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A NUMERICAL SOLUTION STUDY ON SINGULARLY
PERTURBED CONVECTION-DIFFUSION NONLOCAL

BOUNDARY PROBLEM

DERYA ARSLAN AND MUSA CAKIR

Abstract. This important numerical method is given for the numerical so-
lution of singularly perturbed convection-diffusion nonlocal boundary value
problem. First, the behavior of the exact solution is analyzed, which is needed
for analysis of the numerical solution in later sections. Next, uniformly conver-
gent finite difference scheme on a Shishkin mesh is established, which is based
on the method of integral identities with the use exponential basis functions
and interpolating quadrature rules with weight and remainder term in integral
form. It is shown that the method is first order accurate expect for a loga-
rithmic factor, in the discrete maximum norm. Finally, the numerical results
are presented in table and graphs, and these results reveal the validity of the
theoretical results of our method.

1. Introduction

In this work, we consider singularly perturbed convection-diffusion problem with
nonlocal boundary value

− εu′′(x) + a(x)u′(x) + b (x)u (x) = f (x) , 0 < x < 1, (1.1)

u (0) = A, (1.2)

u (1)−
m−2∑
i=1

ciu (si) = B, (1.3)

where 0 < ε << 1 is a small perturbation parameter, B and ci are given constants,
0 < s1 < s2 < ... < sm−2 < 1, i = 1, 2, ...m − 2; and a (x) ≥ α > 0; and a(x),
b(x) and f (x) are assumed to be suffi ciently continuously differentiable functions
in [0, 1].
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It is a well known fact that differential equations with a small parameter ε multi-
plying the highest-order derivative terms are called singularly perturbed differential
equations. Standard discretization methods for solving singular perturbation prob-
lem are unstable and these don’t give accurate results for ε. Therefore, it is very
important to find suitable numerical methods to these problems. In order to solve
these problems, there are some fitted numerical approaches namely, finite difference
methods, finite element methods, etc. So, we prefer to use finite difference method
for solving this problem in this paper.
The first time, nonlocal boundary value problems have been studied by Bitsadze

and Samarskii [5]. Singular perturbation problems arise in chemical-reactor theory,
control theory, oceanography, fluid mechanics, quantum mechanics, hydro mechan-
ical problems, meteorology, electrical networks and other physical models [13, 14,
16, 17, 18, 19]. Singularly perturbed differential equations with nonlocal boundary
value have been studied by many authors. According to some references, existence
and uniqueness of nonlocal problems can be seen in [1, 4]. A finite difference scheme
on an uniform mesh for solving linear (nonlinear) singularly perturbed problem with
nonlocal condition have been found in [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15].
The plan of the study is as follows: We evaluate that for the numerical solu-

tion of the nonlocal problem (1.1)-(1.3), this method is uniformly convergent of
first order on Shishkin mesh, in discrete maximum norm, independently of singu-
lar perturbation parameter ε. Some properties of the exact solution of problem
described in (1.1)-(1.3) is investigated in Section 2. Finite difference schemes on
Shishkin mesh for problem (1.1)-(1.3) are constructed in Section 3. Finite difference
schemes are based on the method of integral identities with the use of exponential
basis functions and interpolating quadrature rules with the weight and remainder
terms in integral form [4] . The error analysis for the difference scheme is performed
in Section 4. Uniform convergence is obtained in the discrete maximum norm. The
iterative algorithm for solving the discrete problem is arranged and numerical exam-
ple is presented to find the solution of approximation in Section 5. Throughout the
paper, C will mean a positive constant independent of ε and the mesh parameter.

2. Some Properties of the Continuous Problem

In this section, we give useful asymptotic estimates of the exact solution of the
problem (1.1)−(1.3), which are needed in the construction of layer-adapted meshes
and examine of the numerical solution.

Lemma 2.1. Let a(x), b(x) and f(x) be suffi ciently smooth on interval [0, 1] and

w(1)−
m−2∑
i=1

ciw (si) 6= 0, (2.1)

where w(x)is the solution of the following problem:

−εw′′ + a(x)w′(x) + b (x)w (x) = 0,
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w (0) = 0, w (1) = 1.

Then, the solution of problem (1.1)-(1.3) satisfies the following inequalities:

‖u (x)‖C[0,1] ≤ C0, (2.2)

where
C0 = |v (x)|+ |λ| |w (x)| ,

and

|u′ (x)| ≤ C1

{
1 +

1

ε

(
e−

α(1−x)
ε

)}
, 0 < x < 1. (2.3)

Proof. Let us take u (1) = λ and the solution of the problem (1.1) -(1.3) as u (x) =
v (x) + λw (x) , where

λ =

b− v(1) +
m−2∑
i=1

civ (si)

w(1)−
m−2∑
i=1

ciw (si)

,

and the function v (x) and w(x) is the solution of the following problems:

Lv = f (x) ,

v (0) = A, v′(0) = 0,

Lw = 0,

w (0) = 0, w′(0) = 1,

According to the maximum principle, we have the inequalities

|v(x)| = |v (0)|+ |v′ (0)|+ α−1 ‖f(x)‖C[0,1] ≤ C1, (2.4)

and
|w(x)| = |w (0)|+ |w′ (0)| ≤ 1. (2.5)

Finally, from (2.4) and (2.5), we obtain

|u (x)| = |v (x)|+ |λ| |w (x)| ≤ C1 + 1 ≤ C0,

which proves (2.2).
Now, we will examine the inequality (2.3). Differentiating the equation (1.1), we

get the relation
− εu′′ (x) + a(x)u′(x) = G(x), (2.6)

where
f (x)− b (x)u (x) = G (x) .

After doing some calculation in the equation (2.6), we have

|u′ (x)| ≤ C1

{
1 +

1

ε

(
e−

α(1−x)
ε

)}
,

(see in [8]). Thus, we prove (2.3). This completes the proof of Lemma 2.1. �
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3. Discretization and Mesh

In this section, we give a difference scheme for solving our problem on Shishkin
mesh.
Let us consider the following any non-uniform mesh on the interval [0, 1] ,

ωN = {0 < x1 < x2 < ... < xN−1 < 1}

and
ω̄N = ωN ∪ {x0 = 0, xN = 1} .

We set the step-size hi = xi − xi−1, i = 1, 2, ..., N . Before describing our numer-
ical method, we introduce some notations for the mesh functions. We define the
following finite difference for any mesh function gi = g(xi) given on ω̄N :

gx̄,i =
gi − gi−1

hi
, gx,i =

gi+1 − gi
hi+1

, g0
x,i

=
gx,i + gx̄,i

2
,

gx̂,i =
gi+1 − gi
~i

, gx̄x̂,i =
gx,i − gx̄,i

~i
, ~i =

hi + hi+1

2
,

‖g‖∞ ≡ ‖g‖∞,ω̄N := max
06i6N

|gi| .

Now, we will construct the difference scheme for the equation (1.1). First, we
integrate the equation (1.1) over (xi−1, xi+1) ,

~−1
i

xi+1∫
xi−1

Lu(x)ϕi(x)dx = ~−1
i

xi+1∫
xi−1

f(x)ϕi(x)dx, i = 1, N − 1, (3.1)

with the basis functions {ϕi(x)}N−1
i=1 having the from

ϕi(x) =


ϕ

(1)
i (x) = e

ai(x−xi−1)
ε −1

e
aihi
ε −1

, xi−1 < x < xi,

ϕ
(2)
i (x) = 1−e

ai(x−xi+1)
ε

1−e−
aihi+1

ε

0, x /∈ (xi−1, xi+1) ,

where ϕ(1)
i (x) and ϕ(2)

i (x), respectively, are the solution of the following problems:

−εϕ
′′

+ aiϕ
′+ = 0, xi−1 < x < xi

ϕ (xi−1) = 0, ϕ (xi) = 1

−εϕ
′′

+ aiϕ
′ = 0, xi < x < xi+1

ϕ (xi) = 1, ϕ (xi+1) = 0.

After doing some arrangements in the equation (3.1), we obtain the following equa-
tion:
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ε~−1
i

xi+1∫
xi−1

u′(x)ϕ′i(x)dx+ ai~−1
i

xi+1∫
xi−1

u′(x)ϕ(x)dx+ biui = fi +Ra,i +Rb,i (3.2)

where

Ri = fi +Ra,i +Rb,i = ~−1
i

xi+1∫
xi−1

[a (xi)− a (x)]u′(x)ϕi(x)dx

+~−1
i

xi+1∫
xi−1

[b (xi)− b (x)]u(x)ϕi(x)dx

+~−1
i

xi+1∫
xi−1

[f (x)− f (xi)]ϕi(x)dx. (3.3)

Using the interpolating quadrature rules (2.1) and (2.2) from [4] with weight func-
tions ϕi(x) on subintervals (xi−1, xi+1) from (3.1), we obtain the following precise
relation:

lui := −εθiux̄x̂,i + ηiux̂,i + biui = fi +Ra,i +Rb,i = Ri, i = 1, N − 1, (3.4)

where

θi =
aihi
ε

1− e−
aihi
ε

(3.5)

and

ηi =
−aihi

hi+1[1− e−
aihi
ε ]

+
ai

1− e
aihi+1

ε

(3.6)

Thus, by neglecting Ri in the equation (3.4), we suggest the following difference
scheme for approximating (1.1)-(1.3):

lyi := −εθiyx̄x̂,i + ηiyx̂,i + biyi = fi, i = 1, N − 1, (3.7)

y0 = A, (3.8)

yN =

m−2∑
i=1

ciyNi (xNi) +B, (3.9)

where xNi is the mesh point nearest to si, θi and ηi are given by 3.5 and 3.6.
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4. Uniform Error Estimate

In this section, we obtain the convergence of the method. First, we give the error
function zi = yi−ui, i = 0, 1, ..., N, where zi is the solution of the discrete problem

− εθizx̄x̂,i + ηizx̂,i + bizi= −Ri, i = 1, N − 1 (4.1)

z0 = 0, (4.2)

zN =

m−2∑
i=1

cizNi , (4.3)

where Ri is defined by (3.3).

Lemma 4.1. The solution of the problem (4.1)-(4.3) satisfies the following esti-
mates

‖z‖∞,ω̄N ≤ C ‖R‖∞,ωN (4.4)

holds.

Proof. According to the maximum principle, we have the following inequalities:

w(x) = zi + α−1 ‖R‖∞,ωN , (4.5)

w(0) = z0 + α−1 ‖R‖∞,ωN ≥ 0, (4.6)

and
w(1) = zN + α−1 ‖R‖∞,ωN ≥ 0, (4.7)

Next, from (4.5) and (4.7), we have

Lw(x) = zi + α−1‖R‖∞,ωN = R
i
+ α−1‖R‖∞,ωN ≥ 0

and
‖zi‖ ≤ α−1 ‖R‖∞,ωN ≤ C‖R‖∞,ωN

which proves Lemma 4.1. �
Lemma 4.2. Under the assumptions of Section 1 and Lemma 2.1, the solution of
the problem (1.1)-(1.3) satisfies the following estimates for the remainder term Ri :

‖Ri‖L1[0,1] ≤ CN
−1 lnN. (4.8)

We can state the convergence result of this study in the following Theorem.

Theorem 4.3. Let u (x) be the solution of the problem (1.1)-(1.3) and yi be the
solution of the difference scheme (3.6)-(3.8). Then, the following uniform error
estimate satisfies

‖y − u‖∞,ω̄N ≤ CN
−1 lnN.

5. Algorithm and the Numerical Example

In this part, an effective algorithm has been given for the solution of the difference
scheme (3.6)-(3.8) and numerical results have also been displayed in table and
graphs.
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5.1. Algorithm. We present the algorithm for the solution of the difference scheme
(3.6)-(3.8) as(

εθi
~ihi

)
yi−1 −

(
2εθi
hihi+1

+ bi

)
yi +

(
εθi
~ihi+1

)
yi+1 = −fi, i = 1, N − 1

y0 = 0, yN = d+ yN
4

+ 2yN
3

+ 3yN
2
,

Ai =
εθi
~ihi

, Bi =
εθi
~ihi+1

, Ci =
2εθi
hihi+1

+ bi

αi+1 =
Bi

Ci −Aiαi
, βi+1 =

Fi +Aiβi
Ci −Aiαi

, i = 1, N − 1

y
(n)
i = αi+1y

(n)
i+1 + βi+1, i = N − 1, ..., 2, 1.

5.2. Numerical Example. Here we examine the following test problem to see
how the method works. We study the following test problem:

−εu′′ (x) + u (x) = 1, 0 < x < 1

u (0) = 0, u (1) = u

(
1

2

)
+ 2u

(
1

3

)
+ 3u

(
1

2

)
+ d.

We have the exact solution of this problem as:

u (x) =
exp

(
− x√

ε

)
+ exp

(
x−1√
ε

)
1 + exp

(
− 1√

ε

) − cos2 (πx) .

The corresponding ε uniform convergence rates are computed using the formula

PN =
ln
(
eN/e2N

)
ln 2

.

The error estimates are denoted by

eN = max
ε
eNε , eNε = ‖y − u‖∞,ω̄N .

6. Conclusion

In this paper, we have offered a finite difference method for solving singularly
perturbed convection-diffusion nonlocal boundary value problem. First, it is shown
that the method displays uniform convergence with respect to the perturbation
parameter ε. Then we have applied the present method on a test problem. In
table and graphics, when N takes increasing values, it is seen that the convergence
rate of the smooth convergence speed pN is first order. The exact solution and
approximate solution curves are almost identical as shown in Figure 1. As ε values
decrease, the graph approaches more towards the coordinate axes in the boundary
layer region around x = 1. In Figure 2, the errors in these regions are maximum
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Table 1. The computed maximum pointwise errors eN and rates
of convergence pN

ε N = 24 N = 48 N = 96 N = 192 N = 384 N = 768
2−10 0.038865 0.019363 0.009294 0.004183 0.002034 0.001013

1.00 1.05 1.15 1.04 1.00
2−11 0.039397 0.019881 0.009801 0.004682 0.002103 0.001022

0.98 1.02 1.06 1.15 1.04
2−12 0.039664 0.020140 0.010055 0.004931 0.002349 0.001055

0.97 1.00 1.02 1.06 1.15
2−13 0.039797 0.020269 0.010181 0.005056 0.002474 0.001177

0.97 0.99 1.00 1.03 1.07
2−14 0.039863 0.020334 0.010244 0.005119 0.002535 0.001237

0.97 0.98 1.00 1.01 1.03
2−15 0.039897 0.020366 0.010274 0.005144 0.002566 0.001270

0.97 0.98 0.99 1.00 1.01
2−16 0.039914 0.020383 0.010302 0.005165 0.002576 0.001282

0.96 0.98 0.99 1.00 1.00
pN 0.96 0.98 0.99 1.00 1.00

Figure 1. Comparison of approximate solution and exact solution
for N = 96, ε = 2−16.

because of the irregularity caused by the sudden and rapid change of the solution
in the boundary layer region around x = 1 for different ε values. Thus, numerical
results show that the proposed scheme is working very well. All in all, we think that
our study enhances academic understanding of the singularly perturbed problems
with nonlocal condition.
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Figure 2. Error distribution for N = 96, ε = 2−10, 2−12, 2−14, 2−16.
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