Results in Nonlinear Analysis 2 (2019) No. 1, 18–24 Available online at www.nonlinear-analysis.com

Common fixed point results in extended b-metric spaces endowed with a directed graph

Cristian Chifu^a

^aBabeș-Bolyai University Cluj-Napoca, Department of Business, Horea street, No.7, Cluj-Napoca, Romania

Abstract

The purpose of this paper is to obtain some fixed point results in extended b-metric spaces for Reich-Rus and Ciric operators.

Keywords: extended b-metric spaces, fixed point, contraction, Reich-Rus and Ciric operators 2010 MSC: 47H10, 54H25.

1. Introduction

Definition 1.1. ([3]) Let X be a nonempty set and let $s \ge 1$ be a given real number. A functional $d: X \times X \to [0, \infty)$ is said to be a *b*-metric with constant s, if all axioms of the metric space take place with the following modification of the triangle axiom:

$$d(x,z) \leq s[d(x,y) + d(y,z)], \text{ for all } x, y, z \in X$$

In this case the pair (X, d) is called a *b*-metric space with constant *s*.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric space when s=1. For more details and examples on b-metric spaces, see e.g. [2].

Example 1.3. Let $X = \mathbb{R}_+$ and $d: X \times X \to \mathbb{R}_+$ such that $d(x, y) = |x - y|^p$, p > 1. It's easy to see that d is a b-metric with $s = 2^p$, but is not a metric.

Received january 5, 2019, February 21, 2019, Online March 12, 2019.

Email address: cristian.chifu@tbs.ubbcluj.ro (Cristian Chifu)

Definition 1.4. ([4]) Let X be a nonempty set and let $\theta : X \times X \to [1, \infty)$. A functional $d_{\theta} : X \times X \to [0, \infty)$ is said to be an extended *b*-metric, if for all $x, y, z \in X$, the following axioms are satisfied:

- 1. $d_{\theta}(x,y) = 0 \iff x = y;$
- 2. $d_{\theta}(x,y) = d_{\theta}(y,x);$
- 3. $d_{\theta}(x,z) \leq \theta(x,y) \left[d_{\theta}(x,y) + d_{\theta}(y,z) \right]$, for all $x, y, z \in X$

In this case the pair (X, d_{θ}) is called an extended *b*-metric space.

Remark 1.5. If $\theta(x, y) = s$, for $s \ge 1$, then we obtain the definition of *b*-metric space.

Example 1.6. ([4]) Let $X = \{1, 2, 3\}, \theta : X \times X \to [1, \infty)$ and $d_{\theta} : X \times X \to [0, \infty)$ as:

 $\begin{array}{rcl} \theta \left(x,y \right) &=& 1+x+y \\ d_{\theta}(1,1) &=& d_{\theta}(2,2) = d_{\theta}(3,3) = 0, \\ d_{\theta}(1,2) &=& d_{\theta}(2,1) = 80, \\ d_{\theta}(1,3) &=& d_{\theta}(3,1) = 1000, \\ d_{\theta}(2,3) &=& d_{\theta}(3,2) = 600. \end{array}$

Then d_{θ} is an extended *b*-metric.

Example 1.7. ([1]) Let $X = [0, 1], \theta : X \times X \to [1, \infty)$ and $d_{\theta} : X \times X \to [0, \infty)$ as:

$$\begin{aligned} \theta \left(x, y \right) &= \frac{1 + x + y}{x + y} \\ d_{\theta}(x, y) &= \frac{1}{xy}, x, y \in (0, 1], x \neq y, \\ d_{\theta}\left(x, y \right) &= 0, x, y \in [0, 1], x = y, \\ d_{\theta}(x, 0) &= d_{\theta}(0, x) = \frac{1}{x}, x \in (0, 1]. \end{aligned}$$

Then d_{θ} is an extended *b*-metric.

The following Lemma is very important in the proof of our results:

Lemma 1.8. ([1]) Let (X, d_{θ}) an extended b-metric space. If there exists $q \in [0, 1)$, such that the sequence $(x_n)_{n \in \mathbb{N}} \subset X$, for an arbitrary $x_0 \in X$, satisfies $\lim_{m,n\to\infty} \theta(x_m, x_n) < \frac{1}{q}$ and

$$0 < d_{\theta}(x_n, x_{n+1}) \leq q d_{\theta}(x_n, x_{n+1}), \text{ for any } n \in \mathbb{N}$$

then $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence.

Let (X, d_{θ}) be an extended *b*-metric space and Δ be the diagonal of $X \times X$. Let *G* be a directed graph, such that the set V(G) of its vertices coincides with *X* and $\Delta \subseteq E(G)$, where E(G) is the set of the edges of the graph. Assume also that *G* has no parallel edges and, thus, one can identify *G* with the pair (V(G), E(G)).

Throughout the paper we shall say that G with the above mentioned properties satisfies standard conditions.

Let us denote by G^{-1} the graph obtained from G by reversing the direction of edges. Thus,

$$E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}.$$

Let us consider the mappings $T, S : X \to X$.

Definition 1.9. An element $x \in X$ is called *common fixed point* of the pair (T, S), if T(x) = S(x) = x.

We shall denote by CFix(T, S) the set of all common fixed points of the pair (T, S), i.e.

$$CFix(T, S) = \{x \in X : T(x) = S(x) = x\}.$$

Definition 1.10. Suppose that $T, S : X \to X$ are two mappings on an extended b-metric space (X, d_{θ}) endowed with a directed graph G. We say that the pair (T, S) is G-orbital-cyclic pair, if for any $x \in X$,

 $\begin{array}{rcl} (x,Tx) & \in & E\left(G\right) \Longrightarrow (Tx,STx) \in E\left(G\right) \\ (x,Sx) & \in & E\left(G\right) \Longrightarrow (Sx,TSx) \in E\left(G\right). \end{array}$

Let us consider the following sets

$$\begin{array}{lll} X^{T} & = & \{x \in X : (x, Tx) \in E\left(G\right)\} \\ X^{S} & = & \{x \in X : (x, Sx) \in E\left(G\right)\} \end{array}$$

Remark 1.11. If the pair (T, S) is G-orbital-cyclic pair, then $X^T \neq \emptyset \iff X^S \neq \emptyset$.

Proof. Let $x_0 \in X^T$. Then $(x_0, Tx_0) \in E(G) \Longrightarrow (Tx_0, STx_0) \in E(G)$. If we denote by $x_1 = Tx_0$ we have that $(x_1, Sx_1) \in E(G)$, and thus, $X^S \neq \emptyset$.

2. Reich-Rus type operators

Theorem 2.1. Let T, S be two self-mappings on a complete extended b-metric space (X, d_{θ}) endowed with a directed graph G such that the pair (T, S) forms a G-orbital-cyclic pair. Suppose that

(i) $X^T \neq \emptyset;$

(ii) for all $x \in X^T$ and $y \in X^S$ and $k_1, k_2, k_3 > 0$, with $k_1 + k_2 + k_3 < 1$

$$d_{\theta}\left(Tx, Sy\right) \leq k_{1}d_{\theta}\left(x, y\right) + k_{2}d_{\theta}\left(x, Tx\right) + k_{3}d_{\theta}\left(y, Sy\right);$$

(iii) for any sequence $(x_n)_{n\in\mathbb{N}}\subset X$, with $(x_n, x_{n+1})\in E(G)$,

$$\lim_{n,m \to \infty} \theta(x_n, x_m) < \frac{1}{q}, \text{ where } q = \max\left\{\frac{k_1 + k_2}{1 - k_3}, \frac{k_1 + k_3}{1 - k_2}\right\};$$

(iv) S and T are continuous,

or

(iv*) for any sequence $(x_n)_{n\in\mathbb{N}} \subset X$, with $x_n \to u$ as $n \to \infty$, and $(x_n, x_{n+1}) \in E(G)$, for $n \in \mathbb{N}$, we have, $u \in X^T \cap X^S$.

In these conditions $CFix(T, S) \neq \emptyset$. Moreover, if we suppose

(v) if $(u, v) \in CFix(T, S)$ implies $u \in X^T$ and $v \in X^S$ then the pair (T, S) has a unique common fixed point.

Proof. Let $x_0 \in X^T$. Thus $(x_0, Tx_0) \in E(G)$.

Because the pair (T, S) is G-orbital-cyclic, we have $(Tx_0, STx_0) \in E(G)$.

If we denote by $x_1 = Tx_0$ we have $(x_1, Sx_1) \in E(G)$ and from here $(Sx_1, TSx_1) \in E(G)$. Denoting by $x_2 = Sx_1$ we have $(x_2, Tx_2) \in E(G)$.

By this procedure we construct inductively, a sequence $(x_n)_{n\in\mathbb{N}}$, with $x_{2n} = Sx_{2n-1}$ and $x_{2n+1} = Tx_{2n}$, such that $(x_{2n}, x_{2n+1}) \in E(G)$.

We shall suppose that $x_n \neq x_{n+1}$.

If, there exists $n_0 \in \mathbb{N}$, such that $x_{n_0} = x_{n_0+1}$, then, because $\Delta \subset E(G), (x_{n_0}, x_{n_0+1}) \in E(G)$ and $u = x_{n_0}$ is a fixed point of T.

In order to show that $u \in CFix(T, S)$, we shall consider two cases for n_0 .

If $n_0 = 2k$, then $x_{2k} = x_{2k+1} = Tx_{2k}$ and thus, x_{2k} is a fixed point for T. Suppose that $d_{\theta}(Tx_{2k}, Sx_{2k+1}) > 0$, and let $x = x_{2k} \in X^T$ and $y = x_{2k+1} \in X^S$.

$$0 < d_{\theta} (x_{2k+1}, x_{2k+2}) = d_{\theta} (Tx_{2k}, Sx_{2k+1}) \le k_1 d_{\theta} (x_{2k}, x_{2k+1}) + k_2 d_{\theta} (x_{2k}, Tx_{2k}) + k_3 d_{\theta} (x_{2k+1}, Sx_{2k+1})$$

= $k_3 d_{\theta} (x_{2k+1}, Sx_{2k+1}) = k_3 d_{\theta} (x_{2k+1}, x_{2k+2}).$

In this way we reach to a contradiction.

In the same way we can prove the case $n_0 = 2k + 1$.

In conclusion $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$.

Now we shall prove that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. In order to do this, we shall consider two possible cases:

Case 1. $x = x_{2n} \in X^T$ and $y = x_{2n+1} \in X^S$.

$$0 < d_{\theta} (x_{2n+1}, x_{2n+2}) = d_{\theta} (Tx_{2n}, Sx_{2n+1})$$

$$\leq k_1 d_{\theta} (x_{2n}, x_{2n+1}) + k_2 d_{\theta} (x_{2n}, Tx_{2n}) + k_3 d_{\theta} (x_{2n+1}, Sx_{2n+1})$$

$$= k_1 d_{\theta} (x_{2n}, x_{2n+1}) + k_2 d_{\theta} (x_{2n}, x_{2n+1}) + k_3 d_{\theta} (x_{2n+1}, x_{2n+2})$$

$$(1-k_3) d_\theta (x_{2n+1}, x_{2n+2}) \leq (k_1+k_2) d_\theta (x_{2n}, x_{2n+1}) d_\theta (x_{2n+1}, x_{2n+2}) \leq \frac{k_1+k_2}{1-k_3} d_\theta (x_{2n}, x_{2n+1}) d_\theta (x_{2n+1}, x_{2n+2}) \leq q d_\theta (x_{2n}, x_{2n+1}) .$$

Case 2. $x = x_{2n} \in X^T$ and $y = x_{2n-1} \in X^S$.

$$0 < d_{\theta} (x_{2n+1}, x_{2n}) = d_{\theta} (Tx_{2n}, Sx_{2n-1})$$

$$\leq k_1 d_{\theta} (x_{2n}, x_{2n-1}) + k_2 d_{\theta} (x_{2n}, Tx_{2n}) + k_3 d_{\theta} (x_{2n-1}, Sx_{2n-1})$$

$$= k_1 d_{\theta} (x_{2n}, x_{2n-1}) + k_2 d_{\theta} (x_{2n}, x_{2n+1}) + k_3 d_{\theta} (x_{2n-1}, x_{2n})$$

$$(1-k_2) d_\theta (x_{2n}, x_{2n+1}) \leq (k_1+k_3) d_\theta (x_{2n-1}, x_{2n}) d_\theta (x_{2n}, x_{2n+1}) \leq \frac{k_1+k_3}{1-k_2} d_\theta (x_{2n-1}, x_{2n}) d_\theta (x_{2n}, x_{2n+1}) \leq q d_\theta (x_{2n-1}, x_{2n}).$$

In this way we have proved that

$$d_{\theta}(x_m, x_{m+1}) \leq q d_{\theta}(x_{m-1}, x_m)$$
, for all $m \in \mathbb{N}$.

From Lemma 1.8., taking into account (*iii*), we obtain that $(x_m)_{m \in \mathbb{N}}$ is a Cauchy sequence in a complete extended b-metric space. Therefore, there is some point $u \in X$, such that $\lim_{m \to \infty} x_m = u$.

It is obvious that $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = u$. Using *(iv)* we have

$$u = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} T(x_{2n}) = Tu,$$

$$u = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} S(x_{2n+1}) = Su.$$

Hence $u \in CFix(T, S)$.

Let us suppose now that (iv^*) take place, and let $x = u \in X^T$ and $y = x_{2n+1} \in X^S$.

$$\begin{array}{ll} 0 &< & d_{\theta}\left(Tu, x_{2n+2}\right) = d_{\theta}\left(Tu, Sx_{2n+1}\right) \leq k_{1}d_{\theta}\left(u, x_{2n+1}\right) + k_{2}d_{\theta}\left(u, Tu\right) + k_{3}d_{\theta}\left(x_{2n+1}, Sx_{2n+1}\right) \\ &= & k_{1}d_{\theta}\left(u, x_{2n+1}\right) + k_{2}d_{\theta}\left(u, Tu\right) + k_{3}d_{\theta}\left(x_{2n+1}, x_{2n+2}\right) = k_{2}d_{\theta}\left(u, Tu\right). \end{array}$$

From here, we obtain that $d_{\theta}(u, Tu) = 0$. Let now consider $x = x_{2n+1} \in X^T$ and $y = u \in X^S$.

$$0 < d_{\theta} (x_{2n+1}, Su) = d_{\theta} (Tx_{2n}, Su) \le k_1 d_{\theta} (x_{2n}, u) + k_2 d_{\theta} (x_{2n}, Tx_{2n}) + k_3 d_{\theta} (u, Su)$$

= $k_1 d_{\theta} (u, x_{2n}) + k_2 d_{\theta} (x_{2n}, x_{2n+1}) + k_3 d_{\theta} (u, Su) = k_3 d_{\theta} (u, Su).$

From here, we obtain that $d_{\theta}(u, Su) = 0$, and thus, $u \in CFix(T, S)$.

Let us prove now the uniqueness of the common fixed point. Suppose that, there exist $u, v \in CFix(T, S)$, $u \neq v$. From (v) we have that $(u, Tu) \in E(G)$ and $(v, Sv) \in E(G)$. Now, using (ii) we obtain

 $0 < d_{\theta}(u, v) = d_{\theta}(Tu, Sv) \le k_1 d_{\theta}(u, v) + k_2 d_{\theta}(u, Tu) + k_3 d_{\theta}(v, Sv) = k_1 d_{\theta}(u, v),$

which is a contradiction. In conclusion u = v.

3. Ciric type operators

Theorem 3.1. Let T, S be two self-mappings on a complete extended b-metric space (X, d_{θ}) endowed with a directed graph G such that the pair (T, S) forms a G-orbital-cyclic pair. Suppose that

(i) $X^T \neq \emptyset;$

or

(ii) for all $x \in X^T$ and $y \in X^S$ and $k_1, k_2, k_3 > 0$, with $k_1 + k_2 + k_3 < 1$

 $d_{\theta}\left(Tx, Sy\right) \leq k \max\left\{d_{\theta}\left(x, y\right), d_{\theta}\left(x, Tx\right), d_{\theta}\left(y, Sy\right)\right\};$

- (iii) for any sequence $(x_n)_{n \in \mathbb{N}} \subset X$, with $(x_n, x_{n+1}) \in E(G)$, $\lim_{n \to \infty} \theta(x_n, x_m) < \frac{1-k}{k}$;
- (iv) S and T are continuous,
- (iv*) for any sequence $(x_n)_{n\in\mathbb{N}}\subset X$, with $x_n\to u$ as $n\to\infty$, and $(x_n,x_{n+1})\in E(G)$, for $n\in\mathbb{N}$, we have, $u\in X^T\cap X^S$.

In these conditions $CFix(T, S) \neq \emptyset$. Moreover, if we suppose

(v) if $(u, v) \in CFix(T, S)$ implies $u \in X^T$ and $v \in X^S$ then the pair (T, S) has a unique common fixed point.

Proof. Let $x_0 \in X^T$. Just like in the proof of Theorem 2.1., we construct inductively, a sequence $(x_n)_{n \in \mathbb{N}}$, with $x_{2n} = Sx_{2n-1}$ and $x_{2n+1} = Tx_{2n}$, such that $(x_{2n}, x_{2n+1}) \in E(G)$.

We shall suppose that $x_n \neq x_{n+1}$.

If, there exists $n_0 \in \mathbb{N}$, such that $x_{n_0} = x_{n_0+1}$, then, because $\Delta \subset E(G), (x_{n_0}, x_{n_0+1}) \in E(G)$ and $u = x_{n_0}$ is a fixed point of T.

In order to show that $u \in CFix(T, S)$, we shall consider two cases for n_0 .

If $n_0 = 2k$, then $x_{2k} = x_{2k+1} = Tx_{2k}$ and thus, x_{2k} is a fixed point for T. Suppose that $d_{\theta}(Tx_{2k}, Sx_{2k+1}) > 0$, and let $x = x_{2k} \in X^T$ and $y = x_{2k+1} \in X^S$.

- $0 < d_{\theta} (x_{2k+1}, x_{2k+2}) = d_{\theta} (Tx_{2k}, Sx_{2k+1})$
 - $\leq k \max \left\{ d_{\theta} \left(x_{2k}, x_{2k+1} \right), d_{\theta} \left(x_{2k}, Tx_{2k} \right), d_{\theta} \left(x_{2k+1}, Sx_{2k+1} \right) \right\}$
 - $= kd_{\theta} (x_{2k+1}, Sx_{2k+1}) = kd_{\theta} (x_{2k+1}, x_{2k+2}).$

In this way we reach to a contradiction.

In the same way we can prove the case $n_0 = 2k + 1$.

In conclusion $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$.

Now we shall prove that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. In order to do this, we shall consider two possible cases:

Case 1. $x = x_{2n} \in X^T$ and $y = x_{2n+1} \in X^S$.

$$0 < d_{\theta} (x_{2n+1}, x_{2n+2}) = d_{\theta} (Tx_{2n}, Sx_{2n+1})$$

$$\leq k \max \{ d_{\theta} (x_{2n}, x_{2n+1}), d_{\theta} (x_{2n}, Tx_{2n}), d_{\theta} (x_{2n+1}, Sx_{2n+1}) \}$$

$$= k \max \{ d_{\theta} (x_{2n}, x_{2n+1}), d_{\theta} (x_{2n+1}, x_{2n+2}) \}$$

$$\leq k [d_{\theta} (x_{2n}, x_{2n+1}) + d_{\theta} (x_{2n+1}, x_{2n+2})]$$

$$\begin{aligned} (1-k) \, d_{\theta} \left(x_{2n+1}, x_{2n+2} \right) &\leq k d_{\theta} \left(x_{2n}, x_{2n+1} \right) \\ d_{\theta} \left(x_{2n+1}, x_{2n+2} \right) &\leq \frac{k}{1-k} d_{\theta} \left(x_{2n}, x_{2n+1} \right) \end{aligned}$$

Case 2. $x = x_{2n} \in X^T$ and $y = x_{2n-1} \in X^S$.

$$0 < d_{\theta} (x_{2n+1}, x_{2n}) = d_{\theta} (Tx_{2n}, Sx_{2n-1})$$

$$\leq k \max \{ d_{\theta} (x_{2n}, x_{2n-1}), d_{\theta} (x_{2n}, Tx_{2n}), d_{\theta} (x_{2n-1}, Sx_{2n-1}) \}$$

$$= k \max \{ d_{\theta} (x_{2n}, x_{2n-1}), d_{\theta} (x_{2n}, x_{2n+1}) \}$$

$$\leq k [d_{\theta} (x_{2n}, x_{2n-1}) + d_{\theta} (x_{2n}, x_{2n+1})]$$

$$d_{\theta}(x_{2n}, x_{2n+1}) \le \frac{k}{1-k} d_{\theta}(x_{2n-1}, x_{2n})$$

In this way we have proved that

$$d_{\theta}(x_m, x_{m+1}) \leq \frac{k}{1-k} d_{\theta}(x_{m-1}, x_m), \text{ for all } m \in \mathbb{N}.$$

From Lemma 1.8., taking into account (*iii*), we obtain that $(x_m)_{m \in \mathbb{N}}$ is a Cauchy sequence in a complete extended b-metric space. Therefore, there is some point $u \in X$, such that $\lim_{m \to \infty} x_m = u$.

It is obvious that $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = u$. Using *(iv)* we have

$$u = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} T(x_{2n}) = Tu, u = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} S(x_{2n+1}) = Su.$$

Hence $u \in CFix(T, S)$. Let us suppose now that (iv^*) take place, and let $x = u \in X^T$ and $y = x_{2n+1} \in X^S$.

 $0 < d_{\theta} \left(Tu, x_{2n+2} \right) = d_{\theta} \left(Tu, Sx_{2n+1} \right) \le k \max \left\{ d_{\theta} \left(u, x_{2n+1} \right), d_{\theta} \left(u, Tu \right), d_{\theta} \left(x_{2n+1}, Sx_{2n+1} \right) \right\} = k d_{\theta} \left(u, Tu \right)$

From here, we obtain that $d_{\theta}(u, Tu) = 0$. Let now consider $x = x_{2n+1} \in X^T$ and $y = u \in X^S$.

$$0 < d_{\theta}(x_{2n+1}, Su) = d_{\theta}(Tx_{2n}, Su) \le k \max\{d_{\theta}(x_{2n}, u), d_{\theta}(x_{2n}, Tx_{2n}), d_{\theta}(u, Su)\} = kd_{\theta}(u, Su)$$

From here, we obtain that $d_{\theta}(u, Su) = 0$, and thus, $u \in CFix(T, S)$.

Let us prove now the uniqueness of the common fixed point. Suppose that, there exist $u, v \in CFix(T, S)$, $u \neq v$. From (v) we have that $(u, Tu) \in E(G)$ and $(v, Sv) \in E(G)$. Now, using (ii) we obtain

$$0 < d_{\theta}(u, v) = d_{\theta}(Tu, Sv) \le k \max \left\{ d_{\theta}(u, v), d_{\theta}(u, Tu), d_{\theta}(v, Sv) \right\} = k d_{\theta}(u, v),$$

which is a contradiction. In conclusion u = v.

References

- B. Alqahtani, A. Fulga, E. Karapinar, Common fixed point results on extended b-metric space, Journal of Inequalities and Applications, (2018) 2018:158. https://doi.org/10.1186/s13660-018-1745-4
- [2] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
- [3] S. Czerwik, Nonlinear set-valued contraction mappings in *b*-metric spaces, *Atti Sem. Mat. Univ. Modena*, 46(1998), 263-276.
- [4] T. Kamran, M. Samreen, O.U. Aim, A generalisation of b-metric space and some fixed point theorems, *Mathematics*, 5, 19(2017).