic capillary rise with the considered solid-
liquid couple leads to an increase of the temperature 
and a reduction of the equilibrium height. Other 
systems, having in particular a different dependence 
of the contact angle on temperature, may display a 
different qualitative behaviour. 

5. Reversible Wetting of Porous Media 

Wetting a porous solid or a powder by a liquid 
is the process which leads to create a solid-liquid 
interface from an initial state presenting only a solid-
vapour surface. This thermodynamic transformation 
will bring into play heat and work. From a purely 
experimental point of view two cases may be 
distinguished namely "wetting" ( °<90θ ) and the 
"non-wetting" ( °>90θ ) case (Ritter and Drake 1945, 
Eroshenko et al. 2002, Coiffard and Eroshenko 
2005). Figure 4 is a general representation of the 
wetting process, the heat and work may be received 
or transferred to the surroundings depending on the 
surface properties of the given solid-liquid couple. 
Other aspects may be taken into account in studying 
such a system, like the presence of vapour in pores 
and the compressibility of the liquid. 

The question that arises is whether or not the 
wetting process is a reversible transformation. 
Reversibility means that the reverse process is 
possible and will involve the same amount of heat 
and work to bring the system back to the initial state. 
The most critical criterion of reversibility is then that 
the work produced is fully collected outside the 
system, this means also that the system is assumed 
free of friction and causes of hysteresis. It can be 
shown (Laouir et al. 2007) that the reversibility of the 
wetting phenomenon is conceptually achievable in 
properly designed devices. 
 

 
 
 
 
 
 

 

Figure 4.  Wetting of a porous media. 

 

5.1 Isothermal intrusion of a non-wetting liquid 

Considering the system shown in figure 4, the 
liquid is introduced at constant temperature and 
reversibly ( 0=ε ). Initially the porous media contains 
vapour )m( v 01≠  and at the end of the process, the 

vapour is completely condensed )m( v 02= . All 

thermodynamic properties will be expressed per kg of 
liquid at initial state 1lm . The mass ratio of the 

vapour and the specific wetted surface are defined as 

11 lvv m/m=ξ  and 11 lsvsl m/Aa =  respectively. First 

and second law balances expressed per kg of liquid 

   Capillary radius r in nm (10-9 m) 

  2 5 50 100 

0 0.925 

(42.4) 

0.972 

(28.6) 

0.997 

(20.8) 

0.999 

(20.4) 

1 0.945 

(36.4) 

0.979 

(26.3) 

0.998 

(20.6) 

0.999 

(20.3) 

5 0.974 

(27.9) 

0.990 

(23.1) 

0.999 

(20.3) 

1.000 

(20.1) 

 

Mass ratio 

lss m/m=ξ

 

50 0.996 

(21.1) 

0.998 

(20.5) 

1.000 

(20.0) 

1.000 

(20.0) 

Q 
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are WQug +=∆ , T/Qsg =∆ ; the solid is considered 

incompressible so 12 ss uu = and 12 ss ss = ; we have 

also 112 vll mmm +=  and 12 svsl aa = , so that finally: 

 WQ)uu(a)uu(uu svslslvlvll +=−+−+− 121212 ξ     (18) 

 
T

Q
)ss(a)ss(ss svslslvlvll =−+−+− 121212 ξ         (19) 

During the intrusion, the properties of the solid-vapor 
interface remain practically constant, 21 svsv uu =  and 

21 svsv ss = . Equation (19) shows that the heat Q 

transferred may be decomposed as follows

 

TABLE II.  HEAT AND WORK IN KJ/(KG OF LIQUID)  
 OF ISOTHERMAL INTRUSION OF WATER IN POROUS SILICONED GLASS. 

 

TABLE III.  WORK IN KJ/(KG OF LIQUID) OF ISENTROPIC  
INTRUSION OF DECANE IN POROUS SILICONED GLASS. 
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were QI  is the heat related to the compressibility of 
the liquid, QII  the fraction related to vapour 
condensation and compression of the resulting liquid 
and QIII  is the reversible heat of wetting. Similarly 
the work transferred QuW g −∆=  may be expressed 

as a sum of three fractions: compression work IW , 
work of condensation and compression of the 
resulting liquid IIW  and work of wetting IIIW .  

TABLE II shows the results calculated for 
intrusion of water at 20°C and 50°C in porous 
siliconed glass, the solid having a porosity 20.=ϕ  

cm3.g-1 and a specific surface area 300=Ω m2.g-1. 
The specific wetted area with a quantity of water 
( 1=lρ g.cm-3) occupying the pore volume is 

1500=Ω= lsl /a ϕρ m2.g-1 of water or =sla 1.5 106 

m2.kg-1of water. The pressure at the end of the 
process is supposed to be 450 bar. The wetting 
properties for this solid-liquid system are 

160.T/lv −=∂∂σ  mJ.m-2.K-1 and T/ ∂∂θ =8.55 10-4 

rad.K-1 (Neumann, 1974). The mass ratio vξ  may be 

calculated from 1111 vllvv v/v/ == ρρξ  and supposing 

the vapour saturated at the temperature considered. 
The properties of saturated and compressed water are 
taken from thermodynamic tables. 

The results show that the total work involved in 
performing the process is practically equal to that of 
the wetting phenomenon IIIW ; compressibility and 
vapour condensation play a negligible role from this 

point of view. The work done on the system is 
positive because the liquid is non-wetting, it must be 
forced to occupy the voids of the solid in order to 
accomplish the wetting process. On the contrary the 
heat rejected due to compressibility IQ  is not 

negligible, it becomes greater than the heat of 
wetting IIIQ  at T=50 °C.  

 
Qualitatively, we notice that the heat of wetting 

is negative (the intrusion process is exothermal); this 
result belongs to the solid-liquid system considered; 
for other couples, the heat of wetting may be positive 
even with wetting liquids (e.g. the case of the couple 
water-cholesteryl acetate mentioned in Laouir et al. 
2003). In the later cases heat of compression and heat 
of wetting are of opposite signs so the process may 
be endo- or exothermal depending on which of these 
heats is larger. The heat as well as the work related to 
vapour are quite negligible, which means that the 
presence of vapour may be ignored in this type of 
problem. 

5.2 Adiabatic intrusion of a wetting liquid 

The wetting process is adiabatic (Q=0) and 
reversible ( 0=ε ), thus the overall entropy remains 
constant; therefore 0=∆ gs  and Wug =∆ . The mass 

ratio of the solid is 1lss m/m=ξ  and the vapour is 

neglected ( 0=vξ ). As we consider a wetting 

behavior, the intrusion process takes place 
spontaneously, and the system can produce work.  
The pressure on the liquid-side is the lowest in 
accordance with Washburn-Laplace equation when 

°<90θ . Thus compressibility effects are quite 
negligible in this case. The energy and entropy 
balance expressions are:  

T lvσ (mJ.m-2) θ  QI QII QIII ∑Q  WI WII WIII ∑W  

20 °C 72.70 107.2° -3.46 -0.04 -5.31 -8.81 0.51 0.00 32.25 32.76 
50°C 67.90 108.7° -8.02 -0.20 -2.00 -10.22 0.38 0.01 31.80 32.19 

T1 1lvσ  (mJ.m-2) 1θ  T2 2lvσ (mJ.m-2) 2θ  W  (kJ/kgl) 

20 °C 23.83 14.2° 26.30 °C 23.25 13.3° -47.34  
50°C 21.07 9.8° 56.85 °C 20.44 8.8° -42.34  
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In general the relation )T(svsv σσ =  is needed in order 

to calculate the differences 12 svsv ss( − ) and 

)uu( svsv 12 −  and this is the case every time a non-

isothermal process is considered. Fortunately, for 
certain solid-liquid couples like decane/siliconed 
glass considered in section 4.2, svσ  is a linear 

function of T, so svu  and svs  are constant, and we 

have 012 =− svsv uu  and 012 =− svsv ss . TABLE III 

shows the results calculated for two values of initial 
temperature T1, the solid having the same properties 
as given in the previous section. With decane, the 
specific wetted surface area is =sla 2.07 106 m2.kg-1 

of decane , the mass ratio is == ls /ϕρξ 1 6.90 (for 

surface properties and heat capacity values see 
section 4.2). Temperature T2 is calculated iteratively 
using Equation (22). The system can produce a 
significant amount of work and the process leads to 
an increase of the final temperature.  

6. Heat Transfer to Nanofluids 

Liquids containing suspended solid 
nanoparticles are termed nanofluids, and the presence 
of the particles enhances dramatically the transport 
properties of the mixture (Boualit and Zeraibi 2006, 
Trisaksri and Wongwises 2007). The thermodynamic 
properties of such a fluid may be calculated as 
follows. We shall assume that densities as well as 
interfacial tension are not affected by the small 
particle size. Then the specific volume of the 
suspension is lsg v)x(xvv −+= 1  where x is the 

particles mass fraction.  

According to Equation (4), the internal energy 
is slslllssg AuumumU ++= . The specific internal 

energy of the suspension is then 

slsllsg uau)x(xuu +−+= 1 , and similarly the specific 

entropy is slsllsg sas)x(xss +−+= 1 , in which asl is 

the specific wetted surface 

ssllsslsl m/xA)mm/(Aa =+= . If the particles are 

supposed spherical, thus with a surface 24 rπ and a 

mass )vr/( s
334 π , asl may be expressed as 

r/xva ssl 3= . Using Equation (1) for usl and ssl we 

obtain: 
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The expression for specific enthalpy is ggg Pvuh +=  

and the heat capacity is defined by T/uc gg ∂∂=  

thus,  
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In the equations above, c~s~u~  and  ,  are the average 
quantities of an “ideal” blend for which there are no 

surface effects; σσσ csu   and  ,  are the quantities 
related to the wetting phenomenon which may be 
regarded as excess quantities. If )T(slsl σσ =  is linear, 

σu  and σs  are constant and σc  zero, so the fluid 
behaves like an ideal blend. Using Young's equation, 
and knowing that )T(lvσ  is practically linear for pure 

substances ( 022 ≈∂∂ T/lvσ ), we get 
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TABLE IV shows the results for two 
hypothetical nanofluids containing siliconed glass 
nanoparticles, and where the base liquid is water or 
decane (see sections 4.2 and 5.1 for the 
corresponding properties). For both systems )T(svσ  

is linear so svsv su   and  are constant (taken equal to 

zero). The particle size is nm 52 =r , 2500=sρ kg.m-

3; the concentration on a volume basis is taken as 
%xvol 10=  (this is a relatively high value for 

nanofluids) therefore with water %.x 721= , 
510 041.asl = m2.kg-1 and with decane %.x 727= , 

510 331.asl = m2.kg-1.  

Thermodynamic properties are calculated at 
10°C and 40°C, and the results show that surface 
effects are quite weak. Internal energy variation 

gu∆ between the two temperatures is practically 

equal to u~∆  and c
~

cg   ≈ . This means that to be  
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heated the fluid will absorb practically the same 
amount of heat needed in absence of surface effects 
(macroscopic or “ideal” blend). This behaviour is due 
mainly to the weak sensitivity of surface properties to 
temperature variations. It should be noted that the 
heating process is performed while the wetted 
surface area is unchanged, in other words it is a 
“constant surface” transformation.  

Although it may be tempting to conclude that 
nanofluids have the thermodynamic properties of 
ideal fluids, no general conclusion can be drawn 
about the importance of excess quantities from this 
unique example. Indeed, solid-liquid systems having 
highly non-linear variation of )T(slσ  will show more 

significant deviation from the ideal case.  
 

TABLE IV.  THERMODYNAMIC PROPERTIES OF SILICONED GLASS/WATER AND SILICONED 
GLASS/DECANE NANOFLUIDS. 

IDEAL FLUID VALUES ARE GIVEN IN PARENTHESES. 
 

 

7. Irreversible Emulsion Split 

An emulsion is a mixture of immiscible 
liquids with one of the two liquids being finely 
dispersed as small droplets (discontinuous phase) in 
the second liquid which constitutes the continuous 
phase. In general (that is unless the emulsion is 
stabilized by surfactants, or we are dealing with a 
microemulsion having an extremely slow 
coalescence rate) droplets have a tendency to 
coalesce and at the end of this process the emulsion 
is separated into two continuous liquid phases as 
shown in figure 5.  

 
 
 
 
 
 
 

Figure 5. Emulsion decantation 

As a thermodynamic transformation, the 
process starts from a state presenting a large 
specific liquid-liquid interface all . Assuming 
spherical droplets, r/xva lll 3= where x is the 

concentration of the liquid forming the droplets and 
vl its specific volume. At the end of the process the 
liquid-liquid interface is practically zero. It is 
obvious that no work is transferred during the 
transformation, only heat may cross the system 
boundary. In fact this is an irreversible 
transformation because the work previously 
absorbed in order to produce the emulsion, at least 
equal to llllaσ , is in no way restored to the 

surroundings during the inversion of the process.  

Considering an isothermal process, Qug =∆  and 

ε+=∆ T/Qsg ; in addition we have llll aa −=∆ . The 

expressions for heat and entropy production are: 
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Let us consider an emulsion of benzene in water 
at 20°C having a concentration x= 0.40 with droplets 
size =r2 20nm. Surface properties are (Meyers and 
Harkins 1935) 2034.ll =σ mJ.m-2; 350.T/ll −≈∂∂σ  

mJ.m-2.K-1 and 879=lρ kg.m-3, so 501 371.all = m2.kg-

1. An assumption similar to that done with nanofluids 
is made here, namely that interfacial tension and 
density of benzene are not modified due to the small 
size of droplets. The heat evolved is 7418.Q −=  kJ.kg-

1 that is the coalescence process is exothermic, the 
entropy produced is 0160.=ε  kJ.Kg-1.K-1. 

8. Conclusion 

A contribution to the application of 
thermodynamics fundamentals to systems involving 
capillarity was presented. The energy and entropy 
balance equations extended to surface effects allow in 
principle the study of a wide variety of problems and 
the exploring of the behaviour of capillary systems. 
The scarcity of data on wetting properties, particularly 
those related to temperature dependences of contact 
angle, solid-vapour and solid-liquid interfacial 
tensions,  may restrict the practical use of the 
equations, but a number of different qualitative 
situations may be identified. On the other hand, the 
problem of lack of data may be reversed and the 
relations exploited in such a manner as to determine 
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unknown surface properties using appropriate 
experimental procedures.  

Equilibrium criteria were derived for different 
situations.  Equilibrium of liquids in capillaries was 
studied and a general expression for capillary 
pressure was derived, of which the classical 
Washburn-Laplace equation appears as a special 
case obtained by introducing some assumptions 
(mainly, that the wetting properties are not changed 
at elevated pressure and that the liquid is 
incompressible). The case of adiabatic capillary rise 
was considered, and it was shown that Jurin’s law is 
still valid, but involves the equilibrium temperature 
as a parameter to be determined using the energy 
balance equation. 

The different problems considered were 
readily treated using the general relations, the 
important aspect being the possibility to quantify 
heat and work involved for a given process. In other 
words, one can deal with the energetics of the 
wetting phenomenon and explore possible 
applications as energy systems based on surface 
effects. From this point of view, heat and work 
values will be more significant if the sensitivity to 
temperature of surface tensions is high and the 
variations non-linear. In addition, the application of 
the second law permits to examine the reversibility 
of this type of processes and to calculate the 
entropy produced in irreversible cases. 

Nomenclature 

A surface area m2 

a  specific surface area m2.kg-1 
c heat capacity J.kg-1.K-1 

pc EE  ,  kinetic, potential energy J 

pc ee  ,  specific kinetic, potential energy J.kg-1 

g gravity acceleration m.s-2 

h specific enthalpy J.kg-1 

m mass kg 
P pressure Pa 

Q, Q&  heat, heat transfer rate J, J.s-1 

r pore, particule radius m 
S entropy J.K-1 

s entropy per kg or m2 J.kg-1.K-1, J.m-2.K-1 
T temperature K 
t time s 
U internal energy J 
u internal energy per kg or m2 J.kg-1, J.m-2 
V volume m3 

v specific volume  m3.kg-1 

W, W&  work, power  J, W 
x concentration  - 
ε, ε&  entropy production J.K-1 , W.K-1 
ρ  density 

 kg.m-3 

σ   surface tension J.m-2 
θ  contact angle rad 
ξ  mass ratio - 

Subscripts 

g overall thermodynamic property  
l liquid 
s solid 
v vapour 
** surface separating two phases (lv, sl, sv or ll) 

Superscripts 

σ  surface phenomena contribution 
 ~  average value 
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