Turkey, with its suitable ecological conditions, is a country rich in diversity of fungal species. Mushroom is a protein-rich food source. Especially in spring and autumn, mushrooms cultivate more after periods of ample precipitation and poisoning cases are more common in these periods. In areas with low socio-economic conditions, it is also common to consume mushrooms after gathering from their habitat.

It is known that there are approximately 5000 fungus species around the world and only 200-300 are safe for consumption. Among the known, 100 fungus species are found to be toxic and 10 species to be lethal. It is not known whether other fungus species are edible or poisonous.

Mushroom species in our country are consumed very often for nutrition purposes. We aimed to present a patient who was poisoned as a result of consuming the mushrooms collected from the environment with repeated meals every day for natural nutrition. This patient also developed multiple organ failure due to late diagnosis.

Case Report

A 35-year-old female patient applied to an external center because of abdominal pain, nausea and vomiting that started three days ago; but afterwards, the patient was admitted to our hospital with deterioration of general condition, confusion and the development of acute renal failure. In her history, it was learned that her complaints started one week before she was admitted to the hospital and that she ate mushrooms she collected from the environment every day for about fifteen days. She had a history of tuberculosis 4 years ago. She had respiratory distress when she was admitted. Because of mixed

Abstract

A 35-year-old female patient was admitted to our hospital with organ failure due to excessive consumption of wild mushrooms. She had a medical history of previous tuberculosis and, in accordance with it, a destructed lung. Hepatorenal syndrome and encephalopathy clinics were established. The patient’s clinical findings related to fungal intoxication declined with penicillin G and supportive fluid electrolyte treatment, however, the patient died from ARDS due to her destructed lung. Fungal intoxication may be asymptomatic throughout the incubation period. Health care professionals should consider that fungal intoxication may also occur in patients admitted with asymptomatic symptoms due to seasonal conditions and nutritional habits.

Keywords: fungus, intoxication, multiple organ failure

Özet

Anahtar Kelimeler: mantar, zehirlenme, multipl organ yetmezliği

Corresponding Author: İlksen Dönmez
e-mail: ilksendonmez@gmail.com

Received: 04.01.2019 • **Accepted:** 19.02.2019

©Copyright 2018 by Emergency Physicians Association of Turkey - Available online at www.ejtoxicology.com
acidity in the arterial blood gas analysis (ABG) and high liver enzymes in the biochemical analysis; the patient was transferred to the general intensive care unit (ICU). Her general condition was bad and she had confusion, tachypnea, dypsnea, hypotension and low sPO₂ (78%). Physical examination with oscultation revealed bilateral rhonchus in the lung zones. Because of the destructed lung tissue detected in computed tomography (CT) image due to previous tuberculosis, non-invasive mechanical ventilation support was initiated, since it was thought that there might be extubation difficulties. However, with her advanced confusion (GCS: 8) the patient underwent otoracheal intubation and mechanical ventilation. On arrival, her workup results were as following: AKG pH: 6.94, PO₂: 70,6 mmHg, PCO₂: 81,8 mmHg, HCO₃: 17,8, BE: -15,7, Lactate: 9,2, SO₂: 78,8%, INR 3,20, PT: 34,9 sec, urinary hematric, D-Dimer: 11400, WBC on hemogram: 21,8 10⁹/l. Lactate: 9,2, SO₂: 78,8%, INR 3,20, PT: 34,9 sec, urinary hematric, D-Dimer: 11400, WBC on hemogram: 21,8 10⁹/l.

Discussion

Fungal intoxication is caused by the oral administration of many different toxic substances². Consumption of uncultivated wild mushroom species instead of known edible mushroom species as a consequence of physical similarity plays a major role in toxicity. In addition, it has been reported that toxicity develops as a result of consciously ingestion for psychoactive effects, use for suicide or murder purposes. In addition, it has been reported that toxicity develops as a result of consciously ingestion of wild mushroom species instead of known edible mushroom species as a consequence of physical similarity. Consumption of uncontrolled wild mushroom species instead of known edible mushroom species as a consequence of physical similarity plays a major role in toxicity. In addition, it has been reported that toxicity develops as a result of consciously ingestion of wild mushroom species instead of known edible mushroom species as a consequence of physical similarity. Consumption of uncontrolled wild mushroom species instead of known edible mushroom species as a consequence of physical similarity plays a major role in toxicity.
national poison centers. To our patient, we applied penicillin G infusion, despite being in the late period.

In addition, polymixin B antidotes and traditional Chinese medicine glossy Ganoderma decoction (GGD) are considered novel therapeutic agents that promise to prevent toxin-induced liver damage.

Liver transplantation is accepted as the only approach to increase survival rate in fulminant liver failure due to fungal intoxication.

Conclusion

Despite successful treatment with hepatorenal syndrome and encephalopathy due to fungal intoxication, the patient died due to the existing destructive lung. Health care professionals should consider that fungal intoxication may be present in patients applying with asymptomatic symptoms depending on seasonal conditions and nutritional habits. This may allow the table to be resolved without aggravation.

References

7. Wittebole, X., & Hantson, P. Use of the molecular adsorbent recirculating system (MARS™) for the management of acute poisoning with or without liver failure. Clinical Toxicology. 2011. 49(9), 782-793.