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Abstract 

 

The design optimization of energy conversion plants requires sophisticated optimization techniques. The usefulness 

of mathematical programming approaches has been discussed in several papers. Usually, the quality of the 

computed solutions, concerning global optimality and the convergence speed, is not discussed in these papers and 

even the existence of local optimal solutions is not mentioned. Indeed, the optimization of nonconvex mixed integer 

non-linear problems (MINLP), such as the structural and design optimization of power plants, is a very difficult 

problem. However, knowledge of the real optimization potential can assist the design engineer in better 

understanding the optimization procedure. This article deals with the use of exergetic variables for improving the 

quality of results obtained from mathematical optimization techniques and their convergence speed. LaGO, the 

solver used to compute the discussed results, can evaluate the obtained solution of the discussed minimization 

problems by calculating lower bounds of the original problem based on a relaxed convex objective function. Here, 

the use of exergetic variables can help to increase the lower bounds significantly and thus, to improve the evaluation 

of the computed solutions and the convergence speed. The method is applied to different optimization tasks. 

 

Keywords: Cost minimization, design optimization, cogeneration plant, mixed-integer nonlinear programming, 

exergy, convergence speed. 

 

1. Introduction  

In this article, we discuss the potential of using exergy-

based variables to improve mathematical optimization 

techniques applied to the optimization of the design of 

energy conversion plants. 

Particularly with regard to deregulated energy markets 

(e.g., Jopp, 2004; DEWI et al., 2005) optimization of the 

design and the operation of energy conversion plants 

becomes increasingly important. Knowledge of a global 

optimal solution and the value of its objective function can 

provide important information to decision makers regarding 

the construction of a new power plant. 

Various publications, such as Ahadi-Oskui (2006), 

Savola (2005), Frangopoulos (1992), and Muñoz and von 

Spakovsky (2001), present mathematical programming 

approaches for optimization problems concerning energy 

conversion plants. Their use requires a complete 

mathematical formulation of the optimization problem (e.g. 

thermodynamic model and cost equations). If this 

information is available, mathematical programming 

techniques seem to be a good choice: Compared to other 

methods, such as evolutionary algorithms (e.g., Ahadi-

Oskui, 2006; Axmann et al., 1997), mathematical 

programming techniques offer the advantage that the 

obtained results are reproducible and their quality can be 

evaluated with regard to global optimality. Only 

mathematical methods are theoretically appropriate to 

produce evidence of global optimality. A comparison of 

different solvers and an evaluation of their capability to find  

global optimal solutions is presented in LaGO (2009). 

Ahadi-Oskui (2006) compares and evaluates mathematical 

 

optimization techniques and evolutionary algorithms.  

The advantages of evolutionary algorithms concerning 

design optimization are not an integral part of this article. 

Indeed, in the literature, only a few articles (e.g., Ahadi-

Oskui, 2006) deal with a detailed evaluation of the 

computed solutions concerning complex energy 

engineering problems (nonconvex mixed integer non-linear 

problems, thus MINLP problems). An analysis and 

evaluation of the influence of constraints on the quality of 

the computed solution and the convergence speed is not 

available for these kinds of problems.  

This article deals with the use of exergetic variables in 

mathematical optimization techniques to improve the 

quality of the computed solutions and the convergence 

speed of the solver by a stronger limitation of the 

optimization problem’s search space. The purpose of this 

article is not to evaluate the quality of the solver used 

(LaGO: see Nowak 2005, Vigerske, 2008), but to give a 

more general insight into the underlying problem. Indeed, 

Jüdes et al. (2009) show that all available state-of-the-art 

solvers have to handle similar problems. To demonstrate 

the strength of this method, different optimization problems 

are solved and different MINLP solvers are compared. 
 

2. Problem Description 
Typically, energy engineering problems are non-linear 

and nonconvex and often require the use of integer 

variables to build mathematical models. A general 

formulation of such an optimization problem, here a 

minimization problem, is given with Eq.(1). 
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Here, f indicates mass, energy, and momentum 

balances, equations describing the performance of 

components, as well as equations for the calculation of 

working fluid properties (k different equations). The n 

different constraints g denote, for example, minimum 

temperature differences. Binary variables are indicated by 

y. While i represents the different working fluid streams, j 

denotes the different chemical components of these 

streams. Structural decisions are indicated by the index m. 

Nonconvex MINLP problems according to Eq. (1) may 

have several local optimal solutions (cf. Table 4). To 

evaluate the quality of an obtained solution for the design 

of a power plant, it is necessary to obtain information about 

the maximal optimization potential. Usually, the value of 

the objective function at the optimal solution is not known a 

priori and we need methods that allow us to compute 

absolute lower bounds (if the objective function has to be 

minimized) of the original problem. 

In the optimization of energy conversion plants, we 

must deal with two major problems. The first one concerns 

the structure of the plant: if the structure is part of the 

design optimization, the use of a so-called superstructure is 

necessary (e.g., Ahadi-Oskui, 2006). The resulting mixed 

integer optimization problem requires the use of binary 

variables that indicate the existence and operation of single 

components or component groups. In the model used here, 

binary variables were considered using the so-called Big-

M-constraints, i.e., inequalities that replace equations. 

The second problem concerns the working fluid 

properties and the performance of the plant components. 

Typically, the describing equations are non-linear and some 

of these equations are nonconvex. Hence, the resulting 

problem becomes a nonconvex MINLP problem, the 

solution of which requires powerful mathematical solvers, 

whereas the analytical evidence of global optimality is still 

an unsolved problem. 

Indeed, today’s MINLP solvers cannot guarantee the 

generation of reliable global optimal solutions of complex 

energy engineering problems. Expert knowledge is still 

very important to enable the solver to compute in a 

manageable time good solutions of the considered 

optimization problem. Here, the use of expert knowledge in 

terms of exergy-based variables for a better formulation and 

limitation of the mathematical program is the focus of this 

article. 

To evaluate the quality of a computed solution, the 

solver used here (LaGO) generates convex relaxations (i.e. 

a convex simplification of the original problem), that 

underestimate the original problem in a convex way (see 

Figure 1). The minimum of all values obtained through 

convex relaxations is computed with local solvers and 

represents an absolute lower bound of the original problem. 

White areas in Figure 1 represent the actual search space 

limited by the lower bound (lo) and a local optimal solution 

(up) of the original problem. Global optimality has been 

proven when these two values coincide, i.e., when the gap 

between the minimum of the relaxation and the absolute 

minimum of the original function is zero. 

 
Figure 1.  A Nonconvex and Non-linear Problem (bold 

line). Left: without branching, right: with branching 

techniques (dashed line). up: upper bounds, lo: lower 

bounds, cr: convex relaxations. 

 

In practical applications, a major problem arises through 

the non-convexity of the original problem as shown in 

Figure 1: If the original function (bold line) is strongly 

nonconvex, the gap between the original function and the 

convex relaxation (thin line) may become large. 

A block separable formulation of the problem in which 

we define several blocks within the plants’ model 

connected only by linear constraints helps to reduce this 

problem and assists in the branch and cut algorithm. This 

algorithm reduces the search space in a successive way and 

helps to minimize the gap by splitting the major 

optimization problem into several sub-problems. In Figure 

1, the left part shows a relaxation without the application of 

branching techniques. The right part shows a relaxation 

after the application of branching techniques, applied to 

continuous variables. Even if the final gap becomes 

smaller, it cannot be closed. As will be shown in Section 4, 

a branching with respect to the continuous variables 

increases the number of sub-search-spaces dramatically. To 

avoid this unwelcome side effect, a strong limitation of 

single variables has to be preceded. This can be carried out, 

e.g., by using exergy-based variables. 

LaGO generates starting points for a local optimization 

by solving the relaxed function. Therefore, a good 

relaxation of the original problem is very important: the 

computation of a solution becomes easier and faster, and 

the gap becomes smaller with an increasing quality of 

relaxation - the better the relaxations, the better the 

solution.  

The computation of the relaxation proceeds in five steps 

(cf. Figure 2): 

a) Initial choice of sample points (black dots) and 

calculation of a (local) minimum xmin of the original 

function g(x). 

b) Calculation of a quadratic function q(x) that 

underestimates all sample points. At x̂ = xmin, 

g( x̂ )=q( x̂ ) 

c) Maximization of the error δ=q(x)-g(x) in-between the 

sample points leads to x*. 

d) If q(x*)-g(x*) > Tolerance δmax, x* is added to the 

sample points and the quadratic underestimator is 

recalculated. 

e) If q(x*)-g(x*) < Tolerance δmax, q(x) is lowered by the 

actual difference δ. 

It is necessary to emphasize that nonconvex and non-

linear equations cannot be avoided in such mathematical 

models: Figure 3 shows exemplarily the logarithmic mean 

temperature difference 
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Figure 2. Construction of a Quadratic Underestimator. 
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A simplification of this function (e.g., a linearization 

and even a piecewise linearization with few line sections) 

may lead to a completely wrong calculation of the heat 

exchanger surface area and, therefore, of the purchased 

equipment cost. This simple example demonstrates that a 

strong simplification may not be suitable for all kinds of 

problems. 

 

 
Figure 3.: logT∆ , a Nonconvex Non-linear Function. 

 

Obviously, it is very helpful to use reasonable variables 

and constraints that permit a strong limitation of the search 

space and therefore a strong limitation of the entire 

optimization problem. Indeed, it is necessary to limit most 

of the variables used in an adequate way and thus enable 

today’s MINLP solvers to solve complex strongly 

nonconvex problems. Therefore, not only an understanding 

of the mathematics involved in the solution, but also a deep 

understanding of the thermodynamic processes occurring in 

the plant is essential. Otherwise, the global optimal solution 

might be excluded a priori by a too strong bounding of the 

decision variables. 

However, a strong limitation of the single variables is 

not always possible, especially when superstructures are 

used to optimize the structure of the plant or when partial 

loads should be considered (Jüdes and Tsatsaronis, 2007; 

Jüdes et al., 2009; Jüdes, 2009). In these cases, a wider 

range for the variables is necessary and the design engineer 

cannot predict these ranges at all points within the process. 

The solver should have the ability to generate very different 

solutions with different properties of the working fluid. 

In this article, we discuss advantages and disadvantages 

of using in the mathematical program the exergy of the 

working fluid and exergy-based variables of the 

components to improve the optimization process. These 

variables can often be limited to a narrow range by simple 

thermodynamic considerations. Without numerous 

simulations, the definition of lower and upper bounds of 

some exergy flows, of the exergy destruction and of 

exergetic efficiencies becomes possible (see also Tables 6 

and 7). On the other hand, the calculation of exergy flows 

makes it necessary to include a large number of additional 

non-linear and partly nonconvex equations and constraints 

in the model. For example, the condensating fraction of 

water at ambient conditions now has to be calculated for the 

exhaust gas streams. The optimization results and the 

advantages of using exergy based variables are presented 

using two different examples. 

 

3. Description of the Plants and Results 

The method proposed in this article is applied to two 

different energy conversion systems: The CGAM problem 

(e.g.Valero et al., 1994; Figure 4), and a more complex 

cogeneration plant (Jüdes and Tsatsaronis, 2007; Jüdes et 

al., 2009; Figure 5). Three different objective functions are 

used.  

 

 
 

Figure 4. Flow Sheet of the CGAM Problem. 

 

The CGAM problem represents a non-convex non-

linear optimization problem (NLP) without any binary 

variables. This simple example gives insight into the 

problems of nonconvex optimization techniques and the 

computed results are comparable to those presented in the 

literature. The optimization problem is formulated as a 

mathematical program in GAMS (GAMS, 2009) and the 

MINLP solver LaGO was used (LaGO, 2009) considering 

only its NLP solution techniques. Tables 1 and 2 

summarize the results of a thermodynamically optimal and 

cost-optimal design, neglecting income taxes (that is one of 

the reasons why the cost-optimal design differs from the 

values given by Bejan et al., 1996). The objective function 

for the thermodynamically optimal design is the fuel cost 

fuelC& , the objective function for the cost-optimum is the 

levelized total revenue requirement levTRR .  

Table 2 presents the values of the objective function and 

the lower bounds. Here, the gap is calculated according to 

Eq. (3): 
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Figure 5.  Superstructure and Optimization Variables of the Simplified Energy Conversion Plant. The Decision Variables 

are related to Table 4. 

 

Table 1. Variables for the Thermodynamically Optimal 

(TO) and the Cost-optimal (CO) Designs of the CGAM 

Problem, Neglecting Income Taxes. Economic Assumptions 

According to Bejan et al. (1996). 

Variable Dimension TO CO 

12 / pp  - 16.0 6.5 

Cs,η / Ts,η   % 88.0/90.0 82.3/85.8 

3T   K 792.4  923.6  

4T  K 1550.0 1470.7 

HRSGmin,T∆  K 15.0 15.0 

1m&   kg/s 74.23  113.56 

10m&  kg/s 1.51 1.66 

 

Table 2. CGAM problem: Solutions Computed by LaGO 

After 1000 Iterations. Variables for the Thermodynamically 

Optimal (TO) and cost-Optimal (CO) Designs (TOex and 

COex with Consideration of Exergy-based Variables) 

Neglecting Income Taxes. In addition, the Iteration of the 

First Solution and the Lower Bounds are Given. Economic 

Assumptions from Bejan et al. (1996). 

Variable TO CO TOex COex 

Objective 

function fuelC&  levTRR  

fuelC&  levTRR  

Solution 

[Mio.€/a] 
5.97 25.1 5.97 25.1 

Lower bound 

[Mio.€/a] 
2.01 12.9 5.52 19.67 

gap, cf. Eq.(2) 

[%] 
196 94.6 8.2 27.6 

1
st
 solution in 

iteration 
1 14 1 1 

where UP and LO represent the upper bound (i.e., the 

solution of the minimization problem) and the lower bound, 

respectively. 

We stopped the optimization after 1000 iterations. In 

further iterations, the upper bound, i.e. the optimal solution, 

stays constant and the lower bound increases only 

marginally. LaGO found the first feasible solution after the 

first and 14
th

 iteration for the thermodynamically optimal 

and cost-optimal design, respectively. This information 

indicates the convergence speed of the solver. More 

complex problems, such as the cogeneration plant shown in 

Figure 5, require significantly more iterations (cf. Table 3 

and Section 4). Therefore, not only the quality of the 

solution, but also the convergence speed plays an important 

role in design optimization problems. 

Obviously, LaGO was not able to close the gap 

according to Eq. (3) and thus prove global optimality for 

the CGAM problem. It should be mentioned that the NLP-

solver CONOPT (ARKI, 2008) was not able to find a 

feasible solution neither for the original CGAM problem 

nor for the problem including exergy-based variables 

without a presetting of good starting values. 

The computed cost-optimal results are similar to those 

presented by Bejan et al. (1996). Only the computed 

temperature difference at the pinch point HRSGmin,T∆ is 

noticeably smaller. A recalculation of the objective function 

with fixed decision variables according to Bejan et al. 

(1996) results in levTRR = 25.7 Mio.€/a instead of levTRR = 

25.1 Mio.€/a for the obtained optimal solution discussed in 

this article.  

However, the focus of this article is not on evaluating 

the quality of the solver LaGO - other solvers have similar 

problems (see also Jüdes et al., 2009 and Table 5) and 
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different solvers may be more appropriate for solving this 

problem. One of the purposes of this article is to present a 

method in which engineering expert knowledge is used to 

improve mathematical optimization techniques. Thus, the 

improvement of the convergence speed (number of 

iterations to find the first feasible solution) and the solution 

qualities using mathematical programming techniques are 

evaluated. In this case, LaGO is a representative tool. 

The second plant analyzed in this article is the more 

complex cogeneration plant shown in Figure 5. It is a 

single-pressure combined cycle plant with a supplementary 

firing (additional burners AB) for each heat recovery steam 

generator (HRSG) similar to the plants used in Jüdes and 

Tsatsaronis (2008), Jüdes et al. (2009) and Jüdes (2009). To 

demonstrate the new approach, only one steady-state 

operation point at full load is considered in this case. The 

required electric power output is 750 MW and the required 

mass flow rate of process steam is 1.133m32 =&  t/h at 

120°C. For all economic assumptions refer to Jüdes (2009). 

According to Hüttenhofer and Lezuo (2001), we 

consider different types of gas turbines: each HRSG 

operates independently and can be fed by any combination 

of the three Siemens V94.3A and three Siemens V94.2 gas 

turbines. The two HRSG’s consist of an economizer, an 

evaporator and a superheater. The operation of the 

additional burners and the water injector (TMX) is optional. 

The steam is supplied to the high, intermediate (both 

indicated with HPST) and low-pressure (LPST) sections of 

the steam turbine. A process steam extraction SP1 is placed 

after the intermediate-pressure section of the steam turbine. 

The condensate returning from this heat sink is mixed with 

the outlet stream of the low-pressure steam turbine in the 

condenser (COND). 

Tables 3 and 4 show the results of the economic design 

optimization of the cogeneration power plant. Again, the 

number of iterations needed to generate the first solution is 

presented. Additionally, Table 3 presents the lower bounds 

of the objective function.  

Table 4 gives the values of the respective optimization 

variables. Here, first solution denotes the plant’s design at 

the first feasible solution while optimal solution indicates 

the solution after 1000 iterations of LaGO. 

Due to a stronger limitation of the variables of the more 

complex power plant, the gap given in Table 3 is smaller 

than the gap shown in Table 2 (CGAM problem) even 

without the use of any exergy-based variables. 

Thus, the limitation of variables leads to better solution 

evaluations and/or a faster convergence of the optimization 

algorithm. Therefore, further variables should be used to 

upgrade  the  quality of the solution. Exergetic  variables  

 

Table 3. Cogeneration Plant (cf. Figure 5): Results of the 

Cost-Optimal Design (objective function: levTRR ) 

Computed by LaGO after 1000 iterations. “Solution” 

Represents the Respective Value of the Objective Function.  

In addition, the First Solution and the Lower Bounds are 

Presented (see also Jüdes, 2009). CO: without exergy, 

COex: with exergy-based variables; fuelc =5.5 €/GJLHV 

Variable CO  COex 

Solution [Mio.€/a] 319.2 319.2 

Lower bound [Mio.€/a] 278.7 278.7 

gap, cf. Eqn (3) [%] 14.5 14.5 

1
st
 solution in iteration 37 25 

Table 4. Decision Variables for the Design Optimization of 

the Cogeneration Plant Shown in Figure 5. Solutions 

Found by LaGO in the Respective Iteration Presented in 

Table 3. 

Decision 

variable 
Dimension 

first 

solution 

optimal 

solution 

a94.3A,W&  MW 253.5 253.5 

b94.3A,W&  MW - 253.5 

c94.3A,W&  MW 253.5 - 

AB1n&  kmol/s 0.042 - 

AB2n&  kmol/s - 0.044 

2012 /TT  K 823/- 808/859 

2/1PINCHT∆  K 10/- 10/10 

2/1ECOS,T∆  K 0/- 0/0 

cwn&  kmol/s 336 337 

218 / pp  bar 0.05/86.3 0.05/75.7 

23n&  kmol/s 0.0 0.0 

sHDT/NDTη  % 85.5/86.9 85.7/86.2 

totPEC  Mio.€/a 146.0 144.2 

totP,E&  GWh/a 4363 4363 

totF,E&  GWh/a 7922 7932 

totε  % 55.06 55.01 

FC&  Mio.€/a 151.9 152.1 

 

enable a strong limitation of the problem and thus may 

improve the optimization. It must be emphasized that 

neither LaGO nor other tested MINLP solvers (AlphaECP, 

BARON, Bonmin, DICOPT, OQNLP and SBB) can prove 

the solution’s global optimality as has been shown in Jüdes 

et al. (2009) and Jüdes (2009) for the cogeneration plant 

considering (c.f. Table 5). 

 

Table 5. Best Objective Function Values levTRR  When 

Optimizing the Cogeneration Plant (cf. Figure 4), 

Considering Four Different Operation Points with Different 

MINLP Solvers and a Time Limit of 3 h. The Third Column 

Gives the Best Values When a Solution with Objective 

Function value 236.24 Mio. €/a (LaGO’s solution after 10 

hours) is Provided as the Starting Point to the Respective 

solver. 

Solver 
best 

solution 

best solution 

with feasible starting value 

 Mio. €/a Mio. €/a 

LaGO 244.17 236.24 

AlphaECP -- -- 

BARON 255.13 236.24 

Bonmin 242.50 -- 

DICOPT -- -- 

OQNLP -- 235.97 

SBB 236.76 235.73 

 

4. The Influence of Exergy-based Variables 
As discussed in the previous sections, for optimization 

tasks, it is helpful to obtain information about the global 

optimum of an objective function. However, the available 

solvers still have difficulties with “real life” problems from 
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the field of design optimization of power plants in proving 

global optimality.  

From the design engineer’s point of view, it is desirable 

to use process knowledge to improve the solution provided 

by the optimization algorithm. Exergy seems to be a helpful 

concept in that respect because exergy flows and exergy-

based variables can be limited very strongly without 

excluding feasible and potential parts of the solution space 

– only the search space is limited. For example, negative 

exergy flows are not allowed when the pressures are above 

the ambient pressure nor are negative exergy destructions. 

Table 6 shows some representative exergy-based 

variables that enable the design engineer to limit the search 

space of the CGAM problem while Table 7 presents some 

representative exergetic variables of the complex 

cogeneration plant shown in Figure 5. The range of the 

bounds is rather wide but still acceptable. A minimal 

assumed exergetic efficiency of totε = 20% results in 

exergy flows within the cogeneration plant lower than 4000 

MW. 
 

Table 6. Exergetic Efficiencies ,ε and Exergy flows E& with 

Lower (LO) and Upper (UP) Bounds of the CGAM Problem 

(cf., Figure 4). 

Variables  Dimension LO UP 

COMPε  % 80 97 

EXPε  % 80 97 

HRSGε  % 50 90 

preheaterAir ε  % 70 95 

iE&  MW 0 150 

 

Table 7. Exergetic Efficiencies ,ε  Exergy Destructions DE&  

and Exergy flows &E  with Lower (LO) and Upper (UP) 

Bounds. Nomenclature According to Figure 5. 
 

Variables  Dimension LO UP 

ABε  % 60 80 

SPHTε  % 50 90 

EVAPε  % 50 85 

ECONε  % 30 85 

HPSTε , LPSTε  % 70 95 

ABD,E&  MW 0 50 

ECONEVAP,SPHT,D,E&  MW 0 50 

HPSTD,E& , LPSTD,E&  MW 0 50 

iE&  MW 0 4000 

 

Calculating exergy flows requires knowledge of 

enthalpy and entropy values of all material flows within the 

plant. The latter are not normally required for a 

conventional optimization procedure and, therefore, when 

exergy values are used, the complexity of the resulting 

mathematical program increases also because of the 

required calculation of enthalpy and entropy values at 

ambient conditions (T0 and p0). 

There is a trade-off between improving the solution’s 

quality due to a stronger limitation of the search space and 

the integration of additional and partly nonconvex 

equations and constraints. Especially the nonconvex 

equations increase the difficulties associated with the solver 

that has to compute good relaxations for optimal solutions 

of the original problem. 

The last two columns of Table 2 (TOex and COex) 

show the thermodynamically optimal and cost-optimal 

results of the CGAM problem obtained using exergy-based 

variables. Tables 3 and 4 show the results of the cost-

optimal design of the complex power plant (cf. Figure 5). 

Exergy-based variables improve the solution qualities: for 

the CGAM problem there is a clear increase of the lower 

bound in both the thermodynamic and the economic 

optimization cases. For cost-optimal designs, there is an 

obvious improvement of the convergence speed. However, 

the obtained solutions are the same (the optimization 

variables are presented in Table 1). 

The increasing convergence speed can be explained as 

follows: Due to the complexity of the optimization 

problems, it is necessary not only to branch the binary 

problem, but to branch also the continuous one. Otherwise, 

the starting values contributed to the local solver from the 

solution of the relaxed problem are far away from the real 

solution and LaGO is not able to compute a solution. 

However, a branching with respect to the continuous 

variables increases the number of sub-search-spaces 

dramatically. Thus, a strong limitation of single variables 

avoids this unwelcome side effect. 

For the cogeneration plant, the benefits are smaller. 

Both approaches show the same results with respect to the 

optimal solution and the lower bound. We observe only an 

increase of the convergence speed: LaGO finds a first 

solution after 37 and 25 iterations without and with exergy-

based variables, respectively. The “optimal” solution is 

found after 437 and 396 iterations without and with exergy, 

respectively. Until the end of the optimization procedure, 

there is no more change, neither with respect to optimal 

solution nor with respect to considering the lower bound. 

 

5. Conclusions 

The method presented in this article enables the design 

engineer to use his expert knowledge for improving 

mathematical optimization techniques.  The improvement is 

based on a better limitation of the variables and thus, on a 

better limitation of the search space, due to well-known 

ranges of exergy-based variables. It is obvious that the 

limitation of single exergy flows and exergy-based 

variables is easier from the engineer’s point of view than a 

limitation of temperatures, mass flow rates and pressures. 

Especially enthalpies and entropies are hard to limit due to 

the a priori unknown chemical composition of exhaust gas 

flows within the process. 

The new approach, a combination of mathematical 

programming techniques and an application of exergy-

based variables, was applied to different kinds of problems, 

the computation of thermodynamically optimal and cost-

optimal designs, and two different types of plant models: 

The CGAM problem (nonconvex NLP model) and a more 

complex plant (nonconvex MINLP model). In all cases, the 

MINLP solver LaGO was used to allow easy comparison of 

the optimization results. 

To avoid a unilateral focus on the solver LaGO, we 

compared the results to the solutions provided by well-

known MINLP solvers, such as AlphaECP, BARON, 

Bonmin, DICOPT, OQNLP and SBB. Some of these 

solvers are not able to solve the optimization problem. The 
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results of the successful solvers were approximately 

identical, at least when feasible starting values were 

provided. It should be noted that the comparison of these 

solvers was conducted for a more complex optimization 

problem (the cogeneration plant shown in Figure 5 with 

consideration of four different operation points). Jüdes et al. 

(2009) present a more detailed comparison of these MINLP 

solvers. 

In all cases, exergy-based variables improve the quality 

evaluation of the solution or at least the convergence speed. 

Of course, the use of these variables does not influence the 

optimal solution, but the convex relaxations and thus the 

gap between the solution and the underestimator may be 

reduced. In addition, the number of sub search spaces that 

have to be explored during the optimization procedure can 

be reduced. 

Consequently, the use of exergy seems to be an 

appropriate method to enhance the performance of 

mathematical solvers for energy engineering problems 

although additional nonconvex equations and constraints 

have to be included in the mathematical program.  

In future work, exergoeconomic variables may also be 

included in the mathematical program, the use of which 

requires linear equations only. Furthermore, the method 

should be applied to power plants with more than one 

operating point. 

 

Nomenclature 

Variable Meaning Dimension 

AB Additional burner  

fuelC&  
Cost flow rate associated with 

the fuel flow rate 
Mio. €/a 

fuelc  Specific fuel cost €/GJLHV 

CO / TO 
Cost-optimal / Thermo-

dynamically optimal design 
 

COex / 

TOex 

Cost-optimal / Thermo-

dynamically optimal design 

considering exergy-based 

variables 

 

COND Condenser  

iE&  Exergy flow rate MW 

DE&  Exergy destruction MW 

ECON Economizer  

EVAP Evaporator  

HPST High-pressure steam turbine  

HRSG Heat recovery steam generator  

LO Lower bound  

LPST Low-pressure steam turbine  

m&  Mass flow rate kg/s 

MINLP 
Mixed integer non-linear 

programming 
 

NLP Non-linear programming  

SPHT Superheater  

p Pressure bar 

PEC Purchased Equipment Cost Mio. € 

T Temperature K 

TMX Water injector  

levTRR  
Levelized total revenue 

requirement 
Mio. €/a 

UP Upper bound  

W&  Electric power MW 

y Binary variable - 

Greek Symbols 

∆  Difference  

δ Difference  

sη  Isentropic efficiency % 

ε  Exergetic efficiency % 

Subscripts 

F Fuel  

P Product  
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