ON THE PERIODICITY OF THE SOLUTION OF A RATIONAL DIFFERENCE EQUATION

A. M. ALOTAIBI, M. S. M. NOORANI, AND M. A. EL-MONEAM

Abstract. In this paper, some cases on the periodicity of the rational difference equation

\[S_{n+1} = S_{n-p} \left(\frac{aS_{n-q} + bS_{n-r} + cS_{n-s}}{dS_{n-q} + eS_{n-r} + fS_{n-s}} \right), \]

are investigated, where \(a, b, c, d, e, f \in (0, \infty) \). The initial conditions \(S_{-p}, S_{-p+1}, \ldots, S_{-q}, S_{-q+1}, \ldots, S_{-r}, S_{-r+1}, \ldots, S_{-s}, S_{-s+1}, \ldots, S_1 \) and \(S_0 \) are arbitrary positive real numbers such that \(p > q > r > s \geq 0 \). Some numerical examples are provided to illustrate the theoretical discussion.

1. Introduction

Difference equations appear naturally as discrete analogues, numerical solutions of differential and delay differential equations as they are applied in biology, ecology, economy, physics, and so on. Although difference equations appear simpler in its form, the behaviors of their solutions are hard to be comprehended thoroughly. Recently, immense effort has been enacted in studying the qualitative analysis of rational difference equations. To put as an example, refer to [1-6]. Many researchers have investigated periodic solutions of difference equations, and they have proposed various methods for the existence and qualitative properties of the solutions [7-10].

The main aim of this study is to exhibit some cases on the periodic character of the positive solutions of the rational difference equation

\[S_{n+1} = S_{n-p} \left(\frac{aS_{n-q} + bS_{n-r} + cS_{n-s}}{dS_{n-q} + eS_{n-r} + fS_{n-s}} \right), \quad (1) \]

where \(a, b, c, d, e, f \in (0, \infty) \). The initial conditions \(S_{-p}, S_{-p+1}, \ldots, S_{-q}, S_{-q+1}, \ldots, S_{-r}, S_{-r+1}, \ldots, S_{-s}, S_{-s+1}, \ldots, S_1 \) and \(S_0 \) are arbitrary positive real numbers such that \(p > q > r > s \geq 0 \).

Received by the editors: August 20, 2018; Accepted: January 13, 2019.

2010 Mathematics Subject Classification. 39A10.

Key words and phrases. Rational difference equations, periodicity, higher-order.

Submitted via 2nd International Conference of Mathematical Sciences (ICMS 2018).
Definition 1. (Periodicity). A sequence \(\{y_n\}_{n=-s}^{\infty} \) is said to be periodic with period \(p \) if
\[
y_{n+p} = y_n \quad \text{for all} \quad n \geq -s.
\]
Moreover, it is said to have prime period \(p \) if it is periodic with period \(p \) and \(p \) is the smallest positive integer satisfying this condition.

2. Main Result

In this section, we are going to be presented with the study of some cases on the periodic character of the positive solutions of Equation (1) for the first time.

Theorem 1. Equation (1) has no positive solutions of prime period two \(\forall a, b, c, d, e, f \in (0, \infty) \) in all the following cases:
1) The positive integers \(p, r, s \) are even and the positive integer \(q \) is odd.
2) The positive integers \(p, q, r \) and \(s \) are even.
3) The positive integer \(p, q, r \) are even and the positive integer \(s \) is odd.
4) The positive integers \(p, q \) are even and the positive integers \(r, s \) are odd.
5) The positive integers \(p, s \) are even and the positive integers \(q, r \) are odd.
6) The positive integers \(p \) is even and the positive integers \(q, r, s \) are odd.
7) The positive integer \(r, s \) are even and the positive integers \(p, q \) are odd with \(d \neq a \).
8) The positive integers \(q \) is even and the positive integers \(p, q, r \) are odd with \((e + f) \neq (b + c) \).
9) The positive integers \(s \) is even and the positive integers \(p, q, r \) are odd with \((d + e) \neq (a + b) \).
10) The positive integers \(p, q, r \) and \(s \) are odd with \((d + e + f) \neq (a + b + c) \).

Proof. Suppose that there is an existence of two positive distinctive solutions of prime period which two having such \(\phi, \psi, \phi, \psi, \ldots \) of Equation (1). Then the following cases are discussed:

Case 1. Suppose the positive integers \(p, r, s \) are even and the positive integer \(q \) is odd. In this case
\[
S_n = S_{n-p} = S_{n-r} = S_{n-s} \quad \text{and} \quad S_{n+1} = S_{n-q}.
\]
From Equation (2), we have
\[
\phi = \psi \left(\frac{a\phi + (b + c)\psi}{c\phi + (d + f)\psi} \right),
\]
\[
\psi = \phi \left(\frac{a\psi + (b + c)\phi}{c\psi + (d + f)\phi} \right).
\]
Thus
\[
c\phi^2 + (d + f)\phi \psi = a\phi \psi + (b + c)\psi^2, \quad (2)
\]
and
\[
c\psi^2 + (d + f)\phi \psi = a\phi \psi + (b + c)\phi^2. \quad (3)
\]
By subtracting (2) from (3), we deduce that
\[c(\phi^2 - \psi^2) + (b + c)(\phi^2 - \psi^2) = 0. \]

Hence, we have
\[(b + 2c)(\phi^2 - \psi^2) = 0. \]

If \(\phi \neq \psi \), then
\[(b + 2c) = 0. \]

Since \(b \) and \(c \) are nonzero positive real numbers, thus \(b + 2c \neq 0 \). This implies \(\phi = \psi \). This contradicts the hypothesis \(\phi \neq \psi \).

Case 2. Suppose the positive integers \(p, q, r \) and \(s \) are even. In this case
\[S_n = S_{n-p} = S_{n-q} = S_{n-r} = S_{n-s}. \]

From Equation (1), we have
\[
\begin{align*}
\phi &= \psi \left(\frac{(a + b + c)\psi}{(d + e + f)\psi} \right), \\
\psi &= \phi \left(\frac{(a + b + c)\phi}{(d + e + f)\phi} \right).
\end{align*}
\]

Thus,
\[(d + e + f)\phi\psi = (a + b + c)\psi^2, \quad (4) \]

and
\[(d + e + f)\phi\psi = (a + b + c)\phi^2. \quad (5) \]

By subtracting (4) from (5), we deduce that
\[(a + b + c)(\phi^2 - \psi^2) = 0. \]

Hence, we have
\[(a + b + c)(\phi^2 - \psi^2) = 0. \]

If \(\phi \neq \psi \), then
\[(a + b + c) = 0. \]

Since \(a, b \) and \(c \) are nonzero positive real numbers, thus \(a + b + c \neq 0 \). This implies \(\phi = \psi \). This contradicts the hypothesis \(\phi \neq \psi \).

Case 3. Suppose the positive integer \(p, q, r \) are even and the positive integer \(s \) is odd. In this case
\[S_n = S_{n-p} = S_{n-q} = S_{n-r} \text{ and } S_{n+1} = S_{n-s}. \]

From Equation (1), we have
\[
\begin{align*}
\phi &= \psi \left(\frac{(a + b)\psi + c\phi}{(d + e)\psi + f\phi} \right), \\
\psi &= \phi \left(\frac{(a + b)\phi + c\psi}{(d + e)\phi + f\psi} \right).
\end{align*}
\]

Thus,
\[(d + e)\phi\psi + f\phi^2 = (a + b)\psi^2 + c\phi\psi, \quad (6) \]
and
\[(d + c)\phi \psi + f \psi^2 = (a + b)\phi^2 + c\phi \psi.\] \hspace{1cm} (7)

By subtracting (6) from (7), we deduce that
\[f(\phi^2 - \psi^2) + (a + b)(\phi^2 - \psi^2) = 0.\]

Hence, we have
\[(a + b + f)(\phi^2 - \psi^2) = 0.\]

If \(\phi \neq \psi\), then
\[a + b + f = 0.\]

Since \(a, b,\) and \(f\) are nonzero positive real numbers, thus \((a + b + f) \neq 0\). This implies \(\phi = \psi\). This contradicts the hypothesis \(\phi \neq \psi\).

Equivalently, we ratiocinate that there is no positive solution of prime period two derived from cases 4, 5 and 6.

Case 7. Suppose the positive integers \(r, s\) are even and the positive integers \(p, q\) are odd. In this case
\[S_n = S_{n-r} = S_{n-s} \text{ and } S_{n+1} = S_{n-p} = S_{n-q}.\]

From Equation (1), we have
\[
\begin{align*}
\phi &= \phi \left(\frac{a\phi + (b + c)\psi}{d\phi + (e + f)\psi} \right), \\
\psi &= \psi \left(\frac{a\psi + (b + c)\phi}{d\psi + (e + f)\phi} \right).
\end{align*}
\]

Thus,
\[d\phi^2 + (e + f)\phi \psi = a\phi^2 + (b + c)\phi \psi,\] \hspace{1cm} (8)

and
\[d\psi^2 + (e + f)\phi \psi = a\psi^2 + (b + c)\phi \psi.\] \hspace{1cm} (9)

By subtracting (8) from (9), we deduce that
\[d(\phi^2 - \psi^2) - a(\phi^2 - \psi^2) = 0.\]

Hence, we have
\[|d - a|(\phi^2 - \psi^2) = 0.\]

Since \(a\) and \(d\) are nonzero positive real numbers, and \(\phi \neq \psi\).

This implies \(d = a\). This contradicts the condition \(d \neq a\).

Case 8. Suppose the positive integers \(q\) is even and the positive integers \(p, r, s\) are odd. In this case
\[S_n = S_{n-q} \text{ and } S_{n+1} = S_{n-p} = S_{n-r} = S_{n-s}.\]

From Equation (1), we have
\[
\phi = \phi \left(\frac{a\psi + (b + c)\phi}{d\psi + (e + f)\phi} \right),
\]
ON THE PERIODICITY OF THE SOLUTION

\[\psi = \psi \left(\frac{a \phi + (b + c) \psi}{d \phi + (e + f) \psi} \right). \]

Thus,

\[d \phi \psi + (e + f) \psi^2 = a \phi \psi + (b + c) \psi^2, \quad (10) \]

and

\[d \phi \psi + (e + f) \psi^2 = a \phi \psi + (b + c) \psi^2. \quad (11) \]

By subtracting (10) from (11), we deduce that

\[(e + f)(\phi^2 - \psi^2) - (b + c)(\phi^2 - \psi^2) = 0. \]

Hence, we have

\[[(e + f) - (b + c)](\phi^2 - \psi^2) = 0. \]

Since \(b, c, e \) and \(f \) are nonzero positive real numbers, and \(\phi \neq \psi \). This implies \([(e + f) = (b + c)] \). This contradicts the condition \([(e + f) \neq (b + c)] \).

Equivalently, we ratiocinate that there is no positive solution of prime period two derived from cases 9 and 10. Therefore, the proof of the theorem is now complete.

\[\square \]

3. Numerical Examples

In this section, the previous results are illustrated through some numerical examples.

Example 1. Figure 1, points out that the solution of Equation (7) holds no positive prime period two solutions on the assumption that the positive integers \(p, r \) and \(s \) are even and the positive integer \(q \) is odd. Select

\[p = 6, q = 5, r = 4, s = 2, S_{-6} = 1, S_{-5} = 2, S_{-4} = 3, S_{-3} = 4, S_{-2} = 5, S_{-1} = 6, S_0 = 7, a = 10, b = 20, c = 15, d = 25, e = 30, f = 35. \]

![Figure 1](image-url)

Figure 1. \(S_{n+1} = S_{n-6} \left(\frac{10S_{n-4} + 20S_{n-4} + 15S_{n-2}}{25S_{n-6} + 30S_{n-4} + 35S_{n-2}} \right) \)
Example 2. Figure 2, points out that the solution of Equation (1) holds no positive prime period two solutions on the assumption that the positive integers \(p, q, r \) and \(s \) are even. Select
\[
\begin{align*}
p = 8, & \quad q = 6, & \quad r = 4, & \quad s = 2, & \quad S_{-8} = 1, & \quad S_{-7} = 2, & \quad S_{-6} = 3, & \quad S_{-5} = 4, & \quad S_{-4} = 5, & \quad S_{-3} = 6, & \quad S_{-2} = 7, & \quad S_{-1} = 8, & \quad S_0 = 9 & \quad a = 10, & \quad b = 20, & \quad c = 15, & \quad d = 25, & \quad e = 30, & \quad f = 35.
\end{align*}
\]

\[
\text{Figure 2. } \left(S_{n+1} = S_{n-8} \left(\frac{10S_{n-4} + 20S_{n-1} + 15S_{n-2}}{25S_{n-4} + 30S_{n-3} + 35S_{n-1}} \right) \right)
\]

Example 3. Figure 3, points out that the solution of Equation (1) holds no positive prime period two solutions on the assumption that the positive integers \(p, q \) and \(r \) are even and the positive integer \(s \) is odd. Select
\[
\begin{align*}
p = 6, & \quad q = 4, & \quad r = 2, & \quad s = 1, & \quad S_{-6} = 1, & \quad S_{-5} = 2, & \quad S_{-4} = 3, & \quad S_{-3} = 4, & \quad S_{-2} = 5, & \quad S_{-1} = 6, & \quad S_0 = 7, & \quad a = 10, & \quad b = 20, & \quad c = 15, & \quad d = 25, & \quad e = 30, & \quad f = 35.
\end{align*}
\]

\[
\text{Figure 3. } \left(S_{n+1} = S_{n-6} \left(\frac{10S_{n-4} + 20S_{n-2} + 15S_{n-1}}{25S_{n-4} + 30S_{n-2} + 35S_{n-1}} \right) \right)
\]

Example 4. Figure 4, points out that the solution of Equation (1) holds no positive prime period two solutions on the assumption that the positive integers \(r, s \) are even and the positive integer \(p, q \) are odd. Select
ON THE PERIODICITY OF THE SOLUTION 1433

\[p = 7, q = 5, r = 4, s = 2, S_{-7} = 1, S_{-6} = 2, S_{-5} = 3, S_{-4} = 4, S_{-3} = 5, S_{-2} = 6, S_{-1} = 7, S_0 = 8, a = 3, b = 4, c = 15, d = 2, e = 3, f = 5. \]

\[\text{Figure 4. } \left(S_{n+1} = S_{n-7} \left(\frac{3S_{n-5} + 4S_{n-4} + 15S_{n-2}}{25S_{n-5} + 35S_{n-4} + 5S_{n-2}} \right) \right) \]

Example 5. Figure 5, points out that the solution of Equation (1) holds no positive prime period two solutions on the assumption that the positive integers \(q \) is even and the positive integer \(p, r, s \) are odd. Select

\[p = 5, q = 4, r = 3, s = 1, S_{-5} = 1, S_{-4} = 2, S_{-3} = 3, S_{-2} = 4, S_{-1} = 5, S_0 = 6, a = 3, b = 4, c = 5, d = 25, e = 30, f = 35. \]

\[\text{Figure 5. } \left(S_{n+1} = S_{n-5} \left(\frac{3S_{n-3} + 4S_{n-2} + 5S_{n-1}}{25S_{n-3} + 30S_{n-2} + 35S_{n-1}} \right) \right) \]

4. Conclusion

In this paper, the periodicity of some cases of the positive solutions of the rational difference Equation (1) is introduced and proved. It was evidently apparent that Equation (1) has no positive solutions of prime period two in the discussed cases. Therefore, in order to illustrate the results, some numerical examples were given.
Acknowledgement. This work is financially supported by UKM Grant: DIP-2017-011 and Ministry of Education Malaysia Grant FRGS/1/2017/STG06/UKM/01/1.

References

[2] Alotaibi, A. M., El-Moneam, M. A. and Noorani, M. S. M., On the rational difference equation $y_{n+1} = \frac{y_n + y_{n-p} + y_{n-q} + y_{n-r} + y_{n-s}}{y_n + y_{n-p} + y_{n-q} + y_{n-r} + y_{n-s}}$, Journal of Nonlinear Sciences and Applications, 11 (2018), 80–97.

Current address: A. M. Alotaibi: School of Mathematical Sciences Universiti Kebangsaan Malaysia, Malaysia.
E-mail address: abalo@hotmail.com
ORCID Address: https://orcid.org/0000-0002-0516-1933

Current address: M. S. M. Noorani: School of Mathematical Sciences, Universiti Kebangsaan Malaysia, Malaysia.
E-mail address: msn@ukm.edu.my
ORCID Address: http://orcid.org/0000-0002-6122-744x

Current address: M. A. El-Moneam: Mathematics Department, Faculty of Science, Jazan University, Kingdom of Saudi Arabia.
E-mail address: maliahmedibrahim@jazanu.edu.sa
ORCID Address: https://orcid.org/0000-0002-1676-2662