Common fixed point results in extended b-metric spaces endowed with a directed graph

Cristian Chifu ${ }^{\text {a }}$
${ }^{a}$ Babes-Bolyai University Cluj-Napoca, Department of Business, Horea street, No.7, Cluj-Napoca, Romania

Abstract

The purpose of this paper is to obtain some fixed point results in extended b-metric spaces for Reich-Rus and Ciric operators.

Keywords: extended b-metric spaces, fixed point, contraction, Reich-Rus and Ciric operators 2010 MSC: 47H10, 54H25.

1. Introduction

Definition 1.1. (3) Let X be a nonempty set and let $s \geq 1$ be a given real number. A functional $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric with constant s, if all axioms of the metric space take place with the following modification of the triangle axiom:

$$
d(x, z) \leq s[d(x, y)+d(y, z)], \text { for all } x, y, z \in X
$$

In this case the pair (X, d) is called a b-metric space with constant s.
Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric space when $\mathrm{s}=1$. For more details and examples on b-metric spaces, see e.g. [2].

Example 1.3. Let $X=\mathbb{R}_{+}$and $d: X \times X \rightarrow \mathbb{R}_{+}$such that $d(x, y)=|x-y|^{p}, p>1$. It's easy to see that d is a b-metric with $s=2^{p}$, but is not a metric.

[^0]Definition 1.4. ([4]) Let X be a nonempty set and let $\theta: X \times X \rightarrow[1, \infty)$. A functional $d_{\theta}: X \times X \rightarrow[0, \infty)$ is said to be an extended b-metric, if for all $x, y, z \in X$, the following axioms are satisfied:

1. $d_{\theta}(x, y)=0 \Longleftrightarrow x=y$;
2. $d_{\theta}(x, y)=d_{\theta}(y, x)$;
3. $d_{\theta}(x, z) \leq \theta(x, y)\left[d_{\theta}(x, y)+d_{\theta}(y, z)\right]$, for all $x, y, z \in X$

In this case the pair $\left(X, d_{\theta}\right)$ is called an extended b-metric space.
Remark 1.5. If $\theta(x, y)=s$, for $s \geq 1$, then we obtain the definition of b-metric space.

Example 1.6. ([4]) Let $X=\{1,2,3\}, \theta: X \times X \rightarrow[1, \infty)$ and $d_{\theta}: X \times X \rightarrow[0, \infty)$ as:

$$
\begin{aligned}
\theta(x, y) & =1+x+y \\
d_{\theta}(1,1) & =d_{\theta}(2,2)=d_{\theta}(3,3)=0 \\
d_{\theta}(1,2) & =d_{\theta}(2,1)=80 \\
d_{\theta}(1,3) & =d_{\theta}(3,1)=1000 \\
d_{\theta}(2,3) & =d_{\theta}(3,2)=600
\end{aligned}
$$

Then d_{θ} is an extended b-metric.

Example 1.7. ([1]) Let $X=[0,1], \theta: X \times X \rightarrow[1, \infty)$ and $d_{\theta}: X \times X \rightarrow[0, \infty)$ as:

$$
\begin{aligned}
\theta(x, y) & =\frac{1+x+y}{x+y} \\
d_{\theta}(x, y) & =\frac{1}{x y}, x, y \in(0,1], x \neq y \\
d_{\theta}(x, y) & =0, x, y \in[0,1], x=y \\
d_{\theta}(x, 0) & =d_{\theta}(0, x)=\frac{1}{x}, x \in(0,1]
\end{aligned}
$$

Then d_{θ} is an extended b-metric.
The following Lemma is very important in the proof of our results:

Lemma 1.8. ([1]) Let $\left(X, d_{\theta}\right)$ an extended b-metric space. If there exists $q \in[0,1)$, such that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$, for an arbitrary $x_{0} \in X$, satisfies $\lim _{m, n \rightarrow \infty} \theta\left(x_{m}, x_{n}\right)<\frac{1}{q}$ and

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq q d_{\theta}\left(x_{n}, x_{n+1}\right), \text { for any } n \in \mathbb{N}
$$

then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence.
Let $\left(X, d_{\theta}\right)$ be an extended b-metric space and Δ be the diagonal of $X \times X$. Let G be a directed graph, such that the set $V(G)$ of its vertices coincides with X and $\Delta \subseteq E(G)$, where $E(G)$ is the set of the edges of the graph. Assume also that G has no parallel edges and, thus, one can identify G with the pair $(V(G), E(G))$.

Throughout the paper we shall say that G with the above mentioned properties satisfies standard conditions.

Let us denote by G^{-1} the graph obtained from G by reversing the direction of edges. Thus,

$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}
$$

Let us consider the mappings $T, S: X \rightarrow X$.

Definition 1.9. An element $x \in X$ is called common fixed point of the pair (T, S), if $T(x)=S(x)=x$.
We shall denote by $\operatorname{CFix}(T, S)$ the set of all common fixed points of the pair (T, S), i.e.

$$
C F i x(T, S)=\{x \in X: T(x)=S(x)=x\} .
$$

Definition 1.10. Suppose that $T, S: X \rightarrow X$ are two mappings on an extended b-metric space (X, d_{θ}) endowed with a directed graph G. We say that the pair (T, S) is G-orbital-cyclic pair, if for any $x \in X$,

$$
\begin{aligned}
& (x, T x) \in E(G) \Longrightarrow(T x, S T x) \in E(G) \\
& (x, S x) \in E(G) \Longrightarrow(S x, T S x) \in E(G) .
\end{aligned}
$$

Let us consider the following sets

$$
\begin{aligned}
X^{T} & =\{x \in X:(x, T x) \in E(G)\} \\
X^{S} & =\{x \in X:(x, S x) \in E(G)\}
\end{aligned}
$$

Remark 1.11. If the pair (T, S) is G-orbital-cyclic pair, then $X^{T} \neq \varnothing \Longleftrightarrow X^{S} \neq \varnothing$.
Proof. Let $x_{0} \in X^{T}$. Then $\left(x_{0}, T x_{0}\right) \in E(G) \Longrightarrow\left(T x_{0}, S T x_{0}\right) \in E(G)$.
If we denote by $x_{1}=T x_{0}$ we have that $\left(x_{1}, S x_{1}\right) \in E(G)$, and thus, $X^{S} \neq \varnothing$.

2. Reich-Rus type operators

Theorem 2.1. Let T, S be two self-mappings on a complete extended b-metric space $\left(X, d_{\theta}\right)$ endowed with a directed graph G such that the pair (T, S) forms a G-orbital-cyclic pair. Suppose that
(i) $X^{T} \neq \varnothing$;
(ii) for all $x \in X^{T}$ and $y \in X^{S}$ and $k_{1}, k_{2}, k_{3}>0$, with $k_{1}+k_{2}+k_{3}<1$

$$
d_{\theta}(T x, S y) \leq k_{1} d_{\theta}(x, y)+k_{2} d_{\theta}(x, T x)+k_{3} d_{\theta}(y, S y) ;
$$

(iii) for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$, with $\left(x_{n}, x_{n+1}\right) \in E(G)$,

$$
\lim _{n, m \rightarrow \infty} \theta\left(x_{n}, x_{m}\right)<\frac{1}{q}, \text { where } q=\max \left\{\frac{k_{1}+k_{2}}{1-k_{3}}, \frac{k_{1}+k_{3}}{1-k_{2}}\right\} ;
$$

(iv) S and T are continuous, or
(iv*) for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$, with $x_{n} \rightarrow u$ as $n \rightarrow \infty$, and $\left(x_{n}, x_{n+1}\right) \in E(G)$, for $n \in \mathbb{N}$, we have, $u \in X^{T} \cap X^{S}$.

In these conditions CFix $(T, S) \neq \varnothing$.
Moreover, if we suppose
(v) if $(u, v) \in C F i x(T, S)$ implies $u \in X^{T}$ and $v \in X^{S}$ then the pair (T, S) has a unique common fixed point.

Proof. Let $x_{0} \in X^{T}$. Thus $\left(x_{0}, T x_{0}\right) \in E(G)$.
Because the pair (T, S) is G-orbital-cyclic , we have $\left(T x_{0}, S T x_{0}\right) \in E(G)$.
If we denote by $x_{1}=T x_{0}$ we have $\left(x_{1}, S x_{1}\right) \in E(G)$ and from here $\left(S x_{1}, T S x_{1}\right) \in E(G)$. Denoting by $x_{2}=S x_{1}$ we have $\left(x_{2}, T x_{2}\right) \in E(G)$.

By this procedure we construct inductively, a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, with $x_{2 n}=S x_{2 n-1}$ and $x_{2 n+1}=T x_{2 n}$, such that $\left(x_{2 n}, x_{2 n+1}\right) \in E(G)$.

We shall suppose that $x_{n} \neq x_{n+1}$.
If, there exists $n_{0} \in \mathbb{N}$, such that $x_{n_{0}}=x_{n_{0}+1}$, then, because $\Delta \subset E(G),\left(x_{n_{0}}, x_{n_{0}+1}\right) \in E(G)$ and $u=x_{n_{0}}$ is a fixed point of T.

In order to show that $u \in \operatorname{CFix}(T, S)$, we shall consider two cases for n_{0}.
If $n_{0}=2 k$, then $x_{2 k}=x_{2 k+1}=T x_{2 k}$ an thus, $x_{2 k}$ is a fixed point for T. Suppose that $d_{\theta}\left(T x_{2 k}, S x_{2 k+1}\right)>$ 0 , and let $x=x_{2 k} \in X^{T}$ and $y=x_{2 k+1} \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(x_{2 k+1}, x_{2 k+2}\right)=d_{\theta}\left(T x_{2 k}, S x_{2 k+1}\right) \leq k_{1} d_{\theta}\left(x_{2 k}, x_{2 k+1}\right)+k_{2} d_{\theta}\left(x_{2 k}, T x_{2 k}\right)+k_{3} d_{\theta}\left(x_{2 k+1}, S x_{2 k+1}\right) \\
& =k_{3} d_{\theta}\left(x_{2 k+1}, S x_{2 k+1}\right)=k_{3} d_{\theta}\left(x_{2 k+1}, x_{2 k+2}\right) .
\end{aligned}
$$

In this way we reach to a contradiction.
In the same way we can prove the case $n_{0}=2 k+1$.
In conclusion $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N}$.
Now we shall prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. In order to do this, we shall consider two possible cases:

Case 1. $x=x_{2 n} \in X^{T}$ and $y=x_{2 n+1} \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)=d_{\theta}\left(T x_{2 n}, S x_{2 n+1}\right) \\
& \leq k_{1} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+k_{2} d_{\theta}\left(x_{2 n}, T x_{2 n}\right)+k_{3} d_{\theta}\left(x_{2 n+1}, S x_{2 n+1}\right) \\
& =k_{1} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+k_{2} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+k_{3} d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(1-k_{3}\right) d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right) & \leq\left(k_{1}+k_{2}\right) d_{\theta}\left(x_{2 n}, x_{2 n+1}\right) \\
d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right) & \leq \frac{k_{1}+k_{2}}{1-k_{3}} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right) \\
d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right) & \leq q d_{\theta}\left(x_{2 n}, x_{2 n+1}\right) .
\end{aligned}
$$

Case 2. $x=x_{2 n} \in X^{T}$ and $y=x_{2 n-1} \in X^{S}$.

$$
\left.\begin{array}{rl}
0 & <d_{\theta}\left(x_{2 n+1}, x_{2 n}\right)=d_{\theta}\left(T x_{2 n}, S x_{2 n-1}\right) \\
& \leq k_{1} d_{\theta}\left(x_{2 n}, x_{2 n-1}\right)+k_{2} d_{\theta}\left(x_{2 n}, T x_{2 n}\right)+k_{3} d_{\theta}\left(x_{2 n-1}, S x_{2 n-1}\right) \\
& =k_{1} d_{\theta}\left(x_{2 n}, x_{2 n-1}\right)+k_{2} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+k_{3} d_{\theta}\left(x_{2 n-1}, x_{2 n}\right) \\
(1- & \left.k_{2}\right) d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)
\end{array}\right) \leq\left(k_{1}+k_{3}\right) d_{\theta}\left(x_{2 n-1}, x_{2 n}\right) .
$$

In this way we have proved that

$$
d_{\theta}\left(x_{m}, x_{m+1}\right) \leq q d_{\theta}\left(x_{m-1}, x_{m}\right), \text { for all } m \in \mathbb{N} .
$$

From Lemma 1.8., taking into account (iii), we obtain that $\left(x_{m}\right)_{m \in \mathbb{N}}$ is a Cauchy sequence in a complete extended b-metric space. Therefore, there is some point $u \in X$, such that $\lim _{m \rightarrow \infty} x_{m}=u$.

It is obvious that $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=u$.
Using (iv) we have

$$
\begin{aligned}
u & =\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} T\left(x_{2 n}\right)=T u \\
u & =\lim _{n \rightarrow \infty} x_{2 n+2}=\lim _{n \rightarrow \infty} S\left(x_{2 n+1}\right)=S u
\end{aligned}
$$

Hence $u \in C F i x(T, S)$.
Let us suppose now that $\left(i v^{*}\right)$ take place, and let $x=u \in X^{T}$ and $y=x_{2 n+1} \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(T u, x_{2 n+2}\right)=d_{\theta}\left(T u, S x_{2 n+1}\right) \leq k_{1} d_{\theta}\left(u, x_{2 n+1}\right)+k_{2} d_{\theta}(u, T u)+k_{3} d_{\theta}\left(x_{2 n+1}, S x_{2 n+1}\right) \\
& =k_{1} d_{\theta}\left(u, x_{2 n+1}\right)+k_{2} d_{\theta}(u, T u)+k_{3} d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)=k_{2} d_{\theta}(u, T u)
\end{aligned}
$$

From here, we obtain that $d_{\theta}(u, T u)=0$.
Let now consider $x=x_{2 n+1} \in X^{T}$ and $y=u \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(x_{2 n+1,} S u\right)=d_{\theta}\left(T x_{2 n}, S u\right) \leq k_{1} d_{\theta}\left(x_{2 n}, u\right)+k_{2} d_{\theta}\left(x_{2 n}, T x_{2 n}\right)+k_{3} d_{\theta}(u, S u) \\
& =k_{1} d_{\theta}\left(u, x_{2 n}\right)+k_{2} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+k_{3} d_{\theta}(u, S u)=k_{3} d_{\theta}(u, S u)
\end{aligned}
$$

From here, we obtain that $d_{\theta}(u, S u)=0$, and thus, $u \in C$ Fix (T, S).
Let us prove now the uniqueness of the common fixed point. Suppose that, there exist $u, v \in C F i x(T, S)$, $u \neq v$. From (v) we have that $(u, T u) \in E(G)$ and $(v, S v) \in E(G)$. Now, using (ii) we obtain

$$
0<d_{\theta}(u, v)=d_{\theta}(T u, S v) \leq k_{1} d_{\theta}(u, v)+k_{2} d_{\theta}(u, T u)+k_{3} d_{\theta}(v, S v)=k_{1} d_{\theta}(u, v)
$$

which is a contradiction. In conclusion $u=v$.

3. Ciric type operators

Theorem 3.1. Let T, S be two self-mappings on a complete extended b-metric space $\left(X, d_{\theta}\right)$ endowed with a directed graph G such that the pair (T, S) forms a G-orbital-cyclic pair. Suppose that
(i) $X^{T} \neq \varnothing$;
(ii) for all $x \in X^{T}$ and $y \in X^{S}$ and $k_{1}, k_{2}, k_{3}>0$, with $k_{1}+k_{2}+k_{3}<1$

$$
d_{\theta}(T x, S y) \leq k \max \left\{d_{\theta}(x, y), d_{\theta}(x, T x), d_{\theta}(y, S y)\right\}
$$

(iii) for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$, with $\left(x_{n}, x_{n+1}\right) \in E(G), \lim _{n, m \rightarrow \infty} \theta\left(x_{n}, x_{m}\right)<\frac{1-k}{k}$;
(iv) S and T are continuous,
or
(iv*) for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$, with $x_{n} \rightarrow u$ as $n \rightarrow \infty$, and $\left(x_{n}, x_{n+1}\right) \in E(G)$, for $n \in \mathbb{N}$, we have, $u \in X^{T} \cap X^{S}$.

In these conditions CFix $(T, S) \neq \varnothing$.
Moreover, if we suppose
(v) if $(u, v) \in C$ Fix (T, S) implies $u \in X^{T}$ and $v \in X^{S}$ then the pair (T, S) has a unique common fixed point.

Proof. Let $x_{0} \in X^{T}$. Just like in the proof of Theorem 2.1., we construct inductively, a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, with $x_{2 n}=S x_{2 n-1}$ and $x_{2 n+1}=T x_{2 n}$, such that $\left(x_{2 n}, x_{2 n+1}\right) \in E(G)$.

We shall suppose that $x_{n} \neq x_{n+1}$.
If, there exists $n_{0} \in \mathbb{N}$, such that $x_{n_{0}}=x_{n_{0}+1}$, then, because $\Delta \subset E(G),\left(x_{n_{0}}, x_{n_{0}+1}\right) \in E(G)$ and $u=x_{n_{0}}$ is a fixed point of T.

In order to show that $u \in C F i x(T, S)$, we shall consider two cases for n_{0}.
If $n_{0}=2 k$, then $x_{2 k}=x_{2 k+1}=T x_{2 k}$ an thus, $x_{2 k}$ is a fixed point for T. Suppose that $d_{\theta}\left(T x_{2 k}, S x_{2 k+1}\right)>$ 0 , and let $x=x_{2 k} \in X^{T}$ and $y=x_{2 k+1} \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(x_{2 k+1}, x_{2 k+2}\right)=d_{\theta}\left(T x_{2 k}, S x_{2 k+1}\right) \\
& \leq k \max \left\{d_{\theta}\left(x_{2 k}, x_{2 k+1}\right), d_{\theta}\left(x_{2 k}, T x_{2 k}\right), d_{\theta}\left(x_{2 k+1}, S x_{2 k+1}\right)\right\} \\
& =k d_{\theta}\left(x_{2 k+1}, S x_{2 k+1}\right)=k d_{\theta}\left(x_{2 k+1}, x_{2 k+2}\right)
\end{aligned}
$$

In this way we reach to a contradiction.
In the same way we can prove the case $n_{0}=2 k+1$.
In conclusion $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N}$.
Now we shall prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. In order to do this, we shall consider two possible cases:

Case 1. $x=x_{2 n} \in X^{T}$ and $y=x_{2 n+1} \in X^{S}$.

$$
\begin{aligned}
& 0<d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)=d_{\theta}\left(T x_{2 n}, S x_{2 n+1}\right) \\
& \leq k \max \left\{d_{\theta}\left(x_{2 n}, x_{2 n+1}\right), d_{\theta}\left(x_{2 n}, T x_{2 n}\right), d_{\theta}\left(x_{2 n+1}, S x_{2 n+1}\right)\right\} \\
&=k \max \left\{d_{\theta}\left(x_{2 n}, x_{2 n+1}\right), d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)\right\} \\
& \leq k\left[d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)+d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right)\right] \\
&(1-k) d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right) \leq k d_{\theta}\left(x_{2 n}, x_{2 n+1}\right) \\
& d_{\theta}\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{k}{1-k} d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)
\end{aligned}
$$

Case 2. $x=x_{2 n} \in X^{T}$ and $y=x_{2 n-1} \in X^{S}$.

$$
\begin{aligned}
0 & <d_{\theta}\left(x_{2 n+1}, x_{2 n}\right)=d_{\theta}\left(T x_{2 n}, S x_{2 n-1}\right) \\
& \leq k \max \left\{d_{\theta}\left(x_{2 n}, x_{2 n-1}\right), d_{\theta}\left(x_{2 n}, T x_{2 n}\right), d_{\theta}\left(x_{2 n-1}, S x_{2 n-1}\right)\right\} \\
& =k \max \left\{d_{\theta}\left(x_{2 n}, x_{2 n-1}\right), d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)\right\} \\
& \leq k\left[d_{\theta}\left(x_{2 n}, x_{2 n-1}\right)+d_{\theta}\left(x_{2 n}, x_{2 n+1}\right)\right]
\end{aligned}
$$

$$
d_{\theta}\left(x_{2 n}, x_{2 n+1}\right) \leq \frac{k}{1-k} d_{\theta}\left(x_{2 n-1}, x_{2 n}\right)
$$

In this way we have proved that

$$
d_{\theta}\left(x_{m}, x_{m+1}\right) \leq \frac{k}{1-k} d_{\theta}\left(x_{m-1}, x_{m}\right), \text { for all } m \in \mathbb{N}
$$

From Lemma 1.8., taking into account (iii), we obtain that $\left(x_{m}\right)_{m \in \mathbb{N}}$ is a Cauchy sequence in a complete extended b-metric space. Therefore, there is some point $u \in X$, such that $\lim _{m \rightarrow \infty} x_{m}=u$.

It is obvious that $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=u$.
Using (iv) we have

$$
\begin{aligned}
u & =\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} T\left(x_{2 n}\right)=T u \\
u & =\lim _{n \rightarrow \infty} x_{2 n+2}=\lim _{n \rightarrow \infty} S\left(x_{2 n+1}\right)=S u
\end{aligned}
$$

Hence $u \in C F i x(T, S)$.
Let us suppose now that $\left(i v^{*}\right)$ take place, and let $x=u \in X^{T}$ and $y=x_{2 n+1} \in X^{S}$.
$0<d_{\theta}\left(T u, x_{2 n+2}\right)=d_{\theta}\left(T u, S x_{2 n+1}\right) \leq k \max \left\{d_{\theta}\left(u, x_{2 n+1}\right), d_{\theta}(u, T u), d_{\theta}\left(x_{2 n+1}, S x_{2 n+1}\right)\right\}=k d_{\theta}(u, T u)$
From here, we obtain that $d_{\theta}(u, T u)=0$.
Let now consider $x=x_{2 n+1} \in X^{T}$ and $y=u \in X^{S}$.

$$
0<d_{\theta}\left(x_{2 n+1}, S u\right)=d_{\theta}\left(T x_{2 n}, S u\right) \leq k \max \left\{d_{\theta}\left(x_{2 n}, u\right), d_{\theta}\left(x_{2 n}, T x_{2 n}\right), d_{\theta}(u, S u)\right\}=k d_{\theta}(u, S u)
$$

From here, we obtain that $d_{\theta}(u, S u)=0$, and thus, $u \in C F i x(T, S)$.
Let us prove now the uniqueness of the common fixed point. Suppose that, there exist $u, v \in C F i x(T, S)$, $u \neq v$. From (v) we have that $(u, T u) \in E(G)$ and $(v, S v) \in E(G)$. Now, using (ii) we obtain

$$
0<d_{\theta}(u, v)=d_{\theta}(T u, S v) \leq k \max \left\{d_{\theta}(u, v), d_{\theta}(u, T u), d_{\theta}(v, S v)\right\}=k d_{\theta}(u, v)
$$

which is a contradiction. In conclusion $u=v$.

References

[1] B. Alqahtani, A. Fulga, E. Karapinar, Common fixed point results on extended b-metric space, Journal of Inequalities and Applications, (2018) 2018:158. https://doi.org/10.1186/s13660-018-1745-4
[2] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.
[3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[4] T. Kamran, M. Samreen, O.U. Aim, A generalisation of b-metric space and some fixed point theorems, Mathematics, 5, 19(2017).

[^0]: Email address: cristian.chifu@tbs.ubbcluj.ro (Cristian Chifu)

