
 

 
*Corresponding Author   Vol. 15 (No. 4) / 231 

International Journal of Thermodynamics (IJoT) Vol. 15 (No. 4), pp. 231-238, 2012 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.424 
www.ijoticat.com  Published online: Sept. 20, 2012 

 

 

An Improved POD Technique for the Optimization of MSF Processes 
 

R. Melli*, E.Sciubba, C.Toro, A. Zoli-Porroni 
 

Department of Mechanical & Aerospace Engineering 

University of Roma 1 “La Sapienza” 

E-mail: roberto.melli@uniroma1.it 

 

Abstract 

 

This paper discusses a general procedure leading to the process optimization of Multiple Flashing Desalination 

processes (MSF). The optimal configuration is attained via a novel inverse -design approach that uses the global 

exergy efficiency as objective function. 

A fundamental methodological novelty of the proposed procedure is that  it does not require the generation of a 

complete simulated set of results at each iteration step of the optimisation, because the objective function is 

computed by a functional extrapolation based on the Proper Orthogonal Decomposition (POD) method. With 

this method, the (often excessively taxing) computational cost for repeated numerical process simulations of 

incrementally different configurations is substantially reduced by replacing much of it by easy-to-perform 

matrix operations: a certain (small) number of initial process  simulations is used only to calculate the basis of 

the POD interpolation and to validate (i.e., extend) the results.  

As the accuracy of a POD expansion critically depends on the allowable number of initial  simulations (the 

“snapshots”), the computational intensity of our methodology is certainly not negligible: but, as successfully 

demonstrated in the paper for a strongly simplified but realistic MSF process de sign problem, the idea that, 

given a certain number of necessary initial process simulations, additional full simulations are performed only 

in the “right direction” indicated by the gradient of the objective function in the solution space , leads to a 

successful strategy at a substantially reduced number of simulations. This “economy” with respect to other 

classical “optimization” methods is basically due to the capability of the POD procedure to identify the most 

important “modes” in the functional expansion of the vector basis consisting of a subset of the design 

parameters used in the evaluation of the objective function.  

 

Keywords: MSF desalination; proper orthogonal decomposition; optimization. 

 

1. Introduction 

Industrial-size desalination of sea (or brackish) water 

has been routinely practiced for over 70 years and is a well-

established source of water supply in several countries, 

most noticeably in the Middle East. It has evolved into a 

technically and economically feasible technology to 

produce large quantities of water of excellent quality from 

two or three different types of desalination processes 

(multiple flash, MSF; multiple effect, MED; reverse 

osmosis, RO). At the current state of the art, the challenge 

consists in producing desalinated water of suitable quality 

for different uses (industrial, domestic, agricultural) and for 

relatively large communities, at affordable cost. 

A rough market segmentation across technologies has 

emerged in this strongly competitive market: for small size 

plants, RO and MED processes are preferred; for medium 

sized plants, especially those producing water for industrial 

final users, MED and MSF processes prevail. For large 

plants producing water of drinkable quality, the MSF 

process dominates. 

The MSF is a thermal seawater distillation process: the 

distillate is produced by flash distillation of the hot brine 

inlet into the stage (Figure 1). The latent heat of the 

produced steam is recovered in an internal heat exchanger 

to heat the brine. This process is repeated across several 

stages: the higher the number of stages, the lower the 

specific energy required to produce 1 m
3
 of fresh water. 

These plants are generally realized in units of 18-24 stages, 

and due to economic and thermodynamic reasons, they are 

usually combined with a power plant operating in 

cogeneration mode: the MSF is fed by low-T, low-p steam 

(140°C and 4 bar being the standard). Standalone 

configurations for an MSF desalination plant are sometimes 

employed for small size units where low installation costs 

are mandatory, but in this range of applications the MSF is 

strongly challenged by modern RO units. As the MSF 

desalination plant requires low temperature heat, it is 

optimally suited for cogenerating applications, and several 

successful configurations exist that integrate the 

cogeneration plant with an auxiliary boiler to cover possible 

peaks of water production without displacing the main plant 

from its optimal operating point.  

Fig. 2 shows how a MSF plant can be combined with a 

steam power plant, of which it constitutes a bottoming sub-

unit. It is possible to identify three main infrastructures in a 

MSF desalination plant:  

1) The power section, where both steam and electricity 

are produced. The economics of the system is 

substantially improved if the MSF plant is combined 

with a power plant in such a way that the steam 

discharged from the back-pressure turbine (at a 

temperature of about 140°C) feeds the desalination 
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Figure 1. Simplified scheme of single MSF stage. (Dashed and dotted lines represent streams usually neglected in the 

energy balance). 

 

 

Figure 2. General layout of a large MSF plant. 

 

plant. More recently, there are examples of MSF plants 

bottoming CCGT (combined cycle gas turbine). This 

allows for a substantial reduction of the product 

(distillate) cost and makes the MSF technology the only 

practically convenient solution for large units.  

2) The MSF plant proper, where the distillate production 

occurs. 

3) The intake seawater structure, necessary for correctly 

interfacing the plant with the environment. 

The seawater (or brackish water, depending on the 

installation) is pumped into the Heat Rejection Section, 

usually consisting of 3-4 stages, in which it absorbs the 

latent heat of evaporation of the relatively cold brine and 

produces a relatively small amount of distillate. The heated 

seawater is then discharged into the sea at a temperature of 

about 40°C (the exact value depending on local 

environmental conditions). The highly concentrated brine 

ejected from the last (lowest T, lowest p) stage -the 

rightmost in the figure- is partially recycled in the upstream 

stages and partially discharged into the sea (blow-down). 

The recycled brine is pumped through the stages that 

constitute the Heat Recovery Section (which number from 

15 to 20, depending on the plant configuration) where it 

flows in counterflow with the evaporating high-temperature 

brine coming from the Heat Input Section (a steam-to-brine 

heat exchanger, leftmost in the figure). At each stage, the 

brine absorbs the latent heat of condensation of the flashing 

brine in the bottom “pool”, and correspondingly increases 

its temperature. The hot brine exiting the heat exchanger -

also called for obvious reasons the brine heater- at 120-135° 

(this is called the top brine temperature, TBT) enters the 

first stage, which is maintained at a lower pressure than the 

saturation pressure corresponding to the temperature in the 

bottom pool: as a result, a portion of the brine evaporates, 

and the brine from the pool of stage 1 flows into the second 

stage with an increased salt concentration. The second stage 
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is in turn kept at a lower pressure than that necessary for 

equilibrium, and the flashing process is repeated. 

The vapor produced in the bottom pool of each stage 

flows upwards by gravity, and passes through a demister 

where it attains saturated conditions. Then, it condenses on 

the upper tube bank through which the cooling brine flows 

in crosscurrent, and drips on a specially shaped tray that 

channels it to the following stage (at lower pressure) where 

it mixes with the distillate generated there, to continue the 

process. This apparently tortuous scheme is designed to 

maximize the heat recovery in a global sense, i.e., to make 

optimal use of the heat supplied at high T by the steam in 

the brine heater and cascaded downstream. 

The design of MSF plants is not an easy task, and 

several practical design “tricks” are necessary to ensure 

steady operation with a satisfactory degree of efficiency. As 

a consequence, ample use is made of specifically construed 

simulation tools to study possible process improvements. 

We will not delve into the details here: it suffices to say that 

the most taxing problems are caused by the scaling of the 

hot section (the brine flows through steel tubes that are 

prone to damage by deposits of magnesium, calcium and 

potassium salts by force present in seawater) and by the 

need of attaining a satisfactory compromise between the 

necessity of “sealing” each stage from its immediate 

neighbours and the intrinsically non-equilibrium conditions 

that in reality reign inside of the evaporating pool.  

Since MSF desalination is a successful technology, its 

business is growing and the ensuing harsher competition 

calls for new analysis tools capable of integrating both the 

technical and economic aspects of the problem. A detailed 

analysis of the technical problems allows for the 

introduction of technological “fixes” aimed at avoiding 

operational problems, extending the time between repairs 

and de-scaling, and improving the overall efficiency. In last 

analysis, this is reflected in a reduction of the operating cost 

and, as a consequence, of the net cost of the product (the 

distillate). 

An essential design task is the identification of the 

“optimal” stage arrangement, given by the number of stages 

in the Heat Recovery Section, the top brine temperature, 

and the operating temperature and pressure of each stage. 

Scope of the present paper is to demonstrate a new method 

for this optimization, based on an ad hoc application of  a 

mathematical procedure called Proper Orthogonal 

Decomposition (POD). A correct implementation of this 

method enables the designer to quickly inspect the range of 

possible solutions (the design space) and to find with a 

reasonable use of computational resources the “optimal” 

configuration under a pre-assigned set of constraints (El-

Sayed, 2003) and (El-Nashar, El-Sayed, 2002). 

No cost considerations have been included in the 

present study. A POD-based thermo-economic optimization 

is though possible, and will be the topic of a follow-up 

paper.  

The next section contains a brief description of the 

process simulator. Section 3 provides the background of the 

POD method and illustrates the optimization procedure. 

Section 4 presents and discusses the results.  

 

2. MSF Process Simulation 

CAMEL-Pro™ (Italian acronym for “Modular 

Calculation by Elements”) is an innovative modular 

simulation code developed and perfected over a number of 

years in our Process Simulation Lab. The code’s task is the 

simulation of energy conversion systems, and in particular, 

thermal power plants. The main objective of the 

implementation of an in-house simulator was that of 

providing an inspectable, expandable, powerful and yet 

user-friendly computational tool for the analysis of power 

plants according to specific criteria and characterized by  a 

substantially greater versatility of analysis with respect to 

similar commercial codes. Most of MSF simulators in fact 

do not describe in detail the processes internal to the 

individual stage, but treat the overall plant (or the stage) in 

a “lumped” fashion, aggregating some or all flashing stages 

in one macro-unit and not accounting for internal recycles 

etc. The MSF stage model has been developed in CAMEL-

Pro™ in such a way as to allow the user to simulate any 

kind of MSF desalination process, regardless of its 

configuration, size, number of stages, and operative 

conditions. 

CAMEL-Pro™ (www.turbomachinery.it, 2008) is 

written in C++ and C#, is based on a completely and 

genuinely object-oriented approach, and is equipped with a 

user-friendly graphical interface that allows for the 

simulation and analysis of energy conversion processes of 

whatever configuration. The system is represented as a 

network of components connected by material and energy 

streams; each component being characterized by a set of 

equations describing the thermodynamic changes imposed 

on the streams; in mathematical terms, this equation system 

is not closed, and, therefore, needs of a proper number of 

boundary conditions in terms of known flow parameters. In 

practical terms, this means that the computed solution 

depends on both the plant configuration and on the assigned 

boundary conditions.  

An optimized iterative Newton-Raphson algorithm is 

used to solve the global equation system. The main feature 

of CAMEL-Pro™ is in fact its modularity that enables 

users to expand the code by adding new components or by 

modifying the model of the existing ones: we exploited 

these capabilities to introduce the proper process equations 

for the MSF model. The analysis is based on energy and 

mass balance criteria and takes into account specific 

features that characterize the thermodynamic 

phenomenology in the stage as well as the thermodynamic 

properties of each stream. 

CAMEL-Pro™ is equipped with a library of 

thermodynamic properties for the calculation of thermo-

physical properties of fluids. Models for the calculation of 

thermodynamic and transport properties of water and steam 

are implemented according to the IAPWS 2003. CAMEL 

has proved itself as a useful tool for both designing a new 

plant and analyzing the behaviour of an existing one. The 

code is also an important tool to simulate the off-design of 

an existing plant, and is  of invaluable assistance for 

designers facing the task of developing a plant management 

strategy. 

The MSF Stage Model in CAMEL (Figure 3) is divided 

into three sub sections: 

 

1. Heat recovery, 

2. Brine Pool 

3. Condensate tray.  

 

http://www.turbomachinery.it/
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Figure 3. The MSF Stage Model in CAMEL and its snapshot. Legend: (3) hot steam; (4) cold steam; (5) incondensables; 

(6) distillate from upstream stage; (7) distillate to downstream stage; (8) colder brine from downstream stage; (9) heated 

brine to upstream stage; (10) concentrated brine from upstream brine pool); (11) concentrated brine to downstream brine 

pool. First stage shown for clarity. 

 

2.1 CAMEL MSF Model Description 

We have seen above that the MSF process with brine 

recirculation consists of a series of stages in which flashing 

evaporation takes place from a brine flowing through the 

bottom of the stage. The vapor released in the flashing 

process passes through the demisters located just above the 

free surface to remove brine droplets and then condenses on 

cooling tubes at the top of the stage. Seawater (in the Heat 

Release Section) or brine (in the Heat Recovery Section) 

flowing through the tubes is heated by the latent heat of the 

condensing vapor, experiencing a temperature rise 

somewhat smaller than the temperature drop in the bottom 

flashing. The net heat to maintain the whole process is of 

course supplied by the steam condensing in the brine heater 

(Heat Input Section), that  provides the thermal forcing 

needed for evaporation and condensation processes in the 

stages. Heat is rejected to the environment from the lowest 

temperature group of stages, which are directly cooled by 

seawater flowing through the tubes. In CAMEL, the single 

stage is “unaware” of what is happening in the up- and 

downstream stages: its calculation is based only on the local 

mass- and energy balances, and its connection with the 

other stages is forced by a proper assembling of the global 

equation system. This is obtained by proper relabeling of 

the local variables during the assembly phase, so that, for 

instance, the brine exiting from stage number i is assigned 

the same label as that entering stage number i+1 (stages are 

numbered starting from the brine heater and proceeding 

downstream).  More details about the code are given in (El-

Sayed, 2003). 

The MSF desalination process has been extensively 

studied from a thermodynamic point of view, to better 

analyze design criteria and investigate how the main 

parameters can affect the process. If the steam temperature 

is an external constraint and not a variable of the project, it 

imposes a limit on the number of stages. An analysis of a 

real plant (El-Nashar, El-Sayed, 2002) has shown that it is 

possible to increase the number of stages with a fixed steam 

temperature, to fully exploit the physical limit posed by the 

TBT. In that analysis, the number of stages (42), was in fact 

the physical limit imposed by the TBT. 

Another important result obtained in a series of 

simulations of real processes (El-Nashar, El-Sayed, 2002) 
that the distillate production is not affected by the number 

of stages, but only by the total heat surface of the recovery 

section. In designing a new plant, the total heat surface can 

be thus fixed as soon as the request of fresh water is known. 

The number of stages is then calculated on the basis of the 

physical limitations for the heat exchanges (the stage T) 

and of an economic analysis that includes the steam cost 

variation with temperature and pressure. 

Since MSF plants are bottom units of a cogenerated 

steam cycle, an exergy analysis, also performed by 

CAMEL, allows to optimize the allocation of the available 

energy resources between the two products (distillate and 

electricity). The exergy analysis has proved itself as a valid 

tool also in identifying different strategies to evaluate off-

design conditions and to optimise the result under site 

dependent constraints. 

 

3.  The Proper Orthogonal Decomposition Method 

The Proper Orthogonal Decomposition method (POD) 

has its roots in statistical analysis and produces a set of 

empirical eigenfunctions that describes the dynamics of a 

given problem. Several versions of POD have been 

published over the years, under different names, like 

Principal Component Analysis (PCA), Karhunen-Loève 

Decomposition (KLD), or Singular Value Decomposition 

(SVD), (Karhunen, 1946). We shall follow here in essence 

Sirovich’ description (Sirovich, 1987): he nicknamed POD 

“the method of snapshots”, and recommended it as an 

efficient way for determining the coefficients of a “proper” 

(in a sense discussed here below) eigenfunctions expansion 

for large problems for which a set of initial data is known 

not functionally but as a set of “experimental” data points. 

In essence, POD is a procedure that provides an optimal 

linear basis for the reconstruction of multidimensional data: 

its main advantage is that it allows for a substantial 

reduction in the order of the system under consideration. 

Another very useful feature is that it filters out data noise 

very efficiently. 

In principle, the method is like any other data fitting 

procedure: it provides a parametric fit of a set of given data 

“points” (in a multidimensional space) by finding an 

appropriate series -and its coefficients- that converges 

rapidly and robustly to a satisfactorily degree of accuracy. 

The conceptual novelty is that POD extracts both the 

interpolating functions and the coefficients from the 

Brine heater 
Incondensables 

Colder brine Hot brine 

Heated brine 

Cold brine 

High-T condensate 

High-T steam 

Demister 

Brine pool 

Distillate Distillate 
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information already “hidden” in the data set. In addition to 

being optimal in a least squares sense, POD has thus also 

the remarkable property of using a completely data 

dependent modal decomposition and therefore does not 

need any a priori assumption about, or knowledge of, the 

process that generates the data. This property is 

advantageous when the available knowledge of the 

underlying process is insufficient to warrant an appropriate 

choice of the functional expansion basis. Running POD also 

helps to explore patterns in data so as to reveal “hidden” 

characteristics of the underlying process that generates 

them. 

First, we provide a synthetic description of the 

procedure: in the second part of this section, the operational 

macro-instructions are provided as well.  

Let us assume that a process is described by a certain 

number N of data, in the sense that every instantiation of 

the process can be completely described by N relevant 

independent physical quantities (p,T,m,h,sx…) at 

different points on the thermodynamic process diagram). 

As an example, we shall use the simple Brayton cycle 

illustrated in Figure 4: the relevant parameters are shown in 

the vector at right, that -following Sirovich- we shall call 

“snapshot”.  Every snapshot, that we refer to as u(x), where 

x is the ordered vector of the N relevant variables, is 

therefore considered, according to the problem 

specification, a complete description of one single 

instantiation of the process. Since each snapshot represents, 

in the N-dimensional design space, one single 

“experimental point”, to use POD we must obtain, by 

numerical or physical experiments, a sufficiently abundant 

set of such snapshots whose numbers must  be determined 

on a case basis. 

First, the POD method considers the matrix obtained by 

assembling a certain number of  snapshots, say M: in 

complete analogy with algebraic, polynomial or 

trigonometric series fitting methods, the higher M, the more 

accurate the fitting, but more computationally intensive the 

procedure. The aim is to seek a finite dimensional 

representation of the function u(x) (of length N) in terms of 

a basis {j(x)} for (1<j<∞) which allows for an 

approximation to the ensemble of u(x) to be constructed:

U= A (1) 

 

where { j(x)} are the basis functions (each column being a 

proper mode of the ensemble U), A is the (KxM) 

coefficient matrix of the decomposition and U is the NxM 

snapshot matrix, each column of which is a single snapshot. 

The analyst is of course interested in using a reduced 

decomposition, in which not all modes are used, but only a 

properly truncated subset thereof, of dimension K. 

After having assembled the available snapshots into the 

matrix U, the covariance matrix D is computed by pre-

multiplying U by its transpose U
T
, and the eigenvectors and 

the corresponding eigenvalues of D are extracted. The 

eigenvalues are first ranked and then “pruned” by 

discarding those that are “negligible” by some norm with 

respect to the others: this is achieved by employing an 

“energy” method, based on a linear algebra theorem that 

states that the energy of the k-th mode (square of 

amplitude) scales with the corresponding eigenvalue λk.  

The basis is accordingly truncated by first deciding the 

fraction of energy that we wish to include, and then 

finding the mode number K that fulfils: 

 

   
1 1

K M

k k

 

 (2)
 

 

Two additional theorems of linear algebra guarantee 
(Bialecki, Kassab., Ostrowski, 2003) that the thus truncated 

POD basis K is optimal in the sense that no other 

orthogonal basis carries more energy in the same number of 

modes and that from all possible bases the POD has the 

smallest entropy (smallest data noise).  

Since the procedure intrinsically guarantees that the 

amplitude vectors of subsequent snapshots are orthogonal 

(non-correlated), once we have obtained a truncated 

expansion K (NxK), each column  of the truncated 

coefficient matrix AK can be computed as:   

 
m T m
K K u     (3) 
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Figure 4. The simple Brayton cycle and one of its “snapshots”. 
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Once the proper decomposition given by equations 1 and 3 

is thus known, the same expansion can be used to generate 

any additional “snapshot”, i.e., to locate a new point in the 

design space corresponding to arbitrary variations of one or 

more of the relevant variables x. To do this, we first assume 

the following form for K: 

 
m m
K B f    (4) 

 
Where f is a vector of length K representing an arbitrary 

norm of the derangement of the new vector x’ from the x
j
 

(j=1…M) contained in the original U(x) data set and B is an 

unknown (KxK) matrix. Following (Bialecki R.A., Kassab 

A.J., Ostrowski,, 2003) and (Ostrowski, 2006) we adopt for 

f the so-called Radial Basis functional form. Thus, there 

will be K vectors f
k
 defined as: 

 

m
j m

j j

f
x x r


  2

1

 

(5) 

Where jx  is the j-th relevant variable in the m-th snapshot, 

jx  the corresponding value in the new snapshot we wish to 

compute, the norm  j jx x 
2

and r is an arbitrary 

smoothing factor (1/r
2
 is an upper bound for fj). The 

transpose of B is calculated as: 

 
T T T

B ( F ) A
 1

 
(6)  

F (MxK) being the matrix whose columns are the m
K . 

Now, assuming that the decomposition is valid for every 

legitimate snapshot
1
, a new snapshot u’ can finally be 

calculated as: 

 

Ku ( x ) B f       (7) 

 

The entire procedure is in practice quite easily programmed 

in MATLAB or any other symbolic mathematic 

manipulator: actually, several of the above described 

operations are grouped in single-steps procedures that make 

the programming effort minimal, so that the most 

computationally intensive procedure is the process 

simulation. 

 

4. Results of the Optimization Procedure  

To demonstrate the performance of the POD procedure, 

the thermodynamic optimization of two simple processes 

was performed: a simple gas turbine cycle and a single 

stage MSF plant. These are clearly two elementary test 

benches, but have been chosen in such a way to allow for 

an immediate numerical validation. 

The problem with the two case studies presented here is 

such that the number of streams and of the respective 

relevant design parameters is rather limited, which allows 

for a relatively small number of snapshots. Both tests are 

successful, in the sense that the optimal design point 

identified by the POD is actually the same that can be 

found via a numerical process simulator. When compared 

                                                 
1 This means that the N-tuple xi that define the new snapshot falls 

within some pre-established and physically feasible range in the 

design space 

with other published POD optimizations, our examples are 

characterized by an unusually low ratio between the 

number of “variables” (the design quantities that span the 

solution space where the optimum is sought) and that of the 

“parameters” (the physical quantities that identify the state 

of the working fluids at selected stations in the process). In 

real more complex cases a high ratio is known to 

potentially endanger the convergence of the procedure, and 

therefore it is to be expected that the POD can be applied 

with even higher confidence to more complex plants 

layouts. 

 

4.1 A Test-Case: the Simple Brayton Cycle 

The objective function to be maximized for this case is 

the exergy efficiency of the plant. 

The selected design variables and their respective 

ranges are presented in Table 1. 

63 combinations of the design variables were calculated 

via CAMEL-Pro, and 7 process parameters were extracted 

from each set of results:  

 

1. The compressor inlet mass flow m1 

2. The turbine inlet mass flow m3 

3. The turbine inlet temperature T3 

4. The turbine outlet temperature T4 

5. The turbine outlet gross power W5 

6. The net available power W7 

7. The exergy efficiency of the plant = W7/(m8*e8) 

 

Every ordered septuple of these parameters constitutes a 

snapshot. After the matrix manipulation was performed, the 

following eigenvalues were obtained: 

 

1=2.2 10
8
; 2=1.13 10

6
; 3=2.6 10

4
; 4=9 10

3
; 5=3.27 10

3
; 

6=2.17 10
3
… 

 

of which only the first 6 were considered, since the 7
th

 

mode is of one order of magnitude smaller and exerts a 

negligible influence on the expansion. 

The min.cost.function routine in MatLab was used to 

perform the optimization, within the specified design space.  

The result is an optimal set of design variables that 

minimize the objective function. Its accuracy may be 

increased by reducing the coarseness of the initial snapshot 

matrix U: but the obtained result is the most accurate 

optimum that can be extracted from the given collection of 

snapshots.  

The POD locates the optimum configuration at the 

following design point: p3=397, T1=313 K, p2= 405kPa, β= 

4.0000, ηC=1, ηT=1, for an optimal plant efficiency  = 

22.9%: as a validation, these values where inserted in the 

process simulator and the same efficiency was obtained in 

output. 

 

4.2 A Single-Stage MSF Process 

The procedure is obviously similar to that tested above 

and also in this case the objective function is the exergy 

efficiency of the plant. With reference to Figure 3, the 

selected design variables and their respective ranges are 

presented in Table 2.  

18 combinations of the design variables were calculated 

via CAMEL-Pro, and 7 process parameters were extracted 

from each set of results:  
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Table 1. The Brayton Cycle selected design variables and their respective ranges 

Design Variable Symbol (Figure 4) Range 

Compressor outlet pressure p2  200 to 400 [kPa] 

Compressor inlet temperature T1  298 to 313[K] 

Compressor efficiency c 0.85 to 1.00 

Compressor  2 to 4 

Turbine efficiency t 0.85 to 1.00 

Turbine inlet pressure  p3 198 to 397[kPa] 

 

Table 2. The MSF selected design variables and their respective ranges 

Design Variable Symbol (figure 4) Range 

Cooling brine inlet pressure p8 224 to 450 [kPa] 

Cooling brine inlet temperature T8 370 to 375 [K] 

Heating brine temperature T10 385 to 418 [K] 

Pressure loss (brine tubes) n.a. 0.1 to 0.2 [kPa] 

Pressure loss (demister) n.a. 0.1 to 0.2 [kPa] 

 

 

1. The distillate-to-brine ratio m7/m10,  

2. The temperature difference between the distillate and 

the heated brine, (T7-T9), 

3. The temperature difference between the heating brine 

inlet and the cooling brine outlet, (T10-T9),  

4. The temperature difference between the heating brine 

outlet and the cooling brine outlet, (T11-T8) 

5. The Non-Equilibrium Allowance
2
, NEA (T11-Tflashing 

steam) 

6. The exergy efficiency: 

 

II

m e m e m ( e e )

m e m e

  
 



7 7 6 6 8 9 8

10 10 11 11  (8)

 

 

7. The exergy cost of the distillate:  

 

m ( e e )
c

m e


 3 3 4

7
7 7  (9) 

 

Every ordered septuple of these parameters constitutes a 

snapshot. The following eigenvalues were obtained 

(rounded to the first two significant digits):  

 

1=19.47 10
3;  2=2.03 10;  3=0.19 ; 4=5.85 10

-3
; 

5=8.89 10
-4

; 6=2.77 10
-6

 … 

 

of which only the first 5 were considered, since the 6
th

 

mode is likely to have a negligible influence on the 

expansion. 

The POD locates the optimum configuration at the 

following design point: p8 = 441 kPa, T8 = 375 K, T10 = 418 

K, ΔP(brine side) = 14%, ΔP(demister) = 0%. 

The exergetic efficiency is 0.96 and the exergy cost of 

the distillate is c7= 15.84 kJ/kg 

 

5. Conclusions 

The procedure has been demonstrated to produce 

“correct” results. In the case of the gas turbine, the 

                                                 
2 This definition is used here for simplicity, and includes the so-

called “boiling point elevation”, BEP, into the NEA 

optimum is attained for the highest compressor and turbine 

efficiency, the lowest combustor pressure drop, and the 

highest TIT. This result is intuitive, of course, but, more 

importantly for our purposes, has been numerically 

verified: the values of the design parameters identified as 

“optimal” by the POD have been inserted into the process 

simulator and the outcome of the calculations are in exact 

agreement with the values “approximated” by the POD 

functional expansion. 

For the MSF stage, the optimal design identified by the 

POD suggests to use the maximum allowed values for both 

the cooling brine and the heating temperatures, a high value 

of the cooling brine pressure, a rather high brine tubes 

pressure drop but a zero pressure drop in the demister: these 

indications are also intuitive for the specialist, but they 

prove the adequacy of the proposed procedure. Again, the 

POD forecast has been validated by a direct design 

simulation implemented in CAMEL. 

These results are encouraging, and suggest to extend the 

application of the procedure to more complex 

configurations (a realistic multi-stage MSF) and to include 

in the calculations the equipment costs, so that a thermo-

economic optimum may be sought after and compared with 

the results of a standard thermo-economic optimization. 

 

Nomenclature 

m = mass flow rate 

p = pressure 

NEA = Non-Equilibrium Allowance 

T = temperature 

W = power 

 = compressor pressure ratio 

II = exergy efficiency 

 = eigenvalues 
c = compressor efficiency 

T = turbine efficiency 
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