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Abstract 

 

A strategy for deriving thermodynamic properties of liquids (, cp, cv) from speed of sound is presented. It is based 

on numerical integration of differential equations connecting speed of sound with other thermodynamic properties. 

Two different procedures are recommended: One for liquids with lower and moderate critical pressures (LMCP), 

and another for liquids with higher critical pressures (HCP). The set of differential equations is solved as the initial 

value problem in both cases. However, for LMCP liquids initial conditions (several accurate values of  and cp) are 

specified along isobar near the critical pressure, and for HCP liquids along the liquid-vapor saturation curve. The 

procedures are tested on ethane, carbon dioxide, and water. The average absolute deviation of derived 

thermodynamic properties of ethane (, cp, cv), with respect to corresponding reference values, is 0.0014%, 

0.0741%, and 0.1124%, respectively. Corresponding deviations for carbon dioxide are 0.0008%, 0.0363%, 

0.0601%, and for water 0.0001%, 0.0206%, 0.0289%. 

 

Keywords: Density; heat capacity; liquids; speed of sound. 

 

1. Introduction 

Several articles dealing with derivation of 

thermodynamic properties of liquids from experimental 

speeds of sound have been published in the last 40 years. 

An exact method of computing volume changes under high 

pressure from acoustic-wave-velocity was developed and 

its application illustrated with liquid mercury at pressures 

up to 1300 MPa at temperatures 295.05 K, 313.65 K, and 

316.05 K (Davis and Gordon, 1967). An iterative method of 

calculation was used to determine thermodynamic 

properties of water from speed of sound in pressure range 

0.1 to 350 MPa and temperature range 251.15 to 293.15 K 

(Petitet et al., 1983). The effect of pressure on sound 

velocity and density of liquid toluene and n-heptane was 

investigated at pressures up to 260 MPa, in temperature 

ranges 173 to 320 K and 185 to 310 K (Muringer et al., 

1985). Density, isothermal compressibility, isobaric thermal 

expansivity, and isobaric heat capacity were derived from 

speed of sound in liquid benzene and cyclohexane in 

temperature range 283 to 323 K and at pressures up to 170 

and 80 MPa respectively (Sun et al., 1987). 

Thermodynamic properties of liquid methanol and ethanol 

were derived from speed of sound at pressures up to 280 

MPa in temperature ranges 203 to 263 K (Sun et al., 1990), 

and 193 to 263 K (Sun et al., 1991) respectively. Isentropic 

and isothermal compressibility of liquid n-hexane were 

derived from speed of sound at pressures up to 150 MPa, in 

temperature range 293 to 373 K (Daridon et al., 1998). 

Volumetric properties of liquid n-octadecane and n-

nonadecane were derived from speed of sound at pressures 

up to 150 MPa, in temperature range 313 to 383 K (Dotour 

et al., 2000). A grid algorithm based on sound speed data 

was used to calculate thermodynamic properties of liquid n-

dodecane in pressure range 0.1 to 140 MPa and temperature 

range 293 to 433 K (Khasanshin et al., 2003). The acoustic 

data were combined with available values of density and 

isobaric heat capacity of water along one isobar at 

atmospheric pressure to calculate the same quantities over 

pressure range 0.1 to 90 MPa and temperature range 274 to 

394 K (Benedetto et al., 2005). A heuristic approach for the 

reduction of speed of sound data in the liquid region of 

water into a fundamental equation of state was proposed 

(Scalabrin et al., 2007). This technique provides an 

analytical formulation rather than local values of 

thermodynamic properties in temperature range 274 to 400 

K and pressure range 0.09 to 100 MPa. 

 

2. Theory 

The density and the specific heat capacity at constant 

pressure of a liquid may be derived from its speed of sound 

if the following set of equations is solved (Benedetto et al., 

2005): 
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where p is the pressure, T is the temperature, u is the speed 

of sound,  is the density, cp is the specific heat capacity at 

constant pressure, and p is the thermal expansion 

coefficient. The set of partial differential Eqs. (1) to (3) 

may be solved numerically in the range of p and T in which 

accurate speed of sound values are available. This set of 
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equations may be solved as the initial value problem for the 

set of ordinary differential equations if temperature 

derivatives  
p

T  and  
pp T  are known. The 

procedure of integration is stable if the initial values are 

specified at the lowest pressure of the range (Goodwin et 

al., 2003). 

If subcritical pressures are considered, however, it is not 

possible to completely impose the initial values along the 

isobar at the lowest pressure of the range. Namely, 

decreasing the lower limit of the pressure range the 

temperature range also decreases. Therefore, in order to 

cover the maximum temperature range at subcritical 

pressures the initial values must be imposed at the highest 

pressure of the range. In this case, however, the procedure 

of integration will be stable only if the path of integration 

has a smaller slope than an isentrope passing through the 

area of interest. This condition excludes an isotherm as a 

possible choice for the path of integration. In p-T domain 

lines parallel to the saturation line fulfill the upper 

condition. However, these lines cross the isotherm at the 

triple point prior the lower limit of the pressure range is 

reached, especially those far away from the saturation line. 

In order to avoid this, lines far away from the saturation 

line must have progressively bigger slope, but never exceed 

the slope of an isentrope. This may be achieved if the path 

of integration, , passes through the points with 

temperature: 

 00 TT
n

i
TT si  , (4) 

where T0 is the lowest temperature of the range, Ts is the 

saturation temperature, i and n are natural numbers. Now, 

recalling that (Sychev, 1983): 
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Eqs. (1) and (2) become: 
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The procedure of solving the set of Eqs. (3), (6), and (7) is 

virtually the same as the one for the set of Eqs. (1) to (3), 

with the only difference that the negative step of integration 

is used, and additional derivatives  


pT   and  
pp Tc   

have to be estimated. Therefore, the same set of initial 

values may be used for supercritical and subcritical 

pressure ranges. 

Having calculated  and cp in the pressure and 

temperature range of interest, the specific heat capacity at 

constant volume may be obtained from the equation: 
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The approach just described enables a wider temperature 

range, but at the cost of the initial values which are 

generally available with lower accuracy at higher pressures 

(especially cp). 

If the initial values are specified along the saturation 

line it would enable a wider temperature range than in the 

first approach. In the same time, almost all of the initial 

values would be specified at much lower pressures than in 

the second approach. This would also exclude all the 

temperature derivatives at constant pressure, and cp as well. 

The integration would take place along the isotherms like in 

the first approach, but the front of the integration would 

have shape of the saturation line rather than an isobar. For 

that reason it would be useful to introduce index  for all 

derivatives taken along the saturation line as well as  and 

c instead of p and cp, respectively. The useful relations 

are (Neindre and Vodar, 1975): 
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 Combining Eqs. (1) to (3) and (9) to (15), with 

assistance of differential calculus, the following equations 

are obtained: 
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In order to solve Eqs. (16) and (17) for  and c it is 

necessary to specify their initial values along the saturation 

line. However, c is not experimental quantity and it has to 

be calculated from cp. Derivatives  


Tp   and  


 T  

have to be estimated in the first place, and then S and  

are calculated from (10) and (11), respectively. Now, (13) 

and (14) are combined to eliminate p. Then, Eq. (9) is 

reconfigured into the following form: 
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and solved for T. Finally, p is calculated from (14), and c 

from (13). Having estimated  


 Tp  , a numerical 

procedure may be applied and Eqs. (16) and (17) solved for 

 and c in the range of p and T in which accurate values of 
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u are available. It should be noted that Eq. (18) is not used 

anymore, and from this point on T is calculated from (9). 

 

3. Results 

3.1 Ethane 

Domain of integration for ethane is shown at Figure 1. 

 

 
 

Figure 1. Domain of integration for ethane;  speed of 

sound + initial values;  speed of sound. 

 

3.1.1 Supercritical pressures 

 The initial values of  and cp were specified at the 

isobar of 4.5 MPa, in the temperature range 125 to 275 K, 

and the integration was performed up to 10 MPa. The 

pressure range was divided into seven isobars (4.5, 5, 6, 7, 

8, 9, and 10 MPa), while the temperature range was divided 

into seven isotherms (125, 150, 175, 200, 225, 250, and 275 

K). The initial values, the reference values, as well as the 

sound-speed values were obtained from the fundamental 

equation of state (EOS) for ethane (Friend et al., 1991). The 

sound-speed values between the isobars were estimated 

from a Lagrangian interpolation polynomial of the sixth-

degree with respect to pressure. Temperature derivatives 

 
p

T  and  
pp T  were estimated analytically from 

respective functions: 
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in the pressure range 4.5 to 5 MPa, and from a Lagrangian 

interpolation polynomial of the sixth-degree in the pressure 

range 5 to 10 MPa. Parameters a, b, c, d, e, and f in Eqs. 

(19) were obtained by solving a linear least-squares 

problem with iterative refinement of Björck (Golub and 

Van Loan, 1983). The numerical integration of Eqs. (1) and 

(2), with respect to pressure, was performed by implicit 

multistep Adams-Moulton method with adaptive step-size 

(Chenney and Kincaid, 1985). 

 Relative deviations of , cp, and cv, with respect to 

corresponding reference values, are given at Figures 2, 3, 

and 4, respectively. The average absolute deviation of 

density is 0.0007%, and the maximum relative deviation is 

+0.0132%/–0.0015%. The average absolute deviation of cp 

is 0.0915%, and the maximum relative deviation is 

+0.0152%/–1.0657%. The average absolute deviation of cv 

is 0.1155%, and the maximum relative deviation is 

+0.4293%/–0.5302%. 

 
Figure 2. Relative deviation of ethane density with respect 

to reference values (Friend et al., 1991). 

 

 
Figure 3. Relative deviation of ethane cp with respect to 

reference values (Friend et al., 1991). 

 

 
 

Figure 4. Relative deviation of ethane cv with respect to 

reference values (Friend et al., 1991). 

 

3.1.2 Subcritical pressures 
 The numerical integration of Eqs. (6) and (7) was 

performed in the pressure range 4.5 to 0.1 MPa, along the 
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paths connecting the points with temperature 

 100
7

100  si T
i

T , where i = 1, 2, 3, 4, 5, and 6. The 

initial values of  and cp were specified at the isobar of 4.5 

MPa. The pressure range was divided into six isobars (4.5, 

4, 3, 2, 1, and 0.1 MPa). The initial values, the reference 

values, as well as the sound-speed values were obtained 

from the fundamental EOS for ethane (Friend et al., 1991). 

The sound-speed values between the isobars were obtained 

from a Lagrangian interpolation polynomial of the fifth-

degree with respect to pressure. Temperature derivatives 

 
p

T ,  
pp Tc  , and  

pp T  were estimated 

analytically from respective functions:  
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in the pressure range 4.5 to 3 MPa, and from a Lagrangian 

interpolation polynomial of the fifth-degree in the pressure 

range 3 to 0.1 MPa. Parameters a, b, c, d, e, and f in Eqs. 

(20) were obtained by solving a linear least-squares 

problem with iterative refinement of Björck (Golub and 

Van Loan, 1983). Pressure derivatives  


pT   were 

estimated from a Lagrangian interpolation polynomial of 

the fifth-degree. The numerical integration of Eqs. (6) and 

(7), with respect to pressure, was performed by implicit 

multistep Adams-Moulton method with adaptive step-size 

(Chenney and Kincaid, 1985). 

 Relative deviations of , cp, and cv, with respect to 

corresponding reference values are given at Figures 5, 6, 

and 7, respectively. The average absolute deviation of 

density is 0.0021%, and the maximum relative deviation is 

+0.0243%/–0.0029%. The average absolute deviation of cp 

is 0.0567%, and the maximum relative deviation is 

+0.4893%/–0.0465%. The average absolute deviation of cv 

is 0.1093%, and the maximum relative deviation is 

+0.5113%/–0.1046%. See Appendix for the uncertainties 

originating from EOSs used. 

 

 
Figure 5. Relative deviation of ethane density with respect 

to reference values (Friend et al., 1991). 

 

Figure 6. Relative deviation of ethane cp with respect to 

reference values (Friend et al., 1991). 

 

 

Figure 7. Relative deviation of ethane cv with respect to 

reference values (Friend et al., 1991). 

 

3.2 Carbon dioxide 

Domain of integration for CO2 is shown at Figure 8. 

 

 
Figure 8. Domain of integration for CO2;  speed of sound 

+ initial values;  speed of sound. 
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3.2.1 Supercritical pressures 

 The initial values of  and cp were specified at the 

isobar of 7 MPa, in the temperature range 230 to 290 K, 

and the integration was performed up to 13 MPa. The 

pressure range was divided into seven isobars (7, 8, 9, 10, 

11, 12, and 13 MPa), while the temperature range was 

divided into seven isotherms (230, 240, 250, 260, 270, 280, 

and 290 K). The initial values, the reference values, as well 

as the sound-speed values were obtained from the 

fundamental EOS for CO2 (Span and Wagner, 1996). The 

sound-speed values between the isobars were estimated 

from a Lagrangian interpolation polynomial of the sixth-

degree with respect to pressure. Temperature derivatives 

 
p

T  and  
pp T  were estimated analytically from 

Eqs. (19) in the pressure range 7 to 12 MPa, and from a 

Lagrangian interpolation polynomial of the sixth-degree in 

the pressure range 12 to 13 MPa. Parameters a, b, c, d, e, 

and f in Eqs. (19) were obtained by solving a linear least-

squares problem with iterative refinement of Björck (Golub 

and Van Loan, 1983). The numerical integration of Eqs. (1) 

and (2), with respect to pressure, was performed by implicit 

multistep Adams-Moulton method with adaptive step-size 

(Chenney and Kincaid, 1985). 

 Relative deviations of , cp, and cv, with respect to 

corresponding reference values, are given at Figures 9, 10, 

and 11, respectively. The average absolute deviation of 

density is 0.0003%, and the maximum relative deviation is 

+0.0010%/–0.0007%. The average absolute deviation of cp 

is 0.0040%, and the maximum relative deviation is 

+0.0199%/–0.0252%. The average absolute deviation of cv 

is 0.0186%, and the maximum relative deviation is 

+0.2258%/–0.0512%. 

 

3.2.2 Subcritical pressures 
 The numerical integration of Eqs. (6) and (7) was 

performed in the pressure range 7 to 1 MPa, along the paths 

connecting the points with temperature 

 220
7

220  si T
i

T , 

where i = 1, 2, 3, 4, 5, and 6. The initial values of  and cp 

were specified at the isobar of 7 MPa. The pressure range 

 

 

 
 

Figure 9. Relative deviation of CO2 density with respect to 

reference values (Span and Wagner, 1996). 

 

Figure 10. Relative deviation of CO2 cp with respect to 

reference values (Span and Wagner, 1996). 

 

 

Figure 11. Relative deviation of CO2 cv with respect to 

reference values (Span and Wagner, 1996). 

 

was divided into seven isobars (7, 6, 5, 4, 3, 2, and 1 MPa). 

The initial values, the reference values, as well as the 

sound-speed values were obtained from the fundamental 

EOS for CO2 (Span and Wagner, 1996). The sound-speed 

values between the isobars were obtained from a 

Lagrangian interpolation polynomial of the sixth-degree 

with respect to pressure. Temperature derivatives  
p

T

,  
pp Tc  , and  

pp T  were estimated analytically 

from Eqs. (20) in the pressure range 7 to 4 MPa, and from a 

Lagrangian interpolation polynomial of the fifth-degree in 

the pressure range 4 to 1 MPa. Parameters a, b, c, d, e, and f 

in Eqs. (20) were obtained by solving a linear least-squares 

problem with iterative refinement of Björck (Golub and 

Van Loan, 1983). Pressure derivatives  


pT   were 

estimated from a Lagrangian interpolation polynomial of 

the sixth-degree. The numerical integration of Eqs. (6) and 

(7), with respect to pressure, was performed by implicit 
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multistep Adams-Moulton method with adaptive step-size 

(Chenney and Kincaid, 1985). 

 Relative deviations of  , cp, and cv, with respect to 

corresponding reference values are given at Figures 12, 13, 

and 14, respectively. The average absolute deviation of 

density is 0.0013%, and the maximum relative deviation is 

+0.0042%/–0.0086%. The average absolute deviation of cp 

is 0.0686%, and the maximum relative deviation is 

+0.2667%/–0.5460%. The average absolute deviation of cv 

is 0.1016%, and the maximum relative deviation is 

+0.8542%/–0.5692%. See Appendix for the uncertainties 

originating from EOSs used. 
 

3.3 Water 

 Initial values of  and cp were specified along the 

saturation line, in the temperature range 372.756 to 537.091 

K (which corresponds to the pressure range 0.1 to 5 MPa). 

The temperature range was divided into seven isotherms 

(372.756, 424.981, 453.028, 485.527, 507.003, 523.504, 

and 537.091 K), along which the integration was 

performed. The initial values, the reference values, as well 

 

 

Figure 12. Relative deviation of CO2 density with respect to 

reference values (Span and Wagner, 1996). 

 
Figure 13. Relative deviation of CO2 cp with respect to 

reference values (Span and Wagner, 1996). 

 

Figure 14. Relative deviation of CO2 cv with respect to 

reference values (Span and Wagner, 1996). 

 

as the sound-speed values were obtained from the 

fundamental EOS for water (Wagner and Pruss, 2002). The 

sound-speed values were specified along the isotherms at 

pressure increments of 5 MPa, ending at 30.1 MPa at the 

lowest temperature and 35 MPa at the highest temperature. 

Between the isobars sound-speed values were estimated 

from a Lagrange interpolation polynomial of the sixth-

degree with respect to pressure. Derivatives  


Tp  , 

 


 T , and  


 Tp   were estimated analytically 

from respective functions: 
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Parameters a, b, c, d, e, and f in Eqs. (21) were obtained 

by solving a linear least-squares problem with iterative 

refinement of Björck (Golub and Van Loan, 1983). 

Numerical integration of Eqs. (16) and (17) was performed 

by Verner’s, adaptive step-size Runge-Kutta method of the 

sixth-order approximation (Ralston and Wilf, 1960). 

Domain of integration for water is shown at Figure 15. 

 Relative deviations of , cp, and cv, with respect to 

corresponding reference values, are given at Figures 16, 17, 

and 18, respectively. The average absolute deviation of 

density is 0.0001%, and the maximum relative deviation is 

+0.0007%/–0.0001%. The average absolute deviation of cp 

is 0.0206%, and the maximum relative deviation is 

+0.0098%/–0.1003%. The average absolute deviation of cv 

is 0.0289%, and the maximum relative deviation is 

+0.0639%/–0.1260%. See Appendix for the uncertainties 

originating from EOSs used. 
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Figure 15. Domain of integration for water;  speed of 

sound + initial values;  speed of sound. 

 

4. Conclusions 

 Presented strategy for deriving thermodynamic 

properties from speed of sound is consisted of two entirely 

new procedures that have never been investigated before. It 

may give satisfactory results for majority of technically 

interesting liquids in the pressure range from the triple point 

to far above the critical point, and the temperature range 

from the triple point to near the critical point. For 

substances with lower and moderate critical pressures initial 

values are specified along isobare near the critical pressure, 

and for those with higher critical pressures along the liquid-

vapor saturation curve. In both cases just a few accurate 

values of  and cp will be sufficient. 

 

Appendix 
The uncertainties originating from EOSs used are as 

follows: 

 

Ethane: The uncertainties of the equation of state are 0.2% 

in density, 2.5% in isobaric heat capacity above 150 K, and 

1.5% in isochoric heat capacity above 150 K. The 

uncertainty in speed of sound ranges from 0.6% in the 

liquid and vapor below the critical temperature to less than 

2% elsewhere, except in the critical region. 

 

Carbon dioxide: At pressures up to 30 MPa and 

temperatures up to 523 K, the estimated uncertainty ranges 

from 0.03% to 0.05% in density, 0.03% (in the vapor) to 

1% in the speed of sound (0.5% in the liquid) and 0.15% (in 

the vapor) to 1.5% (in the liquid) in heat capacity. Special 

interest has been focused on the description of the critical 

region and the extrapolation behavior of the formulation (to 

the limits of chemical stability). 

 

Water: The uncertainty in density of the equation of state is 

0.0001% at 0.1 MPa in the liquid phase, and 0.001% at 

other liquid states at pressures up to 10 MPa and 

temperatures to 423 K. In the vapor phase, the uncertainty 

is 0.05% or less. The uncertainties rise at higher 

temperatures and/or pressures, but are generally less than 

0.1% in density except at extreme conditions. The 

uncertainty in pressure in the critical region is 0.1%. The 

uncertainty of the speed of sound is 0.15% in the vapor and 

0.1% or less in the liquid, and increases near the critical 

region   and   at   high   temperatures   and   pressures.   The  

 

 
Figure 16. Relative deviation of water density with respect 

to reference values (Wagner and Pruss, 2002). 

 
Figure 17. Relative deviation of water cp with respect to 

reference values (Wagner and Pruss, 2002). 

 

 
Figure 18. Relative deviation of water cv with respect to 

reference values (Wagner and Pruss, 2002). 

 

uncertainty in isobaric heat capacity is 0.2% in the vapor 

and 0.1% in the liquid, with increasing values in the critical 

region and at high pressures. The uncertainties of saturation 
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conditions are 0.025% in vapor pressure, 0.0025% in 

saturated liquid density, and 0.1% in saturated vapor 

density. The uncertainties in the saturated densities increase 

substantially as the critical region is approached. 
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