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Abstract  
 

The objective of this work is making comparison between thermodynamic models and data-driven techniques 

accuracy in prediction of hydrate formation pressure as a function of temperature and composition of gas mixtures. 

The Peng-Robinson (PR) and Patel-Teja (PT) equations of state are used for thermodynamic modeling and Artificial 

Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are used as data-driven models. 

The capability of each method is evaluated by comparison with the experimental data collected from literature. It is 

shown that there is a good agreement between thermodynamic modeling and the experimental data in most of the 

cases; however, the prediction relative errors are more than 10% in some cases. The data-driven models are trained 

and tested using a set of experimental data and their optimum structures are selected based on the prediction error of 

the test data set. The accuracy of ANN for prediction of hydrate formation pressure is slightly better than those of 

PR and PT. The prediction errors of ANFIS for all cases are less than 1% which is very promising and proves the 

potential of ANFIS as a capable tool for prediction of the hydrate formation pressure. 

  

Keywords: Hydrate formation pressure; equation of state; artificial neural networks; adaptive neuro-fuzzy inference 

system.  

 

1. Introduction 

Gas hydrates are solid crystalline compounds formed 

under certain conditions of temperature and pressure in 

which gas molecules with rather modest sizes and 

appropriate geometries are trapped inside water cavities. 

The presence of water and hydrocarbon molecules in 

typical natural gas compositions can therefore lead to 

hydrate formation, which may cause serious problems in 

gas processing and transportation. Thus, accurate prediction 

of the hydrate formation condition is important to control 

many operational, economic and safety problems associated 

with the gas industry. 

Several efforts have been performed to develop reliable 

methods of predicting gas hydrate formation condition 

using thermodynamic models (Chapoy et al., 2010; 

Ferrando et al., 2006; Marion et al., 2006; Ma et al., 2003). 

Some of these methods are based on a statistical 

thermodynamic approach developed by van der Waals and 

Platteeuw (Van der Waals & Platteeuw, 1959). This 

approach accounts for the interactions between water 

molecules forming the crystal lattice and gas molecules and 

has been modified by many investigators (Dharmawardhana 

et al., 1980; John et al., 1985; Paranjpe et al., 1989; Parrish 

& Prausnitz, 1972). Moreover, various empirical 

correlations have been presented in literatures for predicting 

the hydrate dissociation condition. Holder et al. have 

presented a correlation used for some pure gases; whereas 

Makogon and Kobayashi et al. have developed other 

general equations based on the gas gravity for hydrate 

forming condition of natural gases (Elgibaly & Elkamel, 

1998). 

Recently, data-driven modeling methods such as 

Artificial Neural Networks (ANNs) are used as capable and 

precise mathematical techniques for prediction of phase 

equilibrium and PVT properties (Habiballah et al., 1996). 

These techniques just use the knowledge obtained from 

experimental input-output data of the system to predict the 

performance without any necessity to know the details of 

the related phenomena. Some recent researches have 

investigated the capability of ANN in prediction of hydrate 

formation condition (Elgibaly & Elkamel, 1998; 

Mohammadi et al., 2010; Mohammadi & Richon, 2010). 

Another data-driven modeling technique is the Adaptive 

Neuro-Fuzzy Inference System (ANFIS). Although it has 

been shown in some researches that ANFIS model performs 

better than ANN (Das et al., 2010; Esen & Inalli, 2008), 

there is no published work on applying this technique for 

hydrate equilibrium calculations.  

The objective of this work is to compare the capability 

of thermodynamic and data-driven modeling techniques for 

prediction of hydrate formation pressure. The hydrate phase 

equilibrium data used for training and testing the ANN and 

ANFIS are obtained from Sloan and Koh (Sloan & Koh, 

2008) including 722 experimental data points. These data 

include certain mixtures of methane, ethane, propane, i-

butane, n-butane, CO2 and H2S as gas components with 

temperature range of 215 to 302K and pressure range of 

0.05 to 62MPa. Table 1 briefly describes the experimental 

data used in this work.  

For thermodynamic modeling, a general phase 

equilibrium model based on the uniformity of fugacity of 

each component in all the phases is used to model the gas 

hydrate phase equilibria (Avlonitis, 1992; Tohidi et al., 

1993). The Peng and Robinson (Peng & Robinson, 1976) 

and Patel and Teja (Patel & Teja, 1982) equations of state 

with the van der Waals mixing rule (Kwak & Mansoori,
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Table 1. Some of experimental data used for training of ANN and ANFIS in this work (Sloan & Koh, 2008). 

Mixture 
Experimental data 

number 
Pressure range (MPa) Temperature range (K) 

C1 , C2 45 0.945 – 13.89 214.8 – 293.3 

C1 , C3 64 0.245 – 13.89 274.8 – 296.2 

C1 , iC4 77 0.127 – 62.23 273.8 – 302.1 

C2  , CO2 45 0.565 – 4.081 273.5 – 287.8 

C1  , CO2 , H2S 96 0.582 – 15.707 274.2 – 299.7 

C1  , C2 , C3 , iC4 8 0.92 – 2.67 273.5 – 281.9 

C1  , C2 , C3 , iC4 , nC4 5 0.497 – 13.55 273.7 – 293.6 

C1  , C2 , C3 , iC4 , nC4 , CO2 16 0.593 – 3.51 273.7 - 282 

 

1986) are employed to calculate the fugacity in fluid 

phases. This approach has been proved to be a reliable tool 

in modeling systems containing polar and non-polar 

components (Avlonitis et al., 1994). For data-driven 

modeling, the feed-forward neural network and ANFIS are 

used. The authors believe that the present study is the first 

one applying an ANFIS for prediction of hydrate formation 

pressure as a function of temperature and concentration in 

gas mixtures.  

 

2. Modeling Methods 

In this section, three different modeling methods are 

presented. Section 2.1 describes the thermodynamic 

modeling and the description of ANN and ANFIS methods 

are stated in sections 2.2 and 2.3. 

 

2.1 Thermodynamic Modeling 

Generally, methods for prediction of hydrate phase 

equilibria are empirical correlations, charts or 

thermodynamic models, which are based on equality of 

chemical potentials of various components in different 

phases (Chapoy et al., 2007). Thermodynamic models are 

based on two different approaches to treat the VLE. One 

uses Equation of State (EoS) approach to calculate the 

fugacity of mixture components in each of the phases. The 

other uses EoS approach for fugacity calculation of vapor 

phase and employs activity coefficient and Henry’s 

constant for modeling the aqueous phase. The latter 

approach is employed in this study. 

Three phase equilibrium conditions (Lw-H-V) at which 

hydrates form from gas and free water are considered. The 

Lw-H-V line has pressure–temperature conditions of the 

most interest in natural gas systems, because this 

equilibrium normally occurs at low temperatures and high 

pressures (Sloan & Koh, 2008). In fact, due to existence of 

water in gas sea lines and low temperature and high 

pressure of fluid, this three phase equilibrium is certain to 

take place.  

 

2.1.1 Hydrate Phase Modeling 

As previously mentioned, gas hydrates are crystalline 

compounds stabilized by inclusion of small gas molecules 

inside water cavities. The most common gas hydrates exist 

in either of two distinct structures (structures I & II), each 

of which contains two different types of cavities. The 

chemical potentials of water in gas hydrate can be predicted 

from the ideal solid solution theory presented by van der 

Waals and Platteeuw (Van der Waals & Platteeuw, 1959). 

They have assumed each cavity as a spherical cage which 

may contain only one gas molecule. Only gas-water 

interactions are allowed and it means no interactions 

between encaged molecules exist. According to this 

statistical thermodynamic theory, the chemical potential of 

water in a hydrate phase   
  is related to that in the 

hypothetical empty lattice state   
 

 by Eq. (1):  

 

  
    

 
   ∑     (  ∑     )   (1) 

i = 1,2,…,NCAV 

K = 1,2,…,NCOMP 

 

where R is the gas constant, T is the absolute 

temperature,    is the number of cavities of type i per water 

molecule in the unit cell,     denotes the probability of a 

cavity of type i (i: large cavity, small cavity) being 

occupied by a hydrate-forming molecule of type K. 

According to the Langmuir adsorption theory this 

probability is calculated from: 

 

    
     

  ∑       
  (2) 

j = 1,2,…,NCOMP 

 

where fk  is the fugacity of the gas component K in the 

hydrate phase and CKi is the Langmuir adsorption constant 

which is specified by using statistical thermodynamics. To 

simplify the calculations of this parameter, it can be noticed 

that the Langmuir coefficients have been already evaluated 

by various authors. In the present model the Langmuir 

constants are simply considered to be temperature-

dependent according to the following form derived by 

Munck et al. (Munck et al., 1988): 
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The AKi and BKi parameters are found by adjusting them 

to a large number of experimental data points. The 

parameter values have been estimated by Munck et al. 

(Munck et al., 1988) which are presented in Table 2. 

At equilibrium state, the chemical potential of water in 

hydrate phase is equal to the chemical potential of water in 

a coexisting phase α: 
 

  
    

  (4) 

 

Moreover, the chemical potential of water in the α-

phase may in general be written as: 
 

  
    

      (
  
 

  
 ) (5) 

 

where   
  is the chemical potential of pure water as ice 

or liquid at temperature T and pressure P,   
  is the fugacity 

of water in the α-phase and   
  is the fugacity of ice or 

liquid water. Combination of Eq. (1) with Eq. (4) and
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Table 2. Adjusted parameters for Langmuir coefficient calculation. 

Component 

Structure I Structure II 

Small cavity Large cavity Small cavity Large cavity 

A×10
3
 

(K/atm) 

B 

(K) 

A×10
3
 

(K/atm) 

B 

(K) 

A×10
3
 

(K/atm) 

B 

(K) 

A×10
3
 

(K/atm) 

B 

(K) 

Methane 0.7228 3187 23.35 2653 0.2207 3453 100 1916 

Ethane 0 0 3.039 3861 0 0 240 2967 

Propane ND* ND* ND* ND* 0 0 5.455 4638 

i-butane ND* ND* ND* ND* 0 0 189.3 3800 

n-butane ND* ND* ND* ND* 0 0 30.51 3699 

Nitrogen 1.617 2905 6.078 2431 0.1742 3082 18 1728 

Carbon 

dioxide 
0.2474 3410 42.46 2813 0.0845 3615 851 2025 

Hydrogen 

Sulphide 
0.025 4568 16.34 3737 0.0298 4878 87.2 2633 

*: Not Defined (The specified components do not produce hydrate structure I) 

 

Eq (5) gives: 
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On the other hand, based on classical thermodynamics, 

the chemical potential difference can be written as: 
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where     is the chemical potential difference of water 

between the empty lattice and pure liquid water at reference 

condition of T0=273.15 K. Parameters of     ,    and    

stand for differences in molar enthalpy, heat capacity and 

volume between empty hydrate lattice and liquid water. The 

pressure P0 is the water vapor pressure at    which is 

negligible in comparison with hydrate equilibrium pressure 

(P) and is assumed to be equal to zero absolute pressure. 

Based on Munck et al. (1988) assumption  ̅ is the average 

temperature between T0 and the hydrate equilibrium 

temperature. The thermodynamic reference properties for 

gas hydrates for each of the two typical hydrate structures 

(structures I & II) have been presented by (Munck et al., 

1988) and are shown in Table 3. At hydrate equilibrium 

condition, the chemical potential differences which are 

calculated from Eq. (6) (as theoretical chemical potential 

difference) and Eq. (7) (as experimental chemical potential 

difference) should be equal. 

 

Table 3. The thermodynamic reference properties used in 

Eq. (7). 

Properties Unit Structure I Structure II 

    J/mol 1264 883 

ΔH0 J/mol -4858 -5201 

   m
3
/mol 4.60E-06 5.00E-06 

ΔCp J/mol.K 39.16 39.16 

 

2.1.2 Aqueous Phase Modeling 

For the aqueous phase, a Henry’s law approach is used 

for gas components as they are at infinite dilution in water 

phase. Consequently, the liquid phase is supposed to be 

ideal and Raoult’s law is applicable for solvent (water), 

whereas a Henry’s law is used for solute (gas components). 
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The concentration of the water xw is very close to unity, 

due to the low aqueous solubility of hydrate forming 

components. It can be calculated from the following 

equation: 
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The partial volumes used in this study are given in 

Table 4. For butane and hydrogen sulfide, these parameters 

are considered to be equal to the pure molar volumes at 

normal boiling points due to the fact that the partial molar 

volume of gases at infinite dilution in liquid solutions at 

25

C is similar to the pure liquid volume of the solute at its 

normal boiling point (Poling et al., 2004). 

 

Table 4. Partial molar volume of solute at infinite dilution. 

Component   
 

 [      ⁄ ] Reference 

C1 0.036 [26] 

C2 0.055 [29] 

C3 0.080 [29] 

CO2 0.033 [25] 

N2 0.035 [29] 

H2S 0.031 

Calculated iC4 0.092 

nC4 0.094 

 

The Henry’s law constants for the gases can be adjusted 

directly from experimental results or can be taken from the 

literature. In this work, the Henry’s constant is expressed as 

a function of temperature using the following equation: 

 

     (  
 )     

 

 
         ( )      (11) 
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where H stands for the Henry’s constant (Pa) and A–D are 

constants adjusted for different components (Chapoy et al., 

2008). Molar volume of saturated water (  
   ) is estimated 

using Rackett equation (Rackett, 1970): 

 

  
         

(     
⁄ )

 
 ⁄

 (12) 

 

Vapor pressure of saturated water,   
   , is calculated by 

the following equation Danesh, (1998). 

 

  
            [       

      

 
           

              ] (13) 

 

where   
    is in MPa and T is in K.  

 

2.1.3 Vapor Phase Modeling 

For the vapor phase modeling, the fugacity of gas 

components is calculated from Eq. (14). 

 

  
 (     )     

 (     )      (14) 

 

Fugacity coefficient calculations are dependent on the 

chosen equation of state. As previously stated, Peng-

Robinson (PR) and Patel-Teja (PT) are the two selected 

equations employed in this work. Peng and Robinson 

introduced the most popular two-parameter cubic equation 

of state for natural gas systems. This equation assumes a 

fixed value for the critical compressibility factor and 

generally results in acceptable volumetric predictions.  

Introduction of a third parameter in the equation of state 

relaxes the assumption of a fixed value for the critical 

compressibility factor and improves the prediction of the 

volumetric properties (Avlonitis et al., 1994). Patel and 

Teja introduced a third parameter in the EoS in such a way 

that the EoS critical compressibility factor    may be 

chosen freely to match the vapor pressure and saturated 

liquid density data. Thus, PT EoS is an improvement to the 

PR equation. Detailed fugacity calculations based on PT 

and PR equations of state are given elsewhere (Erdogmus, 

2000).  

 

2.2 Artificial Neural Networks 

Artificial neural networks consist of the large number of 

computational units called neurons, connected in a 

massively parallel structure. The capability of learning from 

experimental data and simplicity of implementation are the 

main advantages of the ANNs over the other mathematical 

modeling methods. As a matter of fact, the ANN operates 

like a “black box” model and does not need any detailed 

information about the system and any explicit formulation 

of the mathematical equations governing the system under 

study (Valeh-e-Sheyda et al., 2010). 

The most commonly used ANN is the feed-forward 

neural network which contains one input layer, one output 

layer and some hidden layers. The general structure of a 

typical feed-forward neural network is shown in Figure 1. 

In each neuron, the input vector - which contains 

component mole fractions and temperature in this work - is 

multiplied by the weight parameters and then added to a 

scalar parameter called bias. This sum is fed to a 

differentiable function called transfer or activation function. 

Usually the sigmoid, hyperbolic tangent or linear functions 

are used as transfer functions in ANNs. Eventually, the 

neuron’s output can be obtained according to the following 

equation (Beale & Jackson, 1990): 

 

    (∑         
 
   ) (15) 

 

where Oj is the output of j
th

 neuron, f is the transfer or 

activation function, bj is the bias of j
th

 neuron, wji is the 

synaptic weight corresponding to i
th

 input of j
th

 neuron, xi is 

the i
th

 input to j
th

 neuron and n is the number of inputs to j
th

 

neuron. 

In order to prepare a neural network for doing a special 

task, the synaptic weights and biases should be adjusted. 

This process is called training in which the connection 

weights are adjusted using a suitable training algorithm. 

The difference between the network output and the desired 

output is used for adjustment of network’s weights and 

biases. Usually the Mean Square Error (MSE) is used as a 

criterion for training error which is defined as follows 

(Beale & Jackson, 1990): 

 

     
 

 
∑ (     )

  
    (16) 

 

where dp and op are the desired and calculated outputs for 

the p
th

 training data, respectively and P is the total number 

of training data. 

The most commonly used training algorithm is Error 

Back Propagation (EBP) algorithm in which the weights 

and biases are updated in the direction of the negative 

gradient of the training error as follows (Beale & Jackson, 

1990): 

 

   (   )     ( )    
    

    
 (17) 

 

where n shows the number of iterations or epochs, and   is 

the learning rate which varies between 0 and 1. 

However, EBP is the most commonly used training 

algorithm, but this method is often slow for practical 

problems. So other variants of EBP have been introduced 

such as Scaled Conjugate Gradient (SCG), Levenberg-

Marquardt (LM) and Bayesian Regulation back propagation 

(BR) that can converge from ten to one hundred times faster 

than EBP (Demuth & Beale, 2002). 

 

 
Figure 1. Structure of a typical multilayer feed forward 

neural network. 

 

One of the most important problems in creating a neural 

network is selecting the best values of number of the hidden 

layers and their neurons. Also selecting the training 

algorithm and transfer function are equally important. 
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Choosing the best structure of a neural network is often 

done by trial and error. It has to be mentioned that the 

number of neurons in the input and output layers are equal 

to the number of input and output variables. 

After training, model validation should be done which is 

the process in which the input vectors which did not exist in 

training data set, are presented to the trained network. The 

capability of trained network to predict the corresponding 

data set is a measure of how well it has learned the patterns 

of training data set. The data set used for validating the 

trained network is called test data set. 

 

2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The fuzzy set theory and if–then rules along with the 

training concept of neural networks and training algorithms 

form a powerful modeling method. This model applies 

fuzzy inference system and training algorithms of neural 

networks to map input variables - which are component 

mole fractions and temperature - to a single-variable output 

which is hydrate formation pressure in this work. The basic 

structure of a fuzzy inference system is a model that maps 

input characteristics to input membership functions, input 

membership functions to rules, rules to a set of output 

characteristics, output characteristics to output membership 

functions, and the output membership functions to a single-

valued output (Jang & Gulley, 2002).  

ANFIS structure is more complex than that of the neural 

networks and so there are some constraints for applying this 

structure to model an arbitrary input-output data set. ANFIS 

only supports Sugeno-type fuzzy inference system and must 

have the following features (Jang & Gulley, 2002): 

 Being first or zero
th

 order Sugeno-type system. 

 Having a single output which is obtained using 

weighted average defuzzification.  

 All output membership functions must be the same 

type and either linear or constant.  

 Having no rule sharing. Different rules cannot share 

the same output membership function. In other 

words, the number of output membership functions 

must be equal to the number of rules.  

To simplify the explanations, the fuzzy inference system 

is assumed to have two inputs (x and y) and one output (z). 

A typical fuzzy if–then rule for a first order Sugeno-type 

fuzzy model can be expressed as follows: 

 

                                    (18) 

 

where A and B are the fuzzy sets and a, b, and c are the 

parameters of fuzzy membership function of the output 

variable. The ANFIS’ architecture with two inputs and one 

output is shown in Figure 2 in which a circle indicates a 

fixed node, whereas a square indicates an adaptive node 

(Jang, 1993). The output of each adaptive node depends on 

the parameters relating to this node. The values of these 

parameters are changed to minimize an error measure 

during the training process. For simplification, two fuzzy 

membership functions are assumed for each input variable 

as shown in Figure 2 (Jang et al., 1997). 

Similar to ANN, ANFIS has a layered structure 

consisting of the following five layers: 

Layer 1: Every node i in this layer is adaptive and 

consists of a fuzzy set with its corresponding membership 

function. The output of each node in this layer is calculated 

by applying the fuzzy membership function on the input 

variables to the node: 

 

         ( )                    

              ( )              (19) 

 

where x and y are inputs to this layer and Ai and Bi are 

linguistic values defined by fuzzy sets on the domains of x 

and y, respectively. Usually the bell-shaped membership 

function is used. The parameters of membership functions 

of input variables are called antecedent or premise 

parameters.  

Layer 2: Every node in this layer multiplies the input 

signals and sends the product out. For instance: 

 

             ( )       ( )              (20) 

 

The output of each node represents the firing strength of 

a rule.  

Layer 3: Every node in this layer calculates the ratio of 

the i
th

 rule’s firing strength to the sum of the firing strengths 

of all rules: 

 

       ̅   
  

∑   
 
   

              (21) 

 

For convenience, outputs of this layer will be called 

normalized firing strengths. 

Layer 4: Every node in this layer is adaptive and 

multiplies the output of third layer and consequent part of 

the corresponding fuzzy rule: 

 

       ̅        ̅  (          )           (22) 

 

The parameters in this layer (ai, bi, and ci) are referred to 

as the consequent parameters. 

Layer 5: The last layer consists of only one node which 

computes the overall output as the summation of all 

incoming signals: 

 

    ∑  ̅   
 
    (23) 

 

 
Figure 2. Simplified structure of ANFIS (Jang et al., 1997). 

 

It can be seen that there are two adaptive layers in 

ANFIS architecture, namely the first layer and the fourth 

layer. The parameters of these layers are called antecedent 

(or premise) and consequent parameters, respectively. The 

idea of neural network training is used to train ANFIS 

model which means the optimization of all membership 

function parameters of input and output variables (e.g. 

antecedent and consequent parameters) in order to 

minimize the difference between actual output and model 

predicted output. Usually the Root of Mean Square Error 



 
96 / Vol. 15 (No. 2)   Int. Centre for Applied Thermodynamics 

(RMSE) is used as a criterion for training error which is 

defined as follows (Jang & Gulley, 2002): 

 

      √
∑ (     )

  
   

 
 (24) 

 

where ap is the actual and op is the predicted outputs for the 

p
th

 training data and P is the total number of training data. 

Two different training algorithms are commonly used 

which are back propagation algorithm and hybrid algorithm 

which the latter is a combination of least squares estimation 

and back propagation (Jang & Gulley, 2002). 

In hybrid algorithm, the least squares method is used to 

optimize the consequent parameters with the assumption of 

constant premise parameters which is called the forward 

pass. When the optimal consequent parameters are found, 

the backward pass starts. The back-propagation algorithm 

(backward pass) is used to adjust the premise parameters. It 

has been proven that the hybrid algorithm is highly efficient 

in training the ANFIS (Esen & Inalli, 2010) and so it is 

used in this study. 

 

3. Application of methods 

3.1 Application of EoS 

The following algorithm is implemented for equilibrium 

calculations in order to predict the hydrate dissociation 

pressure: 

 

1. Guess initial pressure. 

2. Calculation the fugacity of components in vapor 

phase including water vapor. 

3. Calculate xw from Eq. (10). 

4. Assume initial hydrate structure (for mixtures, 

structure II is normally selected as the primary 

guess).  

5. Calculate water chemical potential difference from 

Eq. (6) based on statistical thermodynamics. 

6. Calculate water chemical potential difference from 

Eq. (7) based on classical thermodynamics. 

7. If the calculated values in steps 5 and 6 compare 

favorably, then the correct dissociation pressure has 

been calculated for the assumed hydrate structure. 

Otherwise, iteration is required until the values 

compare within an acceptable tolerance. 

8. Repeat steps 5 and 6 for the other structure 

considering estimated equilibrium pressure from 

step 7. 

9. To determine the hydrate structure, two structures’ 

chemical potential differences should be distracted 

as shown in Eq. (25). The hydrate structure is the 

one in which the chemical potential is lower. The 

crystal structure with the lower water chemical 

potential will be favored thermodynamically. 

 

   
          

      [(  )        (  )         ]
 
   

 

 [(  )        (  )         ]
 
  

 (25) 

   

10. In case that the above difference is positive, repeat 

steps 1 through 7 assuming structure I to be the 

hydrate crystal formed. 

 

The presented algorithm has been written in MATLAB 

for both PR and PT equations of state.  

 

3.2 Application of ANN 

In this study, a multi layer feed forward neural network 

has been used. Four different training algorithms including 

EBP with momentum, SCG, LM and BR were examined in 

MATLAB platform to train and validate the ANN.  

The input variables of the network are temperature [K] 

and mole fractions of components in gas stream. The output 

variable is the pressure [Pa] of hydrate formation. It has to 

be mentioned that to achieve a better stability, the following 

scaling rule is applied to pressure before training (Chapoy 

et al., 2007): 

 

            (    )    (26) 

 

Table 5 summarizes the basic statistics of input and 

output data.  

 

Table 5. Basic statistics of input and output data. 

Variable Min Max 

Input   

Temperature [K] 261.10 302.10 

Methane Mole Fraction 0 1 

Ethane Mole Fraction 0 0.98 

Propane Mole Fraction 0 1 

i-Butane Mole Fraction 0 1 

n-Butane Mole Fraction 0 0.99 

Carbon Dioxide Mole Fraction 0 1 

Hydrogen Sulfide Mole Fraction 0 0.27 

Output   

log (Pressure [Pa]) 4.70 7.79 

 

In order to avoid over fitting and be assured of 

generalization ability and predictability of the neural 

network, the training data set was divided into two subsets 

including training and test data sets. Two thirds of all 

experimental data were randomly selected and used for 

training and the rest were used for testing the network. All 

inputs and outputs were normalized in the interval of [-1, 

1].  

After preparing the training and test data sets, the 

network is trained with various learning algorithms, 

activation functions and different hidden layer neurons to 

obtain the optimum ANN structure. For each case, at least 

five runs are conducted by changing the initial weight of 

connections. Generally speaking, the simulation results of 

each run are slightly different from the others as a result of 

changing the initial weights.  

The criterion for selection the optimum ANN structure 

is the Absolute Average Deviation (AAD) of test data as 

well as the coefficient of determination (R
2
) which are 

defined by Eq. (27) and Eq. (28). 

 

    
 

 
∑ |(
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The optimum network structure which has been 

obtained by trial and error process is shown in Table 6, and 

the variations of training error during training process are 

shown in Figure 3. As shown in Table 6, Bayesian 

Regulation back propagation (BR) algorithm had the 

optimum performance among different training algorithms. 
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The concept of BR algorithm is the same as EBP although 

it uses second- order derivative of training error function 

for minimizing the training error. Furthermore, the tansig 

transfer function is defined by following equation (Demuth 

& Beale, 2002): 

 

 ( )  
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Table 6. Optimum values of network parameters. 

Parameters Optimum value 

Number of Neurons  

Input layer 8 

1
st
 hidden layer 5 

2
nd

 hidden layer 3 

Output layer 1 

Transfer function tansig 

Learning rate 0.6 

Training algorithm BR 

 

 
Figure 3. Training error for optimum structure of ANN. 

 

Table 7 summarizes statistical values for training, test 

and all data sets. It can be seen that the MSE, R
2
 and AAD 

for all data sets are 0.146, 0.992 and 7.739 %, respectively. 

The value of R
2
 is near the unity which verifies that the 

ANN results have a good agreement with experimental 

data. In addition, the AAD of test data is 7.881% which is 

acceptable for practical applications. 

 

Table 7. Statistical values for prediction of hydrate 

formation pressure (ANN model). 

Dataset MSE R
2
 AAD (%) 

Training Data 0.134 0.992 6.552 

Test Data 0.218 0.990 7.881 

All Data 0.146 0.992 7.739 

 

 

3.3 Application of ANFIS 

Similar to ANN, one of the most important problems in 

training of ANFIS is selecting the optimum structure by 

trying different types and numbers of membership functions 

for each input variable. In the training process, the number 

of input membership functions varied in interval [2, 3] and 

three different types of membership functions were used 

including triangular-shaped (tirmf), Gaussian curve 

(gaussmf) and generalized bell-shaped (gbellmf) in order to 

obtain the optimum structure of trained ANFIS. The Fuzzy 

Logic Toolbox of MATLAB software has been used to 

implement ANFIS model in this work.  The input and 

output variables, training and test data sets are similar to 

those of ANN. The AAD of test data is used as a criterion 

to select the optimum structure of trained ANFIS.  

Table 8 shows the number of membership functions for 

optimum trained ANFIS structure obtained by try and error 

process. It should be noted that the generalized bell-shaped 

membership function resulted in the minimum AAD of test 

data and would be the best membership function for the 

ANFIS model. The generalized bell-shaped membership 

function is a three-parameter function and is defined by 

following equation (Jang & Gulley, 2002): 
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Where a, b, and c are called antecedent or premise 

parameters as described in section 2.3. Figure 4 shows the 

graph of training error for optimum structure of ANFIS. 

 

Table 8. Optimum number of membership functions for 

each input variable. 

Input Variable 
Optimum number of 

membership functions 

Temperature [K] 3 

Methane Mole Fraction 3 

Ethane Mole Fraction 3 

Propane Mole Fraction 3 

i-Butane Mole Fraction 2 

n-Butane Mole Fraction 2 

Carbon dioxide Mole 

Fraction 
2 

Hydrogen sulfide Mole 

Fraction 
2 

 

 
Figure 4. Training error for optimum structure of ANFIS. 

 

The number of parameters of ANFIS in training process 

is given below: 

 Number of input variables: 8 

 Number of output variables: 1 

 Number of input membership functions: 20 

 Number of output membership functions: 1296 

 Number of antecedent parameters: 60 

 Number of consequent parameters: 3888 

 Number of ‘if-then’ rules: 1296 

 Number of nodes: 3948 

 Input membership function: generalized bell-shaped 

 Output membership function: linear 

 Maximum number of training epochs: 100 

 

The value of above parameters is easily calculated after 

selecting the optimum structure. The number of input 

membership functions is the summation of optimum 

number of membership functions for each input variable as 
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mentioned in Table 8. The number of antecedent 

parameters is calculated as follows: 

 

No. of antecedent parameters = No. of input membership 

functions * No. of parameters of each input membership 

function (31) 

 

Since in second layer of ANFIS structure, every node 

multiplies the input signals from each pair of input 

membership functions, the number of output membership 

functions equals to the multiplication of the number of 

input membership functions for each input variable. In 

addition, the number of consequent parameters is calculated 

as follows: 

 

No. of consequent parameters = No. of output membership 

functions * No. of parameters of each output membership 

function (32) 

 

It should be noted that the output membership function 

is a three-parameter linear function as described in section 

2.3. The number of ‘if-then’ rules is the same as the number 

of output membership functions, and the number of the 

nodes is equal to the number of antecedent parameters 

added to the number of consequent parameters. Maximum 

number of training epochs is a criterion for stopping the 

algorithm if the training algorithm did not converge. 

It has to be mentioned that if the number of input 

membership functions is increased, the ANFIS structure 

will be more complex. So, the convergence to the target 

error takes more iteration and the training process will be 

very time consuming. The training process lasted between 2 

hours and 30 hours based on the number of input 

membership functions with a machine with a Core 2 Quad 

processor 2.4 GHz and 4 GB RAM, whereas it took less 

than five minutes for neural network to be trained.  

Table 9 summarizes statistical values of training, test 

and all data sets. As can be observed, the RMSE, R
2
 and 

AAD for all data sets are 0.0501, 0.9948 and 0.3682%, 

respectively. The R
2 

of training data set is 0.999 that means 

ANFIS is well capable of learning from experimental data. 

In addition, the AAD of test data is 0.709% which is totally 

satisfactory. The results are very promising and it can be 

said that ANFIS is an appropriate technique for the 

prediction of hydrate formation conditions. 

 

Table 9. Statistical values for prediction of hydrate 

formation pressure (ANFIS model). 

Dataset RMSE R
2
 AAD (%) 

Training Data 0.014 0.999 0.222 

Test Data 0.085 0.985 0.709 

All Data 0.050 0.995 0.368 

 

4. Comparison of the Results 

In order to evaluate the accuracy of the thermodynamic 

and data-driven methods in prediction of hydrate formation 

pressures, the results of some three phase (Lw–H–V) 

equilibrium data of different gas mixtures have been 

presented and compared in this section. The data used for 

comparison of the models are different to those used in 

training and testing the ANN and ANFIS. Seven cases are 

used for evaluating the capability of different models, 

which have been shown in Table 10. The results of 

applying different models for each case in terms of AAD 

are shown in Table 11, and the experimental and predicted 

hydrate formation pressures as a function of temperature are 

shown in Figure 5 through Figure 11.  

The calculated ADDs for equations of state are 

acceptable for most of the cases. Other than cases 1 and 3 

for both PT and PR and case 6 for PR, the AADs are less 

than 10%. It should be noted that propane single hydrate 

formation pressure is about one order of magnitude lower 

than that of mixtures in cases 1 and 6. In addition, the 

parameters of Langmuir reported in Table 2 are adjusted by 

data of single hydrate formation conditions. Therefore, the 

existence of propane in the mixture might have led to high 

ADD values in cases 1 and 6. In case 3, high hydrate 

formation pressure of mixture might result in notable 

prediction errors since most of the equations of state could 

not precisely predict equilibrium at high pressure and 

temperature conditions. Also, polarity of H2S might have 

caused deviation from proposed ideal behavior of vapor and 

liquid phases in equilibrium.  

For cases 2 and 4 to 7, the AADs of PT is less than 

those of PR which means that PT has better prediction in 

comparison with PR. Since the equations of state are based 

on thermodynamic principles, they can predict the hydrate 

structure. Contrary to data-driven methods, EoS does not 

need any experimental data to predict hydrate formation 

conditions. However, the experimental data can be used for 

validating the simulation results. The comparison between 

ANN and EoS shows that ANN has better prediction. Other 

than case 3, the prediction error of ANN is smaller than 

10%.  

The AADs of ANFIS for all cases are less than 1% 

which is very encouraging and proves the potential of 

ANFIS as an accurate tool for prediction of hydrate 

formation pressure. It should be mentioned that both ANN 

and ANFIS are based on experimental data and for cases 

where not enough data is available, data-driven modeling is 

not applicable. Also, they are not able to predict the hydrate 

structure. Therefore, in spite of the fact that data-driven 

methods have better prediction relative to thermodynamic 

models, the EoS is also useful for cases in which rare 

experimental data is available or evaluation of hydrate 

structure is meant. The other point that should be noted is 

that the data-driven models are usually not suitable for 

extrapolation. So, the training data set should be selected in 

such a way that the whole range of input variables is 

adequately covered.     

 

5. Conclusion 

This article presents a comparative study on the 

prediction of hydrate formation pressure as a function of 

temperature and concentration in different gas mixtures 

using thermodynamic and data-driven methods. The 

accuracy of mentioned models was evaluated by 

comparison with several experimental cases.  

 

Table 11. Comparison of the results.  

Case 

number 

AAD (%) 

PR PT ANN ANFIS 

1 11.67 12.80 8.98 0.17 

2 1.99 0.78 5.53 0.02 

3 11.47 12.93 10.59 0.53 

4 3.37 2.93 2.92 0.11 

5 1.89 1.81 2.68 0.43 

6 10.21 8.93 7.08 0.16 

7 4.87 4.19 4.28 0.53 
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Table 10. Summary of experimental data used for model evaluation (Sloan & Koh, 2008). 

Case 

number 
Components Reference 

Experimental 

data number 
Structure T (K) 

1 C1, C2, C3, iC4 Mei et al. (1998) 8 II 273 – 278 

2 C1, C2, C3, iC4, nC4, CO2 
Adisasmito and Sloan 

(1992) 
4 II 273 - 282 

3 C1, CO2, H2S 
Robinson and Hutton 

(1967) 
30 I 279 - 295 

4 C1, C2 
Holder and Grigoriou 

(1980) 
14 I 281 – 288  

5 C1, C2 Deaton and Frost (1946) 24 I, II 274 - 283 

6 C1, C3 Deaton and Frost (1946) 25 II 274 - 283 

7 C1, nC4 Deaton and Frost (1946) 6 II 275 - 280 

 

Although the prediction error was more than 10% for 

some cases, both PR and PT showed acceptable prediction 

for most of the cases. The data-driven models first were 

trained and tested using a set of experimental data and their 

optimum structures were selected according to the 

statistical validation results. It was concluded that the 

accuracy of ANN for prediction of hydrate formation 

pressure was slightly better than those of PR and PT. The 

prediction errors of ANFIS for all cases were less than 1% 

which is very promising and showed the potential of 

ANFIS as an accurate tool for prediction of hydrate 

formation pressure. 

 

 
Figure 5. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 1). 

 

 
Figure 6. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 2). 

 

 

 

 

 
Figure 7. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 3). 

 

 
Figure 8. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 4). 

 

 
Figure 9. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 5). 
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Figure 10. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 6). 

 

 
Figure 11. Experimental and predicted hydrate formation 

pressures as a function of temperature (case 7). 

 

Nomenclature 

AAD Absolute Average Deviation 

AD Absolute relative Deviation 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network  

SI Hydrate structure I 

SII Hydrate structure II 

VLE Vapor Liquid Equilibrium 

EoS Equation of State 

A , B , C , D 
Parameters per component for henry’s 

law correlation 

A, B 
Parameters fitted to calculate Langmuir 

adsorption constant  

C Langmuir adsorption constant, (MPa
-1

) 

H Hydrate  

L Liquid phase 

P Pressure (MPa) 

R Universal gas constant (J.gmole
-1

. K
-1

) 

T Temperature (K) 

V Vapor phase 

w Neural network weights vector  

b Neural network bias vector 

f Fugacity (MPa) 

x Liquid phase mole fraction 

Y Partial cavity occupation 

y Vapor phase mole fraction 

Z Compressibility factor 

  

Greek letters  

   Chemical potential 

     
Number of cavities type   per water 

molecule in hydrate lattice 

  Molar volume 

 ̅ Partial molar volume 

  Fugacity coefficient 

 Neural network learning rate 

Superscripts  

H Hydrate phase 

L                 Liquid phase 

V Vapor phase 

    Saturated state 

  
Coexisting phase in equilibrium with 

hydrate 

  Hypothetical empty lattice state 

  
Reference point, pure state of water in 

ice or water form 

  Infinite dilution 

Subscripts  

C Critical point 

W Water 

i Cavity type i 

K Component K 

  
Reference point at 273.15   and 

saturation vapor pressure 

g Solute component in aqueous phase 
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