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Abstract 

 

The solubility of three disperse azo dyes, 4-(N,N-dimethylamino)-4’-itroazobenzene (D1), 4-(N,N-diethylamino)-4’-

nitroazobenzene (D2) and Parared (D3) in supercritical carbon dioxide have been correlated with two equations of 

state. All critical properties have been estimated with a group contribution method (GCM). As far we know, 

solubility data for these dyes have never been correlated using an equation of state (EOS). Therefore, it is 

worthwhile to model the solubility of these disperse Azo dyes. In this work, the aim is correlating reported data with 

a new (M-factor) EOS and comparing obtained results with the results of Peng-Robinson EOS (PR-EOS) together 

with two adjustable parameter van der Waals mixing and combining rules.  The calculated results showed that M-

factor EOS is more accurate than PR-EOS. It can be employed to speed up the process of supercritical fluid (SCF) 

applications in industry. 
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1. Introduction 

In the past decades, there has been an increasing interest 

in the use of supercritical fluids as an alternative to the use 

of organic solvents in many industrial applications, such as 

in chemical and biochemical reactions, extraction and 

purification processes, particle production, textile industry, 

etc. (Teja et al, 2000, Jafari Nejad et al, 2010a, 2010b, 

2010c, Jung et al, 2001, Cooper et al, 2003, Kazarian et al, 

2000, Kikic et al, 2003). 

Supercritical carbon dioxide is the most commonly used 

supercritical fluid. The critical temperature and pressure of 

carbon dioxide is relatively low (304 K and 73.7 bar, 

respectively) (Jafari Nejad et al, 2009) and one of the most 

environmentally acceptable solvents in use today, and 

textile processes using this solvent have many advantages 

when compared to conventional aqueous processes (Fasihi 

et al, 2004). Supercritical carbon dioxide gives an option 

avoiding water discharge, it is low in cost, nontoxic, and 

nonflammable, and the carbon dioxide can be recycled. 

Also, when dying from an aqueous medium, reduction 

clearing is carried out to stabilize the color intensity, 

producing further water waste. Reduction clearing is not 

carried out following supercritical dyeing. Supercritical 

carbon dioxide also has other advantages. The application 

of the dye to the fabric can be controlled and a better 

quality of application achieved (Saus et al, 1995, Clifford et 

al, 1996). The dyes used in supercritical dyeing are the 

nonionic, so-called disperse dyes. 

To develop and design the supercritical fluid dyeing 

(SFD) process a lot of basic dye solubility data and 

modeling of these solubility data are necessary. Disperse 

Dyes for dyeing polyester textile is divided into two groups: 

Azo and anthraquinone derivatives (Bae et al, 1996, 

Haarhaus et al, 1995, Joung et al, 1998). 

In the mathematical modeling of solubility data in 

supercritical fluids, one should keep in mind that the 

solubility systems can be categorized in three groups, a 

single solute in a supercritical fluid, mixed solutes in a 

supercritical fluid and a single solute in mixed supercritical 

fluids or supercritical fluid plus an organic solvent. 

Different equations have been presented for mathematical 

modeling of solubility data in SC CO2. One can categorize 

these models into two groups, theoretical or semi-empirical 

equations (similar to models based on equations of state) 

and empirical equations (such as density based equations). 

Models derived from equations of state need complicated 

computational procedures that are not provided in 

commonly used commercial software. Also, these models 

employ the solute properties, such as critical properties, 

acentric factor, molar volumes and vapor pressure, which 

often cannot be easily determined experimentally. The 

numerical values of the solute properties can affect 

solubility predictions using models derived from equations 

of state [2]. To avoid some of these difficulties as well as 

more complicated computational routines, most authors opt 

to use empirical correlations such as density-based 

correlations (Chrastil, Bartle, M´endez-Santiago–Teja, 

Jafari Nejad et al. and etc. models), or the Ziger–Eckert 

semi-empirical correlation. These models are based on 

simple error minimization using least-squares methods, and 

for the majority of them, there is no need to estimate and 

use critical and thermophysical properties of the involved 

solutes (Jafari Nejad et al, 2009, 2010). 

In this study, solubilites of three disperse Azo dyes, 4-

(N,N-dimethylamino)-4’-nitroazobenzene (D1), 4-(N,N-

diethylamino)-4’-nitroazobenzene (D2) and Parared (D3) 

(Fasihi et al, 2004) in supercritical carbon dioxide have 

been correlated with two equation of state; Peng-Robinson 

EOS (PR-EOS) together with two adjustable parameter van 

der Waals mixing and combining rules and new (M-factor) 

EOS (Jafari Nejad et al, 2009). As far we know, solubility 

data for these dyes never has been correlated using an 
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equation of state (EOS). Therefore, it is worthwhile to 

model the solubility of these disperse Azo dyes. 

 

2. Theory 

The use of different models to correlate the solubility 

data was investigated using models based on a cubic EOS 

(Peng–Robinson (PR-EOS); together with two adjustable 

parameter van der Waals (vdW) mixing and combining 

rules and a new equation of state (EOS). 

 

2.1. Peng–Robinson equation of state (PR-EOS) 

The solubility of a solute (y2) at equilibrium with a 

fluid, at high pressures, can be calculated using the 

following expression: 
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Here, P2
sat

 is the saturation pressure of the solute, υ2 the 

molar volume of the solute and 
SCF

2  is the fugacity 

coefficient of the solute in the fluid phase, which expresses 

the non-ideality of the fluid phase. The fugacity coefficient 

can be calculated with an equation of state. In this work, the 

Peng–Robinson EOS (Eqs. (2) – (5)), here defined for pure 

substances, were used: 
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To use the above EOS for a binary mixture, we 

employed the classical van der Waals (vdW) mixing and 

combining rules, with two adjustable parameters, kij and lij 

(vdW2): 
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The binary interaction parameters, kij and lij, are 

obtained by fitting experimental data, through the 

minimization of an objective function (Robinson et al, 

1976, Coimbra et al, 2005). 

Using the conventional mixing rules for a mixture, the 

fugacity coefficient for component h in a mixture is given 

by (Prausnitz et al, 1999): 
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Where, yi is the mole fraction of component i. 

The individual absolute relative deviations (IARD) of 

calculated solubilities from observed values are used as an 

accuracy criterion to compare the calculated solubilities 

with experimental values. IARD was calculated by: 
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The average-absolute-relative-deviation (AARD) 

defines as: 
exp
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In this equation, N is the number of experimental data 

points, y2
cal

 and y2
exp

 are calculated solubilities and 

experimental solubility, respectively. 

 

2.2. Theory of new (M-factor) equation of state 

The virial EOS was originally introduced by 

Kammerligh-Onnes as of ascending power of density to 

represent the compressibility factor. Later on, Ursell and 

Mayer (1957) developed the statistical mechanic for virial 

equation, which is formally presented as a series expansion 

of either the radial distribution function or the grand 

canonical partition function for low-density gases. The 

virial coefficients are related to the intermolecular potential 

energy so that B is linked through rigorous relations to the 

so-called pair potential energy function, which is 

responsible for many thermodynamic and transport 

properties of fluid (Vetere, 1999), C is related to the energy 

of interaction between triples of molecules, and so forth. 

The Leiden virial equation of state gives the compressibility 

factor as a power series in the reciprocal molar volume: 
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The mathematically analogous power series in the 

pressure can be derived from Eq.11 and is known as the 

Berlin virial EOS: 
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The molar volume in Eq.12 was explicitly obtained and 

then substituted into Eq.11. Hence two set of coefficients in 

Eq.11 and Eq.12 are related as below: 
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Because the C, D, E and higher virial coefficients are 

responsible for molecular interactions, thus these are 

generically dependent on binary interactions. From Eq.13, 



 
Int. J. of Thermodynamics Vol. 15 (No. 2) / 105 

it is intelligible that whatever the molecular interaction 

effects become more intense, the second virial coefficient 

takes higher order of magnitude. For example, C  and D  

are proportional to second and third power of B. 

Mathematically, there are the same terms of B/RT in all of 

the above relations. Also, much less have been known the 

third and fourth virial coefficients than the second virial 

coefficient though data of third coefficient for certain gases 

can be found in literature (Johnston et al, 1934, Nicola et al, 

2005). Besides, it is feasible that effects of all terms in 

Eq.13, except B-included, be reconsidered by means of 

several temperature dependent coefficients. For these 

reasons, in Eq.13, when the third, fourth and higher order 

virial coefficients be nonce ignored, Eq.13 diminishes to 
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Since the third, fourth and higher order virial 

coefficients depend only on temperature; several 

coefficients were inserted behind the relations of Eq.14 to 

estimate considerable effects of eliminated virial 

coefficients. These coefficients only have temperature 

dependency and would make up effects of C, D… which 

had been removed at previous step.  Substituting  
' ' ' ', , , ,...B C D E  from Eq.14 into Eq.12 gives 
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Eq.15 may be written as 
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Pitzer and Curl (1957) proposed a correlation, which 

expresses the quantity c

c

BP

RT
 as   
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The function 
(0)f  gives the reduced second virial 

coefficients for simple fluids ( 0  ) while 
(1)f  is a 

correction function which, when multiplied by   gives the 

effect of eccentricity on the second virail coefficient. The 

two functions 
(0)f  and 

(1)f  were determined from 

experimental data and modified by Tsonapaulos (1975). 

Meng et al. (2004) presented a modified corresponding 

correlation that compares well with experimental data for 

the second virial coefficient for most non-polar pure 

compounds, since the predictions have been corrected for 

most physics effects such as adsorption. Detailed 

comparisons with the well-known Tsonopoulos correlation 

showed that the model is somewhat better than 

Tsonopoulos correlation for non-polar substances. The 

correlation for non-polar fluids is: 
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For slightly polar substances it is better to utilize 

Tsonopoulos correlation. Also for polar substances, the 

second virial coefficient may be calculated from Janecek et 

al. (2003) correlation or Pires et al. (2001) correlation. For 

mixtures, the mixing second virial coefficient can be 

usually predicted with the help of mixing rules. The binary 

second virial coefficient, for example, is given by: 
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Where Sij is interaction parameter, is obtained by fitting 

experimental data, through the minimization of an objective 

function. For the first time Mohebbi and Mohammadikhah 

(2007) have represented a new EOS based on the virial 

equation including M-factor, reduced temperature and 

reduced pressure. The dimensionless form of M-factor is: 
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With substituting Eq.21 into Eq.15 we get 
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As a consequence, this equation explains that the 

compressibility factor of each substance just depends on M-

factor and temperature. Though M-factor is a compound 

parameter but can be assumed as a novel parameter with 

different properties than its composer parameters such as Tr 

or Pr. Thus the compressibility factor can be written as: 

 

( , )rZ Z M T  (23) 

 

From Eq. 22, the modified form can be rewritten as: 
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The reason of election third order polynomial versus M is 

the fitting of this equation all the experimental data with 

R
2
>0.99 (Mohebbi et al, 2007, Jafari Nejad et al 2009). 

Mohammadikhah, Abolghasemi and Jafari Nejad (2009) 

have developed this EOS for prediction of solute solubility 

in supercritical carbon dioxide. The coefficients of Eq. 24 

are (for Tr <1.1, in this work): 
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3 2( ) 75.36 157.7 82.86r r rf T T T    (27) 

 

4

3 2

0.05038 0.0001896
( )

2.508 2.098 0.5845
r

r

r r r

T
f T

T T T




  
 (28) 

 

Where these coefficients are for 

001235.00252.039312.0
23
 rr TTM , and for 

001235.00232.039312.0
23
 rr TTM , these 

coefficients become: 

 
2

1

2

0.6592 0.7257 0.208
( ) 0.95

2.4 2.607
r r

r

r r

T T
f T

T T

 
 

 
 (29) 

 
2

2

2

729.5 2499 821.8
( ) 0.95

1836 4545
r r

r

r r

T T
f T

T T

 
 

 
 (30) 

 
3( ) 0rf T   (31) 

 
4 ( ) 0rf T   (32) 

 

The fugacity coefficient of component i in the fluid 

mixture is: 

 

0

( 1)ˆ P
i

i

Z
Ln dP

P



   (33) 

 

MRT RT
P dP dM

B B
    (34) 

 

0

( 1)ˆ M
i

i

Z
Ln dM

M



   (35) 

 

The Eq.25 is a multi-domain equation, thus: 
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The expression for φ2 is (Jafari Nejad et al, 2009): 
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Thus the solubility of a liquid solute at equilibrium with a 

fluid, at high pressures, can be calculated using the Eq.1. 

 

3. Material and Methods 
The structures of the selected disperse azo dyes and 

their physicochemical properties are given in Table 1. 

Fasihi et al. (2004) carry out the solubility measurements of 

these disperse azo dyes at temperatures 308, 318, 328, 338, 

348 and 358 K over a pressure range from 122 to 355 bar. 

The experimental results are listed in Table 2 in terms of 

equilibrium mole fraction, y. In order to compare the 

accuracy of the new correlation with the PR-EOS, it is 

assumed that all the experimental data are correct. The 

solubility of D2 is greater than that of D1 and D3 by a factor 

of about 7 and 20, respectively. The addition of one CH2-

group to D2 molecule, results in a significant solubility 

enhancement of D2 in comparison with D1 (Fasihi et al, 

2004). Similar results have been reported in the literature 

(Draper et al, 2000). 

It should be noted that in this study the program of 

calculations were written in MATLAB Software by the 

authors.  

 

Table 1. Structure of dyes and their physicochemical properties (Fasihi et al, 2004) 

Dyes Structure Melting 

point (K) 

Mw 

(g/mole) 

D1 

 

488-489 270.12 

D2 

 

418-419 298.14 

D3 

 

529-530 293.13 
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Table 2. Correlation and experimental (Fasihi et al, 2004) results of solubilities of three disperse azo dyes, D1, D2 

and D3 in SC-CO2 at various temperatures and pressures. 

Conditions D1 D2 Conditions D3 

T (K) 
P 

(bar) 
10

6
 y 10

6
 y

Cal
 10

5
 y 10

5
 y

Cal
 T (K) P (bar) 10

6
 y 10

6
 y

Cal
 

308 122 2.93 2.9307 0.98 0.97830 328 122 0.32 0.3197 

 152 2.74 2.7407 1.12 1.1178  152 0.48 0.4802 

 182 2.61 2.6070 1.51 1.5121  182 0.78 0.7800 

 213 2.93 2.9267 1.76 1.7566  213 1.16 1.1585 

 243 3.61 3.6102 2.11 2.1145  243 1.45 1.4525 

 274 3.83 3.8355 2.36 2.3602  274 1.73 1.7237 

 304 3.81 3.8077 2.6 2.5929  304 2.06 2.0676 

 334 4.62 4.6215 2.91 2.9205  334 2.46 2.4681 

 355 4.84 4.8328 3.16 3.1703  355 2.75 2.7542 

318 122 1.46 1.4613 0.8 0.8012 338 122 0.44 0.4401 

 152 2.12 2.1224 1.25 1.2478  152 0.5 0.5011 

 182 2.83 2.8299 1.66 1.6570  182 0.75 0.7491 

 213 3.5 3.5034 1.97 1.9705  213 1.43 1.4321 

 243 4.21 4.2041 2.73 2.7291  243 1.77 1.7735 

 274 4.2 4.2001 2.88 2.8796  274 2.43 2.4371 

 304 4.74 4.7470 2.93 2.9303  304 3.08 3.0791 

 334 5.07 5.0600 4.09 4.0863  334 3.51 3.5152 

 355 6.23 6.2183 4.36 4.3528  355 3.95 3.9551 

328 122 2 2.0015 0.51 0.5104 348 122 - - 

 152 2.05 2.0484 0.85 0.8501  152 0.41 0.4092 

 182 2.89 2.8923 1.41 1.4091  182 1.06 1.0623 

 213 4.23 4.2346 2.22 2.2231  213 1.25 1.2506 

 243 4.61 4.6104 2.93 2.9293  243 1.95 1.9537 

 274 5.37 5.3625 3.26 3.2532  274 2.9 2.8964 

 304 7.06 7.0543 4.33 4.3199  304 3.5 3.4965 

 334 8.27 8.2566 5.12 5.1292  334 4.35 4.3374 

 355 9.85 9.8661 5.6 5.6115  355 5.16 5.1753 

338 122 1.65 1.6490 0.28 0.2797 358 122 0.22 0.2201 

 152 2.08 2.0807 0.79 0.7904  152 0.47 0.4698 

 182 3.37 3.3697 1.48 1.4817  182 1.27 1.2696 

 213 4.94 4.9429 2.36 2.3610  213 2.22 2.2249 

 243 6.57 6.5664 3.9 3.8957  243 2.85 2.8429 

 274 8.05 8.0484 4.77 4.7655  274 3.8 3.7971 

 304 10.3 10.3021 6.23 6.2419             304 4.76 4.7709 

 334 11.99 11.9983 7.46 7.4527             334 5.91 5.9237 

 355 13.77 13.7641 8.55 8.5453             355 6.46 6.4405 

348 122 1.59 1.5910 0.24 0.2400 

 152 2.03 2.0302 0.76 0.7593 

 182 3.71 3.7078 1.52 1.5190 

 213 6.22 6.2236 2.88 2.8847 

 243 8.01 8.0052 5.75 5.7411 

 274 9.78 9.7735 7.07 7.0802 

 304 12.62 12.6362 8.28 8.2726 

 334 15.22 15.2350 9.92 9.9255 

 355 18.37 18.3735 11.1 11.0985 

4. Result and discussion 

For the application of the EOSs based models, it is 

necessary to have knowledge of the molar volume and 

saturation pressure of dyes, critical temperature, critical 

pressure and Pitzer’s acentric factor of the solute and of 

solvent. 

Saturation pressure of solute can be calculated with 

Reidel-Plank-Miller Method, critical properties estimated 

with group contribution method (GCM), Pitzer’s acentric 

factor estimated using Lee-Kesler’s Method (Joback et al, 

1987, Reid et al, 1987). All estimated critical properties for 

D1, D2 and D3 are listed in Table 3. 

Results of calculated solubility corresponding to each 

experimental data are summarized in Table 2. The optimal 

fitted binary parameters and the respective AARD 

combined with the van der Waals mixing and combining 

rules, with two adjustable parameters (vdW2) and new EOS 

for D1, D2 and D3 are presented in Table 4, Table 5 and 

Table 6, respectively. Good correlation results were 

obtained between the calculated and experimental 

solubility, to all fitted models. All fitted models were 

shown to be able to successfully correlate experimental 

solubility data. The AARD of new EOS is significantly 

lower than that obtained from PR-EOS. The mean 
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Table 3. Estimated critical and other thermo physical properties of D2 

Property Value for D1 Value for D3 Value for D3 

Tc (K) 1148.49 
a
 1184.61 

a
 1322.78 

a
 

Pc (bar) 21.0034 
a
 16.8241 

a
 25.5592 

a
 

ω 0.92634 
b
 0.95803

b
 1.18618

b
 

Vc (cm
3
/mole) 703.5 

a
 815.5 

a
 685.5 

a
 

a 
Estimated by Joback’s Method (Joback et al, 1987, Reid et al, 1987) 

b
 Estimated by Lee-Kesler’s Method (Joback et al, 1987, Reid et al, 1987) 

 

Table 4. Correlation results obtained with the PR-EOS and M-factor EOS for D1: The binary interaction parameters, kij 

and lij, Bij is virial coefficients, Sij is interaction parameter, where 1 is CO2 and 2 is D1, The average-absolute-relative-

deviation (AARD %). 

T(K) Peng-Robinson EOS  New EOS 

 k12 l12 AARD (%)  s12 B11 B22 B12 AARD (%) 

308 0.368 0.183 27.30  -0.1352 -114.2769 -980646.544 -1959.457 0.074 

318 0.327 0.146 18.74  -0.0968 -105.8903 -771714.101 -1771.305 0.109 

328 0.293 0.120 23.00  -0.0584 -98.2619 -613250.216 -1613.052 0.099 

338 0.277 0.105 31.20  -0.0202 -91.2953 -491918.569 -1478.365 0.040 

348 0.199 0.097 17.93   0.0172 -84.9096 -398174.865 -1362.487 0.062 

 

Table 5. Correlation results obtained with the PR-EOS and M-factor EOS for D2: The binary interaction parameters, kij 

and lij, Bij is virial coefficients, Sij is interaction parameter, where 1 is CO2 and 2 is D2, The average-absolute-relative-

deviation (AARD %). 

T(K) Peng-Robinson EOS  New EOS 

 k12 l12 AARD (%) s12 B11 B22 B12 AARD (%) 

308 0.427 0.201 37.00  -0.1326 -114.2769 -1647877.9 -2456.104 0.210 

318 0.401 0.197 25.72  -0.0958 -105.8903 -1293977.5 -2212.230 0.093 

328 0.389 0.183 17.93  -0.0584 -98.2619 -1025817.9 -2007.930 0.127 

338 0.377 0.176 23.33  -0.0211 -91.2953 -820712.79 -1834.732 0.092 

348 0.356 0.154 31.02   0.0156 -84.9096 -662430.36 -1686.281 0.084 

 

Table 6. Correlation results obtained with the PR-EOS and M-factor EOS for D3: The binary interaction parameters, kij 

and lij, Bij is virial coefficients, Sij is interaction parameter, where 1 is CO2 and 2 is D3, The average-absolute-relative-

deviation (AARD %). 

T(K) Peng-Robinson EOS  New EOS 

 k12 l12 AARD (%) s12 B11 B22 B12 
AARD 

(%) 

328 0.399 0.187 28.01  -0.0569 -98.2619 -2134017.6 -2092.757 0.184 

338 0.387 0.174 31.29  -0.0234 -91.2953 -1695316.1 -1893.365 0.146 

348 0.323 0.161 23.07  -0.0127 -84.9096 -1357802.4 -1724.621 0.181 

358 0.301 0.143 15.86   0.0442 -79.0363 -1096007.8 -1580.315 0.160 

differences between global AARD (= (AARD)/ (total 

number of data sets)) for the new EOS and PR-EOS are 

statistically significant. The global AARD values for these 

data sets are shown in Figure 1. The mean AARD for the 

new EOS is 0.12 %, which is significantly lower than that 

obtained from PR-EOS (25.10 %). The new EOS presented 

more accurate correlation for solubility data in supercritical 

CO2. It can be employed to speed up the process of SCF 

applications in industry. 

 

5. Conclusion 

Solubility data of dyes in supercritical fluids (SCF) are 

crucial for designing supercritical fluid dying processes. In 

this study, solubilites of three disperse Azo dyes, 4-(N,N-

dimethylamino)-4’-nitroazobenzene (D1), 4-(N,N-

diethylamino)-4’-nitroazobenzene (D2) and Parared (D3) in 

supercritical carbon dioxide have been correlated with two 

equation of state; PR-EOS together with two adjustable 

parameter van der Waals mixing and combining rules and 

M-factor EOS. The mean AARD for the M-factor EOS is 

0.12 %, which is significantly lower than that obtained from 

PR-EOS (25.10 %). The M-factor EOS presented more 

accurate correlation for solubility data in supercritical CO2. 

It can be employed to speed up the process of SCF 

applications in industry. 

 
Figure.1. Mean (Global) AARD values for M-factor EOS 

and PR-EOS. 
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Nomenclature 

List of symbols 

α energy parameter of the cubic equation of 

state (N m
4
 mol

-2
) 

AARD average absolute relative deviation (%) 

B volume parameter in the PR EOS and in the 

SRK EOS (m
3
 mol

−1
) 

A,B,C,D,.. virial coefficients 

A
'
, B

'
, C

'
,  virial coefficients                   

EOS     equation of state 

GCM     group contribution method 

IARD    individual absolute relative deviations 

kij     binary interaction parameter 

lij           binary interaction parameter 

M          M factor (BP/RT) 

P           pressure (Pa) 

PR         Peng–Robinson 

R        ideal gas constant (J mol
−1

 K
−1

) 

S          Interaction parameter 

SCF  supercritical fluids 

T         temperature (K) 

V         Volume 

υ       molar volume (m
3
 mol

−1
) 

vdW2        van der Waals mixing and combining rules 

with two adjustable parameters 

y        mole fraction 

Z     compressibility factor 

 

Greek symbols 

( ), ( ), ( )T T T     Coefficients of Eq. (22) 

       Fugacity coefficient 

ρ        density of pure CO2 (kgm
−3

) 

            Pitzer
,
s acentric factor  

 

Subscripts 

1    solvent 

2       solute 

c      critical property 

i, j,h,p,k    components 

m        mixture  

r         reduced 

   

Superscripts 

cal         calculated 

exp         experimental 

SCF      supercritical phase 

sat         saturation 

 

References 

Bae, H. K. Hur, B. K. (1996). Solubility of Disperse Dyes 

in Supercritical Carbon Dioxide. J. KIChe 34, 379-382. 

 Clifford, A. Bartle, K. D. (1996). Supercritical Fluid 

Drying. Textile Technol. Int. 6, 113-117. 

Cooper, A.I. (2003). Porous Materials and Supercritical 

Fluids. Adv. Mater. 15, 1049–1059. 

Coimbra, P. Gil, M. H. Duarte, C. M. M. Heron, B. M. de 

Sousa, H. C. (2005). Solubility of a 

Spiroindolinonaphthoxazine Photochromic Dye in 

Supercritical Carbon Dioxide: Experimental 

Determination and Correlation. Fluid Phase Equilib. 

238, 120–128. 

Draper, S.L. Montero, G.A. Smith, B. Beck, K. (2000). 

Solubility relations for disperse dyes in supercritical 

carbon dioxide. Dyes Pigments. 45, 177-183. 

Fasihi, J. Yamini, Y. Nourmohammadian, F. Bahramifar, 

N. (2004). Investigations on the Solubilities of Some 

Disperse Azo Dyes in Supercritical Carbon Dioxide. 

Dye. Pig. 63, 161-168. 

Haarhaus, U. Swidesky, P. Schneider, G. M. (1995). High-

Pressure Investigations on the Solubility of Dispersion 

Dyestuffs in Supercritical Gases by VIS/NIR-

Spectroscopy Part I. J. Supercrit. Fluids 8, 100-106. 

Jafari Nejad, Sh. Abolghasemi, H. Moosavian, M.A. 

Maragheh, M.G. (2010). Prediction of solute solubility 

in supercritical carbon dioxide: A novel semi-empirical 

model. Chem. Eng. Res. Des. 88, 893-898. 

Jafari Nejad, Sh. Abolghasemi, H. Golzary, A. Moosavian, 

M.A. Maragheh, M.G. (2010). Fractional factorial 

design for the optimization of hydrothermal synthesis of 

lanthanum oxide under supercritical water condition. J. 

of Supercritical Fluids 52, 292–297. 

Jafari Nejad, Sh. Abolghasemi, H. Moosavian, M.A. 

Maragheh, M.G. (2010). Fractional factorial design for 

the optimization of supercritical carbon dioxide 

extraction of La
3+

, Ce
3+

 and Sm
3+ 

ions from a solid 

matrix using bis(2,4,4- trimethyl 

pentyl)dithiophosphinic acid + tributylphosphate, Chem. 

Eng. Res. Des. in press. 

Jafari Nejad, Sh. Mohammadikhah, R. Abolghasemi, H. 

Moosavian, M.A. Maragheh, M.G. (2009). A novel 

equation of state (EOS) for prediction of solute 

solubility in supercritical carbon dioxide: Experimental 

determination and correlation. The Canadian journal of 

chemical engineering. 87, 930-938. 

 Janecek, J. Boublik, T. (2003). The Second Virial 

Coefficient of Polar Rod-Like Molecules. Fluid Phase 

Equilib. 212, 349–361. 

 Joback, K.G. Reid, R.C. (1987). Estimation of Pure 

Component Properties from Group-Contributions. 

Chemical Engineering Communications 57, 233-243. 

Johnston, H. L. Weimer, H. R. (1934). Low Pressure Data 

of State of Nitric Oxide and of Nitrous Oxide between 

their Boiling Points and Room Temperature. J. Am. 

Chem. Soc. 56, 625–630. 

Joung, S. N. Shin, H. Y. Yoo, K. P. (1998). Measurement 

and Correlation of Solubility of Disperse Anthraquinone 

Azo Dyes in Supercritical Carbon Dioxide. Korean J. 

Chem. Eng. 15, 78-84. 

Jung, J. Perrut, M. (2001). Particle design using 

supercritical fluids. J. Supercrit. Fluids 20, 179–219. 

 Kazarian, S.G. (2000). Ploymer processing with 

supercritical fluid. Polym. Sci. Ser. 42, 78–101. 

Kikic, I. Vecchione, F. (2003). Supercritical impregnation 

of polymers.  Curr. Opin. Solid St. M. 7, 399–405. 

Meng, L. Duan, Y. Y. Li, L. (2004). Correlations for 

Second and Third Virial Coefficients of Pure Fluids. 

Fluid Phase Equilib. 226, 109–120. 



 
110 / Vol. 15 (No. 2)  Int. Centre for Applied Thermodynamics 

Mohebbi, A. Mohammadikhah, R. (2007). A Simple 

Equation of State for Calculating the Compressibility 

Factor of Pure Fluids Based on the Virial EOS, J. Phys. 

Chem: An Ind. J. 2, 1-6. 

Nicola, D. G., Giuliani, G. Polonara, F. Stryjek, R. (2005). 

Second and Third Virial Coefficients for the R41+N2O 

System.  Fluid Phase Equilib. 228, 373–379. 

Pires, A. P. Mohamed, R. S. Mansoori, G. A. (2001). An 

Equation of State for Property Prediction of Alcohol–

Hydrocarbon and Water–Hydrocarbon Systems. J. Pet. 

Sci. Eng. 32, 103–114. 

Pitzer, K. S. Curl, R. F. (1957). The Volumetric and 

Thermodynamic Properties of Fluids. III. Empirical 

Equation for the Second Virial Coefficient. J. Am. 

Chem. Soc. 79, 2369–2376. 

Prausnitz, J. M. Lichtenthaler, R. N. De Azevedo, E. G. 

(1999). Molecular Thermodynamics of Fluid-Phase 

Equilibria, 3
rd

 ed. Prentice Hall PTR, Upper Saddle 

River, NJ pp.351. 

Reid, R.C. Prausnitz, J. M. Poling, B. E. (1978). The 

Properties of Gases & Liquids, 4th Edition, Mc Graw-

Hill, New York. 

Robinson, D. B. Peng, D. Y. (1976). A New Two-Constant 

Equation of State. Ind. Eng. Chem. Fund, 15, 59–564. 

 Saus, W. GmbH, J. (1975). SFD-Dry Dyeing of Polyester 

in CO2. Textile Technol. Int. 5, 145-150. 

Teja, A.S. Eckert, C.A. (2000). Commentary on 

Supercritical Fluids: Research and Applications. Ind. 

Eng. Chem. Res. 39, 4442–4444. 

Tsonopoulos, G. (1975). Second Virial Coefficients of 

Polar Haloalkanes. J. AICHE 21, 827–836. 

Vetere, A. (1999). An Improved Method to Predict the 

Second Virial Coefficients of Pure Compounds. Fluid 

Phase Equilib. 164, 49–59. 

 


