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Abstract 

The problem of malfunction diagnosis in energy systems can be approached using an 

expert system which compares the experimental data measured by the plant acquisition 

system and the calculated data evaluated by a plant simulator under the same operating 

conditions. In this paper the rules that form the "knowledge base" of the expert system are 

not assigned heuristically by trying to code the expertise of plant personnel, as it is usually 

done, but they are artificially and randomly generated by the recombination and selection 

operators of an evolutionary algorithm. A two-objective optimization problem is set up, in 

order to search for the optimal sets of rules having the minimum complexity but 

simultaneously maximizing the number of correct fault identifications for a given set of 

malfunctioning operating conditions. A global and a local approach are applied to a real 

test case, a two-shaft gas turbine used as the gas section of a combined-cycle cogeneration 

plant, in order to evaluate the potentialities and the limits of this methodology.  

Keywords: Diagnosis, fuzzy expert system, multi-objective evolutionary algorithms.  

1. Introduction  

The effort towards performance and 

efficiency improvement has led to complex 

energy system structures featuring an increased 

level of interaction among a high number of 

components. This makes it difficult to analyze 

system operation, in particular when deviations 

from the expected performance occur due to 

deterioration or failures.  

The main problems of energy system 

diagnosis are the detection of a malfunctioning 

operating condition and the identification of the 

operation anomalies. This means to recognize the 

causes of malfunctions from a complex pattern 

of induced effects that are spread throughout the 

system by the interactions among components 

and the intervention of the control system. In 

fact, the latter acts to restore some fixed set-

points or to avoid that dangerous limits are 

exceeded, adding loops that contribute to mask 

the true origin of the operation anomaly. Several 

artificial intelligence techniques have been 

proposed in the literature to locate malfunction 

causes from the analysis of system operating 

condition (Li, 2002): artificial neural networks, 

Bayesian belief networks, expert systems, fuzzy 

logic and evolutionary algorithms. 

 

 

This paper explores the potentialities of a 

qualitative method for the analysis of system 

operating condition by means of an expert 

system with fuzzy rules. The peculiarity of the 

presented method is that the “knowledge base” 

of the expert system (i.e. its set of rules) is not 

derived from the codification of human 

expertise, but is the result of a training on a given 

list of malfunctioning conditions performed by a 

multi-objective evolutionary algorithm. The 

search for the optimal sets of fuzzy rules is 

driven by two conflicting objectives: the number 

of correct predictions (to be maximized) and the 

complexity of the set of rules (to be minimized). 

The proposed method is applied to a real 

test case (the topping cycle of a combined-cycle 

cogeneration plant based on a two-shaft gas 

turbine) following two different approaches:  

- a global approach for the overall energy 

system and  

- a local approach that splits the latter into 

smaller subsystems, down to component 

level, according to the available 

measurements. 

The preliminary results obtained 

considering a reduced set of component and 

sensor fault modes are discussed and guidelines 

for future work are outlined. 
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2. Diagnosis with Fuzzy Expert Systems 

A diagnostic procedure that relies on the 

knowledge base of an expert system consists of 

the following steps: 

- the actual operating condition is obtained 

from the data acquisition system;  

- the measured quantities (pressure, 

temperatures, mass flow rates etc.) are 

compared to the corresponding quantities of 

the expected healthy operating condition;  

- the results of this comparison (i.e. the deltas 

on the measured quantities) are used as inputs 

to the set of rules that are stored in the 

knowledge base of the expert system. Fuzzy 

rules take the general form:  

If delta1 is delta_attribute1                                     

and delta2 is delta_attribute2                                  

and …                                                                   

then fault_mode1 is fm_attribute1; 

- some (or none) of the rules are activated by 

the input data and notify faulty 

components/sensors (or components and 

sensors that are believed to be healthy). 

The use of fuzzy logic-based rules helps 

overcome the uncertainty due to the accuracy of 

the measurements from the data acquisition 

system. 

Examples of fuzzy expert systems for 

diagnostic applications found in the literature 

(Ganguli, 2003; Biagetti and Sciubba, 2004; 

Ogaji et al., 2005] point out the two key issues of 

this technique.  

The first is the option of using a semi-

quantitative (Ganguli, 2003; Ogaji et al., 2005) 

or a qualitative (Biagetti and Sciubba, 2004) 

approach to describe the difference between the 

actual and the expected conditions and the level 

of fault severity. Qualitative approaches simply 

consider two or three attributes for the deltas on 

measured quantities   (e.g. negative / positive or 

negative/ zero / positive) and one attribute for the  

fault mode (i.e. active). In semi-quantitative 

approaches, the number of attributes is increased 

(e.g. very low / low / high / very high) and their 

definition is inevitably based on quantitative 

criteria. This clearly results in a high number of 

rules that must take different gradations into 

account as fault severity is varied. As a 

consequence, the rules determined under a given 

load condition are likelier to fail their predictions 

when different load conditions are considered. 

The other fundamental issue is the 

assumption, explicitly mentioned in Biagetti and 

Sciubba (2004), that each considered fault 

produces a specific pattern of induced effects 

throughout the system, i.e. a unique, and 

therefore recognizable, “fingerprint”. 

Nevertheless, this hypothesis has to be verified 

and its fulfilment may depend on the specific 

application, in particular according to the number 

of sensors and quantities measured by the data 

acquisition system sensors. 

3. The Test Case Plant 

3.1 The Real Plant and Its Model 

The gas section of the combined-cycle 

cogeneration plant in Borgo Trento, Verona 

(Italy) is used as a test case in this work. It is 

based on a two-shaft aero-derivative gas turbine 

that features a gas generator and a low pressure 

(LP) turbine providing mechanical power to the 

electrical generator. The gas generator is made of 

an axial compressor with variable inlet guide 

vanes (IGV), an annular combustion chamber 

and a high pressure (HP) turbine.  

Load is adjusted by means of a control 

system that acts on fuel valve opening and IGV 

angle. The input to the control system is the LP 

turbine inlet temperature T4 set by plant 

personnel: increasing this temperature (up to 

800°C at full load) a higher fuel mass flow rate is 

released and a higher amount of electric power is 

generated by the plant. The air mass flow rate is 

also regulated by the IGV angle that is varied 

according to preset curves that depend on gas 

 
 

Figure 1. SIMULINK model of the test case plant. 
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generator rotational speed and compressor inlet 

temperature (Lazzaretto et al., 2002). 

The off-design simulation model of the 

plant built in the MATLAB/Simulink 

environment (Figure 1) considers also the 

pressure drops caused by the air filter at engine 

inlet and by the exhaust system at engine outlet. 

Each component is considered as a black box 

using a zero-dimensional approach. Component 

characteristic curves are statistically determined 

from a large database of measurements from the 

plant monitoring system. This database covers a 

period of more than a year and therefore 

comprises a large variety of ambient conditions 

in the hot and the cold season. The quantities that 

are measured by the plant data acquisition 

system and their accuracy are summarized in 

TABLE I.  

TABLE I. DATA ACQUISITION                       

SYSTEM SENSORS. 

_______________________________________ 

Station      Quantity   3σ 

_______________________________________ 

compressor inlet   p1    100Pa 

compressor inlet   m1   

 0.5kg/s 

compressor outlet  p2   

 5000Pa 

compressor outlet  T2    2K 

HP turbine outlet   p4   

 1000Pa 

HP turbine outlet   T4    2K 

LP turbine outlet   p5    100Pa 

LP turbine outlet   T5     2K 

control system ˙   mf   

 0.01kg/s 

control system    IGV angle 

 0.05deg 

gas generator shaft   n    15rpm 

_______________________________________ 

3.2 The Considered Fault Modes 

Seven kinds of component and sensor faults 

are considered in this test case and are simulated 

using the plant model: 

- air filter fouling, obtained by reducing the 

equivalent area of flow passage;  

- compressor fouling, obtained by reducing 

both the flow factor (i.e. corrected mass flow 

rate) and the isentropic efficiency; 

- combustor fouling, obtained by reducing the 

equivalent area of flow passage; 

- HP turbine erosion, obtained by increasing 

the flow factor and reducing the isentropic 

efficiency; 

- LP turbine erosion, obtained by increasing 

the flow factor and reducing the isentropic 

efficiency; 

- exhaust system fouling, obtained by reducing 

the equivalent area of flow passage; 

- T2 sensor fault, obtained by simply altering 

the calculated quantity. 

4. Problem Formulation 

4.1 The Fuzzy Inference System 

The basic concepts of the fuzzy inference 

system (FIS) that is described in the following 

can be found in Yager and Zadeh (1992).  

The FIS used for the global diagnostic 

approach has 11 inputs and 7 outputs. The inputs 

are the deltas on the quantities in TABLE I 

between the measured values and the expected 

ones evaluated by the plant simulator under the 

same external conditions (ambient pressure and 

temperature, fuel quality) and load set-point. The 

input real values are converted into the fuzzy 

truth levels of three attributes (negative (“-“), 

zero (“0”) and positive (“+”)) according to the 

three Gaussian membership functions shown in 

Figure 2. These are built for each input 

according to the accuracy of the data acquisition 

system (3σ in TABLE I). Each output expresses 

the fuzzy truth level of the attribute “active” 

related to one of the considered fault modes. This 

is converted into a real value according to the 

triangular membership function in Figure 3 and 

the “middle of maximum” defuzzification 

method. A fault mode is notified as active if the 

corresponding output real value is greater than 

0.55.

 

Figure 2. Input membership functions. 

 
Figure 3. Output membership function. 
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The fuzzy inference process maps the input 

real values to the output real values. The 

mapping between input and output fuzzy truth 

levels is coded in a set of rules that is the matter 

of the optimization problem discussed in the next 

subsection.  

4.2 Optimization of the Set of Fuzzy 

Rules 

In this work, the most successful and 

compact set of rules is searched by a multi-

objective evolutionary algorithm.  

Each candidate solution of this optimization 

problem (i.e. a set of rules) is made of a list of 

rules that are expressed in the following assigned 

general form: 

If delta1 is delta_attribute_1                                   

and delta2 is delta_attribute_2                                      

and …                                                                                  

then j
th
_fault_mode is active; 

where delta_attribute_i may be “-”, “0” or “+”, 

and j
th
_fault_mode is one of the considered fault 

modes (each rule has a consequent only). Of 

course, some or most of the inputs may not be 

considered in a rule as antecedents, and in this 

case they simply do not appear in that rule. Note 

that the exclusion of the Boolean operator OR 

from this general form does not cause any loss of 

generality, since the same overall inference 

mapping can be obtained using more rules with 

AND operators only.  

This general form for a rule can be easily 

codified in a vector of integers with I+1 

elements, where I is the number of inputs to the 

FIS. The first I elements refer to the inputs and 

may assume the values: 

0 → input not considered as antecedent; 

1 → negative (“-”); 

2 → zero (“0”); 

3 → positive (“+”); 

whereas the integer stored in the last element 

specifies one of the considered fault modes. 

According to this codification, a set of rules can 

be represented by a matrix of Nx(I+1) integers, 

where N is the number of rules of the specific 

set.  

The genetic operators of the evolutionary 

algorithm act on such matrices to generate new 

candidate solutions of the optimization problem 

from the already existing ones. The crossover 

operator may generate the rules of a new set by 

randomly copying some of the rules of two 

“parental” sets or by randomly recombining the 

integers of two rule vectors taken from different 

“parental” sets. On the other hand, the mutation 

operator may generate a new set of rules by 

duplicating an already existing one and then 

randomly adding/deleting a rule or altering some 

of the integers in the matrix. 

The two objective functions of the 

optimization problem are the exactness of the 

predictions (to be maximized) and the 

complexity (to be minimized) of the sets of rules. 

The exactness of the predictions is 

evaluated by applying the candidate optimal 

solution to a list of test operating conditions 

including: 

- 16 healthy operating conditions at different 

loads (the T4 set-point ranging from 500°C to 

800°C at steps of 20°C), 

- one malfunctioning condition for each of the 

six component fault modes at the same 16 

loads,  

- two malfunctioning conditions for positive 

and negative T2 sensor fault mode at the same 

16 loads, 

for a total of 144 operating conditions. The 

obtained predictions and the known fault modes 

are then compared for all the operating 

conditions and a score is calculated as follows: 

- +2 points when a component fault mode is 

detected correctly;  

- +1 point when the T2 sensor fault mode is 

detected correctly; 

- 0 points when a fault mode is not detected 

(false negative); 

- -1 point when a wrong fault mode is detected 

in a malfunctioning condition (false positive); 

- -10 points if a fault mode is detected in a 

healthy operating condition (false positive).  

The maximum value of the exactness 

objective function is therefore 224. The criterion 

followed in this score assignment is to penalize 

more heavily false positive predictions, because, 

if measurement noise were considered, on the 

one side an existing but light operation anomaly 

could be masked by the effects of measurement 

noise (false negative), but on the other side these  

effects could be interpreted as the results of an 

operation anomaly even if system behaviour is 

healthy (false positive). 

The complexity of a set of rules is 

determined as a function of the number of rules 

N and the overall number of antecedents NA (i.e. 

the number of non-zero elements in the NxI 

submatrix related to FIS inputs): 

 complexity = a N + b NA (1) 

where the coefficients a and b are equal to 20 

and 1, respectively, in this work. The complexity 

of a set of rules has to be minimized in order to 

avoid the sets with redundant rules that can be 

generated in the evolutionary process and to 

identify the essential features of a fault mode by 

penalizing the unnecessary antecedents.  
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4.3 The Multi-Objective Evolutionary 

Algorithm 

The search towards the optimal sets of rules 

is performed by a multi-objective evolutionary 

algorithm, the GDEA proposed by Toffolo and 

Benini (2003). It is well-known that a multi-

objective evolutionary algorithm has to promote 

genetic diversity within the population of 

solutions or it will converge prematurely towards 

the few Pareto-optimal solutions found in the 

early stages of the search. Genetic diversity 

mechanisms are usually based on the definition 

of a measure of distance between two different 

solutions. 

In this case, the distance is determined as 

the number of different predictions on the list of 

test operating conditions. Otherwise, a measure 

of distance based on the differences between the 

two matrices of integers codifying the solutions 

would promote diversity by encouraging large 

sets of rules that would be considered as very 

“distant” from the rest of the population. 

5. The Results of the Global Approach 

The Pareto front of the optimal sets of 

fuzzy rules found by the optimization algorithm 

after 500 generations, with a population of 200 

individuals, is shown in Figure 4.  

 

Figure 4. The Pareto front of the optimal 

solutions (filled squares) for the global 

approach. 

 

The number of rules in the optimal sets 

varies from 1 (complexity being equal to 21, i.e. 

with just one antecedent) to 8 (complexity being 

equal to 182, i.e. with 22 antecedents). The result 

about the highest number of rules is consistent 

with the simple thought that one rule at least is 

needed to predict each component fault mode 

and two rules at least are needed to predict 

positive and negative alterations of the T2 sensor 

response. 

However, none of the optimal solutions is 

able to reach the maximum attainable exactness 

score (224), that is to correctly identify all the 

fault modes of the test operating conditions. The 

solution having the highest exactness score (183) 

is: 

if (∆p2 is –) and (∆p5 is 0)                                           

then air_filter_fouling is active 

if (∆p1 is 0) and (∆T2 is 0) and (∆p4 is –)                   

and (∆p5 is –)                                                                             

then compressor_fouling is active 

if (∆T2 is 0) and (∆n is –) and (∆p5 is –)                          

then combustor_fouling is active 

if (∆p1 is +) and (∆IGVangle is +) and (∆n is –)                                                  

and (∆p4 is –) and (∆p5 is –)                                    

then HP_turbine_erosion is active 

if (∆mf is +)                                                                       

then LP_turbine_erosion is active 

if (∆n is –) and (∆p5 is +)                                                                    

then exhaust_system_fouling is active 

if (∆T2 is –) and (∆p5 is 0)                                                      

then T2_sensor_fault is active 

if (∆T2 is +) and (∆mf is 0)                                           

then T2_sensor_fault is active 

The predictions of this set of rules on the 

list of test operating conditions, as well as the 

analysis of its antecedents, clearly show that the 

main difficulty is to distinguish among the 

effects of three fault modes: compressor fouling, 

combustor fouling and HP turbine erosion. These 

fault modes affect the three components that are 

most involved in the physical and control system 

loops: HP turbine mechanical power that is 

transferred to the compressor by the shaft, and 

fuel mass flow rate and compressor IGV angle 

TABLE II. SUMMARY OF THE VARIABLES IN THE FIVE SUBSYSTEMS OF THE LOCAL APPROACH. 

___________________________________________________________________________________________ 

considered       imposed      expected   to be    FIS  

components      measures      values    compared   input 

in the subsystem             calculated   with    deltas 

___________________________________________________________________________________________ 

air filter       p1        m0     m1     ∆m0 

compressor      p1, p2, n, IGV angle   m1, T2    m1, T2    ∆m1, ∆T2 

combustor, HP turbine    p2, T2, p4, n, mf     m2, T4    m1, T4    ∆m2, ∆T4 

LP turbine       p4, T4, p5      m4, T5    m1+mf, T5   ∆m4, ∆T5 

exhaust system      p5, T5       m5     m1+mf    ∆m5 

___________________________________________________________________________________________ 
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that are governed by the control system 

according to HP turbine outlet temperature and 

shaft speed.  

This proves that the hypothesis according to 

which each considered fault mode is 

recognizable from a unique global pattern of 

induced effects is hardly fulfilled in complex 

energy systems. Under this condition, a global 

approach to the diagnosis with expert systems is 

able to identify reliably only few 

component/sensor fault modes. 

6. The Local Approach 

The negative effects of complex 

interactions can be reduced if the system is 

decomposed into smaller subsystems, according 

to the available measurements. The isolation of a 

small number of components (or just one) from 

the interactions with the rest of the system makes 

the patterns of effects of each fault mode more 

specific and therefore recognizable. 

 

Figure 5. Subsystem with compressor only. 

 

Figure 6. Subsystem with combustor                    

and HP turbine. 

In this local approach, the diagnostic 

procedure and the problem formulation is the 

same used in the global approach. Only the 

inputs to the FIS are changed according to 

system partitioning. In fact, some of the 

measurements from the data acquisition systems 

must be imposed as inputs to the healthy 

subsystems in order to obtain the expected values 

of some other measured quantities. A summary 

of  the components, the  imposed   measurements  

and the quantities used to calculate FIS input 

deltas is presented in TABLE II for the five 

subsystems in which the system is partitioned. In 

this test case, the set of the available 

measurements allows to isolate most of the 

components. The combustor and the HP turbine 

cannot be separated because no measurement is 

available at the combustor outlet. Figures 5 and 

6 show two of the five subsystems, the 

compressor and the combustor/HP turbine 

subsystems, respectively.  

The Pareto front of the optimal sets of 

fuzzy rules obtained with a population of 200 

individuals evolved for 500 generations is shown 

in Figure 7. The solution having the highest 

exactness score now achieves the maximum 

attainable score (224) and is made of 8 rules with 

11 antecedents (complexity being equal to 171): 

if (∆m0 is –)                                                                   

then air_filter_fouling is active 

if (∆m1 is –)                                                                  

then compressor_fouling is active 

if (∆T2 is 0) and (∆T4 is +)                                             

then combustor_fouling is active 

if (∆T2 is 0) and (∆m2 is +)                                          

then HP_turbine_erosion is active 

if (∆m4 is +)                                                               

then LP_turbine_erosion is active 

if (∆m5 is –)                                                                  

then exhaust_system_fouling is active 

if (∆T2 is –)                                                                  

then T2_sensor_fault is active 

if (∆T2 is +) and (∆T4 is –)                                            

then T2_sensor_fault is active 

 

Figure 7. The Pareto front of the optimal 

solutions (filled squares) for the local approach. 

The analysis of the antecedents of this set 

of rules clearly proves that the decomposition in 

isolated subsystems has sharply separated the 

patterns of different fault modes, since now they 

can be recognized with only one or two 

antecedents. 
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7. Conclusions and Future Work 

This work has presented a diagnostic 

procedure with fuzzy logic-based expert systems 

in which the optimal sets of fuzzy rules are 

searched by a multi-objective evolutionary 

algorithm. 

A global approach to the diagnosis of 

malfunctioning conditions for a test case two-

shaft gas turbine reveals that the induced effects 

make some of the fault modes indistinguishable. 

A local approach, in which the system is 

decomposed into isolated subsystems, achieves 

far more promising results. 

Future work will be devoted to enlarge the 

set of the considered fault modes and to assess 

the influence of measurement noise. 
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