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Abstract 

Transition from mono-cellular to multi-cellular flow in differentially heated cavities with 

an aspect ratio of 20 is revisited. Our numerical model is based on the Boussinesq 

equations, modified for including the work of pressure forces. In high enough cavities, this 

work has significant effects and results are changed. The Nusselt number is increased while 

convection is reduced, moreover all transitions are delayed. A thermodynamic analysis of 

transition is developed. The analysis shows that, after transition, the multi-cellular flow 

topology tends to decrease altogether viscous friction and work of buoyancy forces. In 

other words, transition weakens its own cause. This is why a threshold exists. 

Keywords: natural convection, numerical model, thermodynamics, irreversibilities. 

 

1. Introduction 

Since the seminal work of Batchelor 

(Batchelor, 1954), thermal convection in 2-D tall 

differentially heated cavities (with aspect ratios 

A=H/L above 15) has received great interest, 

probably because of its relevance in building 

engineering. Batchelor (1954) demonstrated that, 

sufficiently far away from the horizontal walls and 

when the Rayleigh number Ra is weak, the flow is 

1-D, temperature T is a linear function of the 

horizontal position x (non-dimensional: 0≤x≤1/A) 
while vertical velocity is a cubic function: 

 ( 0.5)( 1)
6

z LV Ra Ax Ax Ax
L

α
= − −  (1) 

This is the conduction regime. It is well 

known that beyond a critical value of the Rayleigh 

number [RaL=βgL
3∆T(αν)-1] the flow undergoes 

transition from single- to multi-cell pattern. Inside 

the external primary cell, secondary cells appear 

along the midline of the cavity (x=0.5/A). This 

transition regime exists as stable steady-states. 

That transition has been studied since the 60s and 

still is. Experimentally, Elder (1965) investigated 

laminar flows in viscous fluids with aspect ratios 

up to 60; ElSherbiny et al. (1982) investigated 

laminar and turbulent air flows in inclined cavities 

with aspect ratios up to 110; Lartigue et al. (2000) 

investigated laminar air flows with the aspect ratio 

of 40; Betts and Bokhari (2000) investigated 

turbulent air flows with the aspect ratio of 29; 

Wright et al. (2006) investigated laminar and 

turbulent air flows with the aspect ratio of 40. 

Numerically, De Vahl Davis and Mallinson (1975) 

simulated the configurations of Elder (1965) and 

obtained good agreement; Roux et al. (1980) 

investigated the return from multi-cellular to 

mono-cellular flow; Lee and Korpela (1983) 

simulated multi-cellular laminar flows in air, water 

or oil, with aspect ratios ranging from 15 to 40; Le 

Quéré (1990) simulated multi-cellular laminar air 

flows with aspect ratios ranging from 16 to 24 and 

found periodical behaviors; Zhao et al. (1997) 

simulated air flows with aspect ratios ranging from 

11 to 50. As linear stability analyses, Birikh (1966) 

calculated the small perturbations of the base flow 

Equation (1); the perturbation consists of a series 

of successive and similar co-rotating cells often 

called “the cats eyes”. Vest and Arpaci (1969) 

studied the conduction and boundary-layer regimes 

and calculated the respective secondary flows; 

Korpela et al. (1973) investigated the effect of the 

Prandtl number; Bergholz (1978) included the 

effect of thermal stratification; Desrayaud and 

Lauriat (1988) included the effect of radiation; and 

Chait and Korpela (1989) investigated the stability 

of the secondary flow.  

The present study develops a thermodynamic 

approach of that transition. How are the 

thermodynamic quantities, especially the 
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irreversibilities, modified by transition, and what 

do those changes give as insight? This approach is 

developed on a rather simple case where the fluid 

is air at ambient temperature (300K, Pr = 0.71) in a 

cavity of aspect ratio A = 20. Moreover, we 

investigate the effect of the cavity size. 

The numerical model: thermodynamic 

Boussinesq equations 

The numerical model is based on the 

Boussinesq equations (1903), but slightly modified 

according to Spiegel and Veronis (1960). These 

authors confirm that the continuity and momentum 

equations of Boussinesq are thermodynamically 

correct, but not the heat equation. Following 

thermodynamic arguments, Spiegel and Veronis 

keep in the heat equation two terms neglected by 

Boussinesq: the work of pressure forces and the 

heat generated by viscous friction. The 

temperature equation, as derived from the enthalpy 

formulation of the heat equation, writes then: 
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They called the so-modified Boussinesq 

system, the thermodynamic Boussinesq equations. 

Indeed, these equations yield completely consistent 

thermodynamic balances especially with respect to 

the second law, when the usual Boussinesq 

equations do not (Costa, 2005; Pons and Le Quéré, 

2005a, 2005b, 2007). If the two last terms of 

Equation (2) were neglected by Boussinesq, the 

Low-Mach-Number approximation only neglects 

the very last term and approximates DP/Dt by the 

time derivative of average pressure. We herein 

focus on steady-states (pressure is obviously 

constant) in large enough enclosures for the 

pressure gradient to be considered. As a first order 

approximation, we consider the hydrostatic 

gradient: DP/Dt = -ρ0gVz. Indeed, deviations due 
to stratified density gradient or to hydrodynamic 

pressure field are of the second order. 

For non-dimensionalization, our reference 

quantities are: the cavity height H for distances, 

LARa Lα  for velocities, their ratio for time, ∆T 

for the difference T-T0, where T0=(Th+Tc)/2. The 

non-dimensional temperature equation then writes: 
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where φ= 0 ( )pgHT c Tβ ∆  is the adiabatic tempe-

rature gradient 0 pgT cβ  non-dimensionalized by 

the vertical temperature gradient in the problem 

T H∆ . The number pgH cβ  appearing in the 

rightmost term is usually very small (of the order 

of 10
-5
 in this study). On the other hand, the term 

(-φw), which is practically the work of the pressure 
stress, can easily be of the order of unity and 

therefore is better not to be neglected. The 

equations are solved with a finite-difference 

second-order scheme in time and space on a 

regular staggered 128x512 grid. This grid is much 

finer than ever done before: Lee and Korpela 

(1983) used a 33x33 grid, and Le Quéré (1990) a 

24x120 grid. Moreover, regular grids improve 

resolution in the center of the cavity, there where 

the secondary cells form. Leonard and Drummond 

(1995) point out that this problem requires special 

care on the numerical scheme. More details about 

the numerical procedure are given by Pons and Le 

Quéré (2007). The boundary conditions are: no 

slip at the four walls, prescribed temperatures on 

the vertical walls (hot on the left side, cold on the 

right one), and adiabatic horizontal walls. 

As the thermodynamic Boussinesq equations 

involve the parameters φ ( H Tφ ∝ ∆ ) and 

pgH cβ , a given configuration cannot be 

described by the Rayleigh number only 

( 3
LRa L T∝ ∆ ). Therefore two cavities with two 

given heights are considered herein: a small one, 

where the work of pressure forces will be 

negligible (φ << 1) so that the thermodynamic and 
usual models yield similar results, and a large one 

where the work of pressure forces is not negligible 

(φ of the order of 1). The two cavities are 
described in TABLE 1, both are of human size, not 

of geophysics dimensions. It is often stated that the 

Boussinesq model is valid as soon as ∆T is small 
enough except for geophysical configurations. 

However, Gray and Giorgini (1976) and Velarde 

and Perez-Cordon (1976) demonstrated that this 

condition is not sufficient and that the magnitude 

of φ with respect to one must also be considered. 
TABLE 1 gives the values of φ and ∆T 
(corresponding to RaL=5000) investigated herein. 

The values of RaL above 5000 explored below are 

obtained just by keeping H constant while 

increasing ∆T, so that φ is decreased 

proportionally. 

We started our investigation with a 

monocellular flow (RaL=5400 for the small cavity, 

RaL=6200 for the large one) and increased the  
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Rayleigh number by steps of 100. The non-dimen-

sional steady-state calculated for one Rayleigh was 

used as initial state for the next calculation. We 

explored the range up to RaL=8000. Then the same 

procedure was followed, but descending from 

RaL=8000 down to the initial value. We did not 

find the slightest hysteresis in the results neither in 

terms of cell numbers nor for any thermodynamic 

quantity. 

TABLE I. THE TWO CONFIGURATIONS 

INVESTIGATED HEREIN. 

Cavity H [m] φ   for 
RaL=5000 

∆T [K] for 

RaL=5000 

small 0.808 0.01 0.789 

large 2.032 0.4 0.0496 

Transition 

The first studies on that transition used linear 

stability analyses with a base flow defined by 

Equation (1). The critical Rayleigh RaL lies 

between 5600 and 5700 (Bergholz, 1978; Birikh, 

1966; Birikh et al., 1968, 1969; Chait and Korpela, 

1989; Vest and Arpaci, 1969). Purely numerical 

studies yielded the value 5800 (Zhao et al., 1997). 

As all those evaluations are based on the usual 

Boussinesq equations, they can only apply to the 

present small cavity.  

Our numerical results are presented in 

Figure 1. Two secondary cells appear in the center 

of the small cavity at RaL=5875, which is in good 

agreement, although slightly above, with the linear 

stability analyses and previous numerical studies 

mentioned above. However, it must also be noticed 

that, as shown in Figure 1 and already mentioned 

in literature, the number of secondary cells 

increases very rapidly from two to six (obtained at 

RaL=6100). The six cells survive up to RaL=7100 

where a seventh cell sets on. Between RaL=7200 

and RaL=9000, there are seven secondary cells in 

the small cavity.  

The same transitions occur in the large 

cavity, except that the Rayleigh numbers are 

significantly shifted, see TABLE 2. It can be 

noticed that, in either cavity, the transition from 

one to six secondary cells takes place over a 

narrow Rayleigh-range (∆RaL=200, or 400) when 
the configuration with six cells survives over a 

much wider range (∆RaL=1000).  
 

 

Figure 1. Flow in the small cavity for, 

successively, RaL=5800 (1 cell), 6000 (2 cells), 

6050 (4 cells), 6200 (6 cells). The hot wall is on 

the left side. 

 

TABLE II. EXISTENCE RANGE OF 

RAYLEIGH NUMBER FOR EACH TOPOLOGY 

Cavity : small large 

Two cells 5875-6000 6500-6600 

Four cells 6050 6700-6800 

Six cells 6100-7100 6900-7900 

Seven cells 7200-9000 8000-9200 

 

Moreover, although all the configurations 

occurring before had only an even numbers of 

cells, the next transition occurs from an even to an 

odd number of cells, the latter configuration being 

also very robust. 

Heat fluxes, irreversibilities and transition 

The thermodynamic analysis applied to this 

transition starts with two quantities. The first one 

is the Nusselt number, i.e. the ratio of the effective 

heat flux to that transferred in a purely conductive 

system (fluid at rest): 

 ( )11

0
dNu A x zθ−= −∂ ∂∫  (4) 

This quantity represents not only the global 

heat transfer but also the total irreversibility. 

Indeed, in similarity with the Nusselt number, 

irreversibilities can be non-dimensionalized by the 

total entropy production of the purely conductive 

system, yielding numbers of irreversibility. The 

so-defined numbers of viscous and conductive 

irreversibility are respectively: 



            Int. J. of Thermodynamics, Vol. 11 (No. 2) 

 

74

 
( )0

d d
1

Iv

cavity

N x z
A T T

φ
θ
Φ

=
+ ∆∫  (5) 

with 

2 2 2

2 2
u u w w

x z x z

∂ ∂ ∂ ∂     Φ = + + +     ∂ ∂ ∂ ∂     
, and 

 
( )

2

2
0

1
d d

1
Iq

cavity

N x z
A T T

θ

θ

∇
=

+ ∆
∫  (6) 

It was demonstrated that in steady-state the 

number of total irreversibility (conductive plus 

viscous) and the Nusselt number must always be 

equal. This identity cannot be obtained when the 

work of pressure forces is neglected in the model, 

see (Pons and Le Quéré, 2005a, 2005b). The 

second thermodynamic quantity considered herein 

is the number of viscous irreversibility, NIv.  

Figure 2 presents the Nusselt number and 

Figure 3 the number of viscous irreversibilities NIv 

in the investigated Rayleigh-range. As shown in 

Equation (5), NIv is scaled by the parameter φ. This 
parameter differs by a factor of 40 between the two 

cavities. For sake of comparison, Figure 3 is pre-

sented with two ordinate axes, one for each cavity, 

their respective scales being in that ratio of 40. 

1.1.Comparison between the two cavities 

Comparing the large cavity to the small one, 

three main features can be observed in Figures 2 

and 3. Heat transfer is non-negligibly increased 

(approx. +6%); viscous irreversibility is reduced, 

significantly before transition, non-negligibly 

after; and transition occurs at significantly higher 

values of RaL (approx. +12%).  

 

 

Figure 2. Nusselt number (and also total 

irreversibility number) for both cavities. 

5000 6000 7000 8000

Rayleigh Number RaL [-]

2.3

2.4

2.5

2.6

2.7

2.8

2.9
N
Iv
 x
1
0
0
0
 [
-]

90

100

110
H = 0.808 m

H = 2.032 m

 

Figure 3. Number of viscous irreversibility 

 for both cavities. 

The symbols display the number of secondary cells : � : no secondary cell,  

���� : 2 secondary cells, � : 4, ���� : 6 and � : 7 secondary cells. 

 

Those three features are due to the work of 

pressure forces (Pons and Le Quéré, 2007). Indeed 

this work acts as a heat sink in the rising boundary 

layer (the hot one) and a heat source in the other 

one, see the term –φw in Equation (3). These heat 
sink and heat source have two effects. First, they 

induce a direct heat transfer from the vicinity of 

the hot wall to that of the cold wall; this is how 

heat transfer is increased. Second, they reduce the 

average temperature difference between the two 

boundary layers. The latter effect reduces the 

buoyancy forces, which results in a less intense 

convection at given Rayleigh number; this is why 

viscous friction is reduced. Moreover this less 

intense convection makes the flow more stable, 

shifting the transition to multi-cellular flow toward 

higher values of the Rayleigh number. 

These simple observations show that the 

work of pressure forces, always neglected in usual 

Boussinesq calculations, can play a quantitative 

role (increased heat transfer) and also a qualitative 

one (increased stability) in configurations that 

belong to daily life (two-meter high a cavity). 

1.2. Description of the transition 

Two secondary cells appear at the center of 

the small (resp. large) cavity at RaL=5875 (resp. 

6500), in agreement with the linear stability 

analyses. However, the thermodynamic analysis 

leads to a different threshold. Each curve Nu and 
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NIv vs. RaL, Figures 2 and 3, displays only one 

knee, located at RaL=6100 (resp. 6800), i.e. when 

the flow skips from four to six secondary cells. 

None of the other topology changes, e.g. from one 

to two cells, or from six to seven cells, produces 

discontinuity on those curves. Is just the presence 

of secondary cells, regardless of their size, the 

relevant signature of transition? Why is the change 

from four to six cells more important than the 

other changes? 

At transition, the Nusselt number presents a 

relative increase (i.e. the slope after transition is 

larger than before), a well known feature (Lee and 

Korpela, 1983; ElSherbiny et al., 1983; Lartigue et 

al., 2000; Wright et al., 2006). Because of this 

relative increase in heat transfer, it is sometimes 

argued that transition occurs because the system 

would, by principle, tend to maximize heat 

transfer. Then why do not the secondary cells 

appear at lower Rayleigh numbers, when they 

would also increase heat transfer? 

As can be seen in Figure 3, transition also 

corresponds to a relative decrease of viscous 

irreversibility (i.e. the slope after transition is less 

than before), a feature that was never commented 

before and makes a deeper thermodynamic 

analysis necessary.  

Thermodynamic analysis 

The stability analyses mentioned in 

introduction have shown that the perturbation (the 

“cats eyes”) is driven by the base flow via the 

Reynolds stresses (Bergholz, 1978). However, the 

base flow in the cavity is not one-dimensional like 

in those stability analyses, but two-dimensional 

due to confinement by the horizontal walls, see 

Figure 1. Thus all the secondary cells are not 

identical, their width decreases when going from 

the center to the ends, see the rightmost frame in 

Figure 1. In addition, all the secondary cells are 

encompassed into one streamline that separates the 

mono-cellular flow outside and the multi-cellular 

flow inside.  

Let us first study the reduction of viscous 

friction induced by the multi-cellular flow. It is 

rather obvious that rolls, even co-rotating, offer 

less resistance than shear along a line. The Kelvin-

Helmholtz instability also involves this resistance 

lowering. However, the topology generated by the 

unequal cells increases this effect. 

Figure 4 presents the flow topology in the 

small cavity with RaL=6500 (the figure is very 

similar for the large cavity). There are six 

secondary cells. Attention is now focused on the 

streamline separating the mono-cellular and multi-

cellular flows. It appears that this streamline 

(ψ=-2.052×10-3 bold black line) actually forms 
two large sub-cells containing all the secondary 

cells and with only one node where velocity 

vanishes and shear is maximal (at the center of the 

cavity), while at the other end of those sub-cells 

(z≈0.2 and 0.8) there is no discontinuity and the 
internal multi-cellular flow is directly driven by 

the external mono-cellular flow. The same pattern 

is repeated at the next level: each of those two sub-

cells is again sub-divided in two sub-cells of 

second level (ψ=-2.088×10-3 bold dark red line); 
again there is only one node with zero velocity and 

maximal shear, and no discontinuity at the other 

end. A third level of sub-division exists (bold blue 

line ψ=-2.154×10-3), with same pattern. 
 

                  

 

Figure 4. Streamlines in the small cavity at 

RaL=6500. Values of  -1000ψ  from 0.2 to 2.2 by 
steps of 0.4 for the thin lines, plus 2.0520, 2.088 

and 2.154 for the bold lines. On the right: zoom on 

the upper half of the multi-cellular flow. The 

figures are expanded fivefold horizontally for 

clarity. 

In such a topology, each sub-cell undergoes 

direct friction with only one of its neighbors, 

whatever its level. This topology also contributes 

to the relative decrease of viscous friction shown 

in Figure 3. As this overlapping arrangement was 

not found by stability analyses, it is very likely due  
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to the presence of the horizontal walls. Some 

previous numerical studies had already shown 

streamlines with such an arrangement (Roux et al., 

1980; Lee and Korpela, 1983; Le Quéré, 1990), 

but none had commented on it. 

Let us now study heat transfer. It is well 

known that the secondary cells increase heat 

transfer by producing an alternation of spots with 

high and low heat-fluxes along the vertical walls 

(Lartigue et al., 2000; Zhao et al., 1997). 

Looking now at irreversibilities, Figure 3. 

shows that transition makes viscous irreversibility 

decrease relatively, and (remembering that at 

steady-state Iv IqNu N N= + ) total irreversibility 

increase relatively. It results from this relation and 

those changes that conductive irreversibility NIq 

relatively increases, and it increases more than 

total irreversibility -and Nusselt number- do. 

Transition thus clearly modifies how the two types 

of irreversibility distribute: it induces more 

conduction and less friction. Figure 5.  presents 

the field of local conductive irreversibility in the 

central part of the cavity (i.e. for 0.2<z<0.8). The 

dashed line is the isovalue 1, i.e. the locus where 

local conductive irreversibility equals that in the 

purely conductive system (fluid at rest). In the 

darkest regions, conductive irreversibility lies 

between 1.25 and 1.75, in the clearest regions it is 

less than 0.75. It must be remembered that 

conductive irreversibility is highly 
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Figure 5. Local conductive irreversibility in the 

central portion of the cavity (0.2<z<0.8) with the 

bold streamline separating the mono- and multi-

cellular flows. Same case as in Figure 4; figure 

also expanded fivefold horizontally. 

 

non-uniform and reaches very high values (18 in 

the case shown in Figure 5.) in the bottom-left and 

top-right corners (not shown in Figure 5). We 

focus on the central part of the cavity, there where 

the secondary cells form. Figure 5 shows how the 

uniform temperature gradient of the conduction 

regime is distorted by the secondary cells. The 

already-known alternation of regions with high and 

low heat-fluxes on the vertical walls clearly 

appears (positions ‘+’ and ‘–’) but this graph also 

shows that the secondary cells create shortcuts for 

conductive transfer from the hot to the cold wall. 

There are two main ideas for describing the new 

heat transfer configuration: each secondary cell 

produces a heat sink for the hot wall and a heat 

source for the cold wall, the secondary cells force 

the main flow to sway. 

It first can be seen that the regions with high 

heat-fluxes (‘+’) are located almost at same height, 

slightly upwind, as the cell centers: indeed 

constriction of the main flow mechanically 

enhances horizontal temperature gradients. Heat 

flux is practically horizontal from the wall to the 

middle of boundary layer (position ‘a’ in 

Figure 5). Beyond the boundary layer, conductive 

heat-flux veers upwind of the flow toward a node 

of secondary cells (position ‘b’ in Figure 5). 

There, the heat flux separates in two parts: one part 

is advected by the flow inside the secondary cell 

from the bottom of the secondary cell (‘b’) to its 

top (‘c’) where it is released by conduction to the 

sinking main flow; the other part just diffuses by 

conduction toward the cold boundary layer through 

the node of the secondary cells (‘b’), where the 

fluid velocity is very low. This conductive input 

into the sinking boundary layer locally increases 

temperature, so that the next constriction of main 

flow induces a region of high conductive heat 

transfer through the boundary layer and toward the 

cold wall (position ‘d’). The final path is again 

horizontal.  

This description leads to several comments. 

First comment: the swaying character of the main 

flow is as important as recirculation inside the 

secondary cells for the new heat transfer and flow 

configuration. Second and trivial comment: the 

flow topology affects the temperature field and the 

mechanisms of heat transfer. The third comment 

returns to thermodynamics: a change in the 

temperature field affects in return production of 

mechanical energy by the buoyancy forces. Indeed, 

the above-described heat-sinks and -sources 

created by the secondary cells globally decrease 

(resp. increase) the average temperature of the 

rising hot (resp. sinking cold) boundary layer. 

These temperature changes obviously relatively  

 



                                                                                Int. J. of Thermodynamics, Vol. 11 (No. 2) 

 

77 

increase the Nusselt number, but also they have 

another consequence: the buoyancy forces are 

reduced, and so is the mechanical work they 

produce. This work, which is the very source of 

fluid motion in the cavity, is the integral of the 

product of the buoyancy force 0 0( )g T Tβ ρ −  by 

the vertical component of velocity Vz. Introducing 

the non-dimensional variables, the local rate of 

buoyancy work produced per unit volume is 

.L
p

k g T
ARa w

c L

β
θ

∆
. Integration over the 2-D 

cavity yields the total buoyancy work: 

 
1 1
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For the sake of consistency with the 

definition of the Nusselt number, the buoyancy 

work is non-dimensionalized with respect to the 

heat flux in the purely conductive system Ak T∆ , 

yielding the corresponding number: 
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where one can recognize the product .
p

gH
w

c

β
θ  

which is the very last term of Equation (3). When 

the specific effects of the Rayleigh number via 

LARa  and of the cavity size via 
p

gH

c

β
 are 

eliminated, then the small and large cavities can be 

compared on a common basis. We therefore 

consider the quantity �
1 1

0 0
.d d

A

WbN w x zθ= ∫ ∫ . 

Figure 6 presents the changes of �WbN  with the 

Rayleigh number for both cavities. It is remarkable 

how this graph unambiguously displays one 

transition, and only one. It can be interpreted as 

follows. It first must be remembered that, as the 

size of each cavity is fixed, the Rayleigh number is 

increased via the temperature difference imposed 

on the vertical walls. This temperature difference 

is the external constraint the flow is submitted to. 

Before transition (mono-cellular flow), 

increasing the external constraint (∆T and Ra) 
increases altogether the buoyancy forces, flow 

intensity, shear along the centerline of the cavity, 

mechanical work generated by the buoyancy forces 

and viscous friction. These two quantities grow 

more rapidly than LRa  (i.e. than the factor 

scaling the reference velocity, see Section 2). 

Figure 6 shows that this behavior is not affected at 

all by the onset of two and then four secondary 

cells. 
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Figure 6. Non-dimensional buoyancy work for 

both cavities. Same symbols as in Figures 2 and 3. 

Transition occurs very sharply and between 

four and six secondary cells. This transition does 

not change much the intensity of the external 

mono-cellular flow (cf. Figure 1: the streamlines in 

the cavity ends are hardly changed by transition) 

but makes secondary rolls replace shear flow along 

the center line AND the boundary layers sway. 

After transition, an increase in Rayleigh 

intensifies circulation more in the secondary cells 

than in the main flow, and in parallel strengthens 

deformation of the external main flow. The 

negative slopes observed after transition in 

Figure 6 mean that both viscous friction and work 

of buoyancy forces increase less than LRa . On 

the one hand rolls offer less resistance than shear, 

and on the other hand swaying tends to reduce 

temperature difference between the boundary 

layers, i.e. buoyancy forces.  

When the number of secondary cells jumps 

from six (even) to seven (odd), the slopes in 

Figure 6 are hardly modified.  

One aspect of this behavior looks 

paradoxical: the secondary cells tend to weaken 

the intensity of convection, although this is the 

cause that makes them exist. However, 

thermodynamics describes transition differently. 

First, as only steady-states are involved in this 

transition, the basic thermodynamics rule is that 

work of buoyancy forces always exactly 

counterbalances viscous dissipation. Second, 

before transition, the larger the Rayleigh number, 

the more intense convection in the cavity, and the 

stronger shear along the center line. As rolls offer 

less resistance than shear along a line, the flow 

tends to generate rolls. However, rolls can exist  
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only when the external main flow is strong enough 

for sustaining them despite the swaying, just like 

in the Kelvin-Helmholtz problem. Once they exist, 

the rolls modify heat transfer through the boundary 

layers in such a way that the buoyancy work 

decreases in full accordance with the decrease in 

flow resistance (balance between buoyancy work 

and viscous friction). This is the reason why a 

threshold exists. 

This analysis shows that the increase in 

global heat transfer is just a by-product and not the 

main cause of transition. Transition appears then, 

not as a process that would maximize heat transfer, 

but as a threshold between two different ways of 

exactly balancing buoyancy work (where couples 

thermal and convective phenomena) with viscous 

dissipation:  

� before transition: buoyancy work of straight 

boundary layers vs. viscous dissipation of 

linear shear, both grow more rapidly than 

LRa ; 

� after transition: buoyancy work of swaying 

boundary layers vs. viscous dissipation of rolls, 

both grow less rapidly than LRa . 

Coupling between the temperature- and 

velocity fields, i.e. non-linear phenomena, plays a 

major role in that threshold. 

2. Conclusion 

This work leads to a double conclusion. First, 

the work of pressure forces is not negligible in 

configurations that can easily be met in building 

engineering (2.5m high rooms) provided the 

temperature differences are small enough, for 

instance close to equilibrium. Those forces 

quantitatively increase heat transfer and reduce 

convection, so that transition is delayed. Such 

configurations are correctly simulated with the 

thermodynamic Boussinesq model only. Second, 

the transition between mono- and multi-cellular 

flows can be explained in details by 

thermodynamic analysis. Instead of maximization 

of heat transfer, transition appears as a threshold 

between two ways of balancing the work of 

buoyancy forces and viscous dissipation. The 

thermodynamic analysis also explains why the 

threshold exists. 
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Nomenclature 

A aspect ratio, A=H/L 

cp specific heat at constant pressure [J.kg
-1
.K

-1
] 

g gravity acceleration [m.s
-2
] 

H cavity height [m] 

k fluid thermal conductivity [W.m
-1
.K

-1
] 

L cavity width [m] 

NI number of irreversibility 

Nu Nusselt number 

P pressure [Pa] 

Pr fluid Prandtl number 

qv heat generated by viscous friction [W.m
-3
] 

RaL Rayleigh number based on the cavity width 

t time [s] 

T temperature [K] 

∆T temperature difference ∆T=Th-Tc [K] 
u non-dimensional horizontal velocity 

Vz vertical velocity [m.s
-1
] 

w non-dimensional vertical velocity 

W mechanical work [W] 

x non-dimensional horizontal coordinate 

z non-dimensional vertical coordinate 

Greek letters 

α fluid thermal diffusivity [m
2
.s
-1
] 

β thermal expansion coefficient [K
-1
] 

φ non-dimensional adiabatic temperature 

gradient 

Φ non-dimensional viscous heat rate 
ρ fluid density [kg.m

-3
] 

θ non-dimensional temperature 

τ non-dimensional time 

ν  fluid kinematic viscosity  [m
2
.s
-1
]  

ψ  non-dimensional stream-function 

Indexes 

b buoyancy 

c cold wall 

h hot wall 

q conduction 

v viscous 
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