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Abstract 
 
A conventional exergy analysis has some limitations, which are significantly reduced by an advanced exergy 
analysis. The latter evaluates: (a) the interactions among components of the overall system (splitting the exergy 
destruction into endogenous and exogenous parts); and, (b) the real potential for improving a system component 
(splitting the exergy destruction into unavoidable and avoidable parts). The main role of an advanced exergy 
analysis is to provide engineers with additional information useful for improving the design and operation of energy 
conversion systems. This information cannot be supplied by any other approach. In previous publications, 
approaches were presented that were appropriate for application to closed thermodynamic cycles, without chemical 
reactions (e.g., refrigeration cycles). Here a general approach is discussed that could be applied to systems with 
chemical reactions. Application of this approach to a simple gas-turbine system reveals the potential for 
improvement and the interactions among the system components. 
 
Keywords: Exergy analysis, exergy destruction, avoidable exergy destruction, endogenous exergy destruction, gas-
turbine system. 

 
1. Introduction 

A conventional exergy analysis identifies the magnitude 
and the location of the real thermodynamic inefficiencies 
(Bejan et al., 1996). However, in revealing the causes of 
these inefficiencies a conventional analysis fails to identify 
the contributions by the other components to the exergy 
destruction within the component being considered. 
Knowledge of the interactions among components and of 
the potential for improving each important component is 
very useful in improving the overall system (Tsatsaronis, 
1999a). 

Splitting the exergy destruction within each component 
of an energy conversion system into endogenous/exogenous 
parts ( += EN

k,Dk,D EE  EX
k,DE ) and unavoidable/ avoidable 

parts ( k,DE = AV
k,D

UN
k,D EE + ), and combining the two ap-

proaches of splitting the exergy destruction (
EX,AV

k,D
EN,AV

k,D
EX,UN

k,D
EN,UN

k,Dk,D EEEEE +++= ) enhances an 
exergy analysis and improves the quality of the conclusions 
obtained from it (Tsatsaronis and Park, 2002; Cziesla et al., 
2006; Morosuk and Tsatsaronis, 2006a, 2006b, 2008; 
Tsatsaronis et al., 2006; Kelly, 2008; Tsatsaronis and 
Morosuk, 2007). These parts of exergy destruction are 
defined as follows. 

The endogenous part of exergy destruction ( EN
k,DE ) is 

associated only with the irreversibilities occurring in the   
k th component when all other components operate in an 
ideal way and the component being considered operates 
with its current efficiency. 

The exogenous part of exergy destruction ( EX
k,DE ) is 

caused within the k th component by the irreversibilities 
that occur in the remaining components. 

To better understand the interactions among 
components, the exogenous exergy destruction within the 
k th component should also be split. 

Splitting the exogenous exergy destruction within the  
k th component ( r,EX

k,DE ) reveals the effect that the 
irreversibility within the r th component has on the exergy 
destruction within the k th component. The sum of all 

r,EX
k,DE  terms is lower than the exogenous exergy 

destruction within the k th component. The difference is 
caused by the simultaneous interactions of all (n–1) 
components. This difference, the mexogenous exergy 
destruction ( mexo

k,DE ) is calculated from (Tsatsaronis and 
Morosuk, 2007) 

∑
−

≠
=

−=
1

1

n

kr
r

r,EX
k,D

EX
k,D

mexo
k,D EEE  (1) 

where n denotes the total number of system components 
and r refers to all but the k th system component. 

Unavoidable ( UN
k,DE ) is the part of exergy destruction 

within one system component that cannot be eliminated 
even if the best available technology in the near future 
would be applied. 

The avoidable ( AV
k,DE ) exergy destruction is the 

difference between total and unavoidable exergy 
destruction and represents the real potential for improving 
the system component. 

By combining the two approaches for splitting exergy 
destruction we obtain 
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Figure 3: Real, theoretical, unavoidable and hybrid processes for simple gas-turbine power system showed in Figure 2: 
                    air ,                   fuel,                     combustion gases.  

Table 1. Thermodynamic data for the real (R), theoretical 
(T), unavoidable (U) and hybrid processes (H) of the simple 
gas-turbine power system. 
 

St
re

am
 

T 
 

[K
] p 
 

[b
ar

] 

ePH
 

[M
J/

kg
] 

eC
H
 

[M
J/

kg
] 

e 
[M

J/
kg

] 

1 298 1.013 0 0 0 
2T 636 15.2 0.350 0 0.350 
2H2 652 16.71 0.368 0 0.368 
2U 662 15.35 0.366 0 0.366 
2H1 680 15.2 0.376 0 0.376 
2R 698 16.71 0.396 0 0.396 
3T 298 15.2 0.418 51.38 51.8 
3U 298 15.5 0.421 51.38 51.8 
3R 298 18 0.445 51.38 51.83 
4U 2100 15.2 1.878 0.020 1.898 
4R= 
4T 

1500 15.2 1.113 0.005 1.119 

5U 943 1.025 0.629 0.020 0.649 
5R 859 1.025 0.281 0.005 0.286 
5T 1216 1.013 0.228 0.005 0.233 

 
For calculating the values of unavoidable 

irreversibilities within each system component, we assumed 
conditions that cannot be realized in the next decade: 

=UN
ACη 0.93, =UN

GTη 0.96, an adiabatic combustion process 
with T4=2100 K and a relative pressure drop in the 
combustion chamber of 0.01. 

The composition of the combustion gases for the 
process with only unavoidable irreversibilities is different 
than the composition of combustion gases for the real 
process. Therefore, for showing the process with 
unavoidable irreversibilities we need four more isobaric 
lines p2,U, p3,U, p4,U and p5,U  (Figure 3). 

For calculating the value of the unavoidable exergy 
destruction within the k th component, the following 
procedure is used (detailed description is given in 
Tsatsaronis and Park, 2002; Cziesla et al., 2006). 

UN

k,P

k,D
k,D

UN
k,D E

E
EE ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  (2) 

where the value 
UN

k,P

k,D

E
E

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 should be calculated using the 

process with unavoidable irreversibilities. 

The values 
UN

k,P

k,D

E
E

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 are given in Table 2 and the 

values UN
k,DE  and AV

k,DE  are presented in Table 3. The 
exergetic efficiency of the overall gas-turbine power system 
operating at the given pressure ratio and at conditions that 
are associated with unavoidable exergy destruction is 

=UN
totε  40.4%. Thus the potential for improving the overall 

efficiency of such a system (without an air preheater) and at 
the given pressure ratio of about 15 is approximately 5 
percentage points. 

 
2.2. Theoretical operating conditions 

For splitting the exergy destruction into endogenous and 
exogenous parts, and for further splitting the exogenous 
part of the exergy destruction, we need to describe the 
theoretical operation conditions for each component of the 
gas-turbine power system. 

The theoretical operational conditions for the air 
compressor and the gas turbine are similar: 0=T

AC,DE         

( 1=T
ACε  or 1=T

ACη ) and 0=T
GT,DE  ( 1=T

GTε  or 1=T
GTη ). 

 The following assumptions are made for the theoretical 
combustion chamber: 

• The thermodynamic properties of the combustion gas 
and the composition of it remain the same as in the real 
operating conditions (state 4T = state 4R), 

• The pressure drop in the combustion chamber is zero, p2 
= p4, 

• State 4T(=4R) should be the result of the chemical 
reaction between the streams at states 2T and 3T, 

• The excess air at theoretical conditions is equal to the 

excess air in the real process: 
R
fuel

R
air

T
fuel

T
air

m
m

m
m

= , and 
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• Air compressor and combustion chamber for calculating 
the values CC,EX

AC,DE  and AC,EX
CC,DE  – process 1 –2R – 4R (3R 

+2R) – 5T, 
• Air compressor and gas turbine for calculating the 

values GT,EX
AC,DE  and AC,EX

GT,DE  – process 1 –2H1 – 4T 
(3T+2H1) – 5R, and 

• Combustion chamber and gas turbine for calculating the 
values GT,EX

CC,DE  and CC,EX
GT,DE  – process 1 –2H2 – 4R (3R 

+2H2) – 5R. 

The value of r,EX
k,DE  (Table 3) is calculated by 

EN
k,D

r,k
k,D

r,EX
k,D EEE −=  (8) 

The values r,k
k,DE  are given in Table 2. 

For splitting the unavoidable exogenous part of the 
exergy destruction within a system component, we need a 
procedure similar to the one described by Eqs. (8) and (9) 

EN,UN
k,D

r,k,UN
k,D

r,EX,UN
k,D EEE −=  (9) 

with 

UN

k,P

k,Dr,k
k,P

r,k,UN
k,D E

E
EE ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  (10) 

The values of r,k
k,PE  are given in Table 2 and the results 

are presented in Table 3. 
 
3. Discussion and conclusion 

When we evaluate the thermodynamic performance of a 
system component, it is very helpful to know (a) what part 
of the exergy destruction is caused by which other 
component, and (b) what part of the exergy destruction 
within the component being considered could be avoided. 
This information is obtained with the aid of theoretical, 
hybrid and unavoidable processes that are considered 
together with the real process. 

This paper demonstrates how to define all these 
processes and how to split the exergy destruction within a 
system component into its parts unavoidable/avoidable and 
endogenous/ exogenous as well as unavoidable 
endogenous, unavoidable exogenous, avoidable endogenous 
and avoidable exogenous. The system evaluation is based 
on the last two parts of exergy destruction. 

Compared with the conventional exergy analysis of a 
simple gas-turbine power system we obtain the following 
additional information with the aid of an advanced exergy 
analysis: 

1. The potential for improving the efficiency of the 
overall system is approximately 5 percentage points 
because over 70% of the exergy destruction in the overall 
system is unavoidable. 

2. Only one fourth of the exergy destruction in the 
combustion chamber is avoidable. For the combustion 
chamber, the avoidable endogenous exergy destruction (to 
be reduced, for example, by increasing the temperature T4) 
is four times higher than the avoidable exogenous exergy 
destruction (to be reduced through improvements in the air 
compressor and the expander). 

3. Over 50% of the exergy destruction in the air 
compressor is exogenous whereas this percentage is 

approximately 27% for the expander and 22% for the 
combustion chamber. 

4. An improvement in the expander would affect not 
only the endogenous avoidable exergy destruction of this 
component but also the exogenous avoidable exergy 
destruction within the combustion chamber. 
 
Nomenclature 

E  exergy rate [W] 
e  specific exergy [J/kg] 
m  mass flow rate [kg/s] 
p  pressure [bar] 

Q  heat rate [W] 

gens  specific entropy generation [J/kg·K] 
T  temperature [K] 
W  power [W] 

Greek symbols 

Δ  difference 
ε  exergetic efficiency 
η  isentropic efficiency 

Abbreviations 

AC air compressor 
CC combustion chamber 
GT gas turbine (expander) 

Subscripts 

D destruction 
F fuel 
H point of a hybrid process 
k k th component 
P product 
R point of a real process 
U point of a process with 
 unavoidable exergy destruction 
T point of a theoretical process 
tot overall system 
0 thermodynamic environment 

Superscripts 

AV avoidable 
ch chemical exergy 
EN endogenous 
EX exogenous 
k k th component 
mexo mexogenous 
n number of components 
ph physical exergy 
r r th component 
 (different from the k th 
 component being considered) 
R real operation conditions 
T theoretical operation conditions 
UN unavoidable 
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