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Abstract 

 

The present work deals with the determination of unknown temperature and thermal stresses in a solid sphere. A 

solid sphere is subjected to arbitrary known interior temperature under steady state. The Legendre's transform are 

used for heat transfer analysis to determine temperature change within solid sphere. The solution of Navier's 

equation in terms of Goodier's thermoelastic displacement potential and the Boussinesq's harmonic function for 

spherical co-ordinate system have been used for thermal stress analysis. The results for temperature change, 

displacement and stresses have been computed numerically and illustrated graphically. 
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1. Introduction 

The inverse heat conduction problem is one of the most 

frequently encountered problems by scientists. The wide 

varieties of problems that are covered under conduction 

also make it one of the most researched and thought about 

problems in the field of engineering and technology. This 

kind of problems can be solved by various methods. These 

inverse problems consist of determination of unknown 

temperature, heat flux, displacement and thermal stress 

functions of solids when the conditions of temperature and 

displacement and stress are known at the some points of the 

solid under consideration. 

Cialkowski et.al. [1] investigated method of solution of 

an inverse problem of one dimensional temperature and 

stresses field for a sphere. Haghighi et al. [2] studied the 

two dimensional inverse transient heat conduction problem 

of functionally graded materials. Huang et al. [3] solved a 

three dimensional transient inverse heat conduction 

problem by using the conjugate gradient method. Choulli et 

al. [4] developed a Laplace transform method to solve an 

inverse problem associated with a boundary value problem 

in a domain with a simple geometry. Taler et al. [5] present 

a method where the interior temperature measurements 

were converted into local instantaneous heat transfer 

coefficient by solving he inverse heat conduction problem. 

Noda et al. [6] discussed an analytical method for inverse 

problem of three dimensional transient thermoelasticity in a 

transversely isotropic solid by integral transform technique 

with newly designed potential function and illustrated 

practical applicability of the method in engineering 

problem. Mohammadiun et al. [7] has investigated the 

problem of estimation of time dependent heat flux on a 

spherical cap using the temperature measurement at one 

point inside the medium. Kulkarni et al. [8] solved the 

inverse problem of thermal stresses in a thick circular plate.  

This paper deals with the realistic problem of inverse 

quasi-static steady state thermal stresses in a solid sphere, 

which is subjected to arbitrary interior temperature. The 

unknown temperature and thermal stresses on a solid sphere 

is required to be determined. 

 

2. Formulation of the Problem 

 Following Noda et al. [1], Navier’s equation of 

thermoelasticity for axisymmetric problems are expressed 

as  
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The solution of the Navier’s equation without the body 

force for axisymmetric problems in the spherical coordinate 

system are expressed, in terms of Goodier’s thermoelastic 

displacement potential   and the Boussinesq harmonic 

functions  and  as 
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The stress components in the spherical coordinate system 

are represented in terms of three functions ,  and 
 

are  
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The mechanical boundary conditions on the traction free 

surface r = b are  

0, 0rr r on r b     (14) 

 

Eqs, (1)-(14) constitute the general thermoelastic 

formulation of two dimensional spherical problem. 

 

3. Governing Equation of Heat Conduction  

 Consider a two-dimensional solid sphere of radius b 

defined by 0 , 1 1r b      . The radius r   is kept at 

temperature ( )f  . Assume the boundary surface of a solid 

sphere is free from traction. Under these prescribed 

conditions, the thermal stresses are required to be 

determined. 

 A steady state temperature of a sphere satisfies the 

heat conduction equation, 
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with ( )T g  (unknown) at r b  (16) 

 ( )T f   (known) at , 0r b   
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where ( , )T T r   (18) 

 

 

4.1 The Solution for Temperature Change 

 The partial derivative with respect to   variable can 

be removed by means of Legendre transform. Define the 

Legendre transform and the corresponding inversion 

formula of the temperature function ( , )T r  with respect to 

the variable   as 
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By applying Legendre’s transform defined in the Eq. (19) 

to governing heat conduction equation (15) along with the 

boundary  condition as defined in Eq. (17), one obtain  
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On solving above equation (22), one obtain 
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The solution 
)1( nr 
 is excluded because the temperature 

should remain finite at r = 0. 
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Using boundary condition prescribed in Eq. (23), one 
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Hence Eq (25) gives  
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By applying inverse Legendre’s transform as defined in Eq. 

(20), one obtain  
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The unknown temperature ( )g  can be obtained by 

substituting r b  in Eq. (29) as
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Using Eq. (28), under steady state temperature condition 
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4.2 The Goodier’s thermoelastic displacement potential 

 

 The Goodier’s thermoelastic displacement potential  

satisfies the equation 

K2
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Using value of temperature difference from Eq. (31), one 

obtain 
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On solving, one obtains the Goodier’s thermoelastic 

displacement potential function  as 
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4.3 The First Component of Displacement and Thermal 

Stresses
 

 The first component of displacement and thermal stress 

with respect to Goodier’s thermoelastic displacement 

potential function  can be obtained as 
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4.4 The Solution of Laplace Equation  

 The solution of Laplace equation satisfying conditions 

given in Eqs. (6) and (7) are  
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4.5 The Second Component of Displacement and  

      Thermal Stresses 
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4.6 The Displaceent and thermal Stresses  

 The displacements and thermal stresses defined in Eqs. 

(3), (4) and (10) to (14) can be obtain by adding Eqs. 

(37),(39), (41),(43), (45),(47) and (51),(53),(55),(57),(59),  

(61), respectively as 
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The unknowns used in Eqs. (48) and (49), can be 

determined by solving equilibrium Eq. (14) as 
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5. Special Case and Numerical Calculations 

 The mathematical model is constructed by setting
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The known interior temperature is an application of 

sinusoidal heat flux at , 0r b    . For which arbitrary 

coefficient of temperature is given by using Eq. (31) as 
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The numerical calculations have been carried out for an 

iron (pure) solid sphere with the following material 

properties and dimensions: 

Thermal diffusivity
6 2 120.34 10 ( )m s     

Poisson ratio 0.35   

Radius of Sphere 1b m  

   61.35
20.39 10

0.65
K 

 

0.5G   
0.5 

 
 

 In two dimensional axisymmetric problem of a 

spherical body, it is assumed that the body is deformed 

symmetrically with respect to the coordinate axis z. The 

numerical calculations have been carried out with the help 

of computational mathematical software Mathcad-2000 and 

the graphs are plotted with the help of excel (MS office -

2000). 

 

 
Fig.1. The temperatureT along radial direction. 
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Fig.2.The unknown g along radial direction. 

 

 

 
Fig.3.The displacement  along radial direction. 

 

 

 

 
Fig.4.The radial displacement r along radial direction. 

 

 

 
Fig.5.The angular displacement  along radial direction. 

 

 

 
Fig.6. The radial thermal stresses rr along radial  

           direction. 

 

 

 
Fig.7. The angular thermal stresses  along radial         

            direction. 
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Fig.8.The angular thermal stresses  along radial  

          direction. 

 

 

Fig.9.The resultant r along radial direction. 

 

6. Results and Discussion 

 From Figures 1 and 2, it is observed that the 

temperature T increases from center to the outer spherical 

surface. The unknown temperature ( )g   shows variation 

on the outer spherical boundary. From Figures 3, 4 and 5, 

the displacement   the radial displacement r and angular 

displacement   
increases as r increases. Displacement of 

solid sphere can be observed on outer spherical boundary. 

From Figure 6, it is observed that the radial thermal stresses 

develop tensile stresses. The stress function rr is zero at 

the outer spherical boundary(r = 1) and at the center of 

sphere. From Figures 7 and 8, the angular thermal stresses 

show compressive stress on outer spherical surface. From 

Figure 9, it is seen that that the resultant function r  is 

tending to zero at the outer spherical boundary (r = 1). It 

develops compressive stresses in radial direction. 

 

7. Conclusions 

 Equations are derived for temperature, displacement, 

and thermal stresses for a solid sphere which is subjected to 

arbitrary known interior temperature. As a special case 

mathematical model is constructed for pure iron solid 

sphere. 

 In order to study the characteristic of temperature 

variation, displacement and thermal stresses within solid 

sphere, the uncoupled thermoelasticity with infinite wave 

propagation in the form of heat are discussed. The 

Legendre's transform are used for heat transfer analysis to 

determine temperature change within solid sphere. The 

solution of Navier's equation in terms of Goodier's 

thermoelastic displacement potential and the Boussinesq's 

harmonic function for spherical co-ordinate system have 

been used for thermal stress analysis. As a special case, 

sinusoidal heat flux is considered and performed numerical 

calculation for special case and illustrated these variations 

graphically along radial direction. The displacement and 

thermal stresses developed on the outer spherical boundary 

can create expansion of solid sphere. Any particular case 

can be analyzed by these general solutions obtained. 
 

Nomenclature 

r  Radius of sphere 

 ,T r   Temperature at any point 

  Temperature change 

  Thermal diffusivity of material 

K   Restraint coefficient 

rF and F  
Forces in radial and angular direction

   Goodier’s thermoelastic  potential 

and   Boussinesq harmonic function 

G  Shear modulus 

  Poisson’s ratio 

r  Radial displacement 

  Angular displacement 

, , ,rr r       Components of stress function 

,   Lame constant 

( )nP x  Legendre polynomials 
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