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Abstract

Irregular fences are subgraphs of Pm×Pn formed with m copies of Pn in such a way that two
consecutive copies of Pn are connected with one or two edges; if two edges are used, then
they are located in levels separated an odd number of units. We prove here that any of these
fences admits a special kind of graceful labeling, called α-labeling. We show that there is
a huge variety of this type of fences presenting a closed formula to determine the number
of them that can be built on the grid [1,m]× [1,n]. If only one edge is used to connect any
pair of consecutive copies of Pn, the resulting graph is a tree. We use the α-labelings of this
type of fences to construct and label a subfamily of lobsters, partially answering the long
standing conjecture of Bermond that states that all lobsters are graceful. The final labeling
of the lobsters presented here is not only graceful, it is an α-labeling, therefore they can be
used to produce new graceful trees.

1. Introduction

Suppose G is a graph of order n and size m. An injective function f : V (G)→{0,1, . . . ,m} is called a graceful labeling of G if every edge
uv of G has assigned a weight, defined by | f (u)− f (v)|, and the set of all weights induced by f on the edges of G is {1,2, . . . ,m}. A graph
that admits a graceful labeling is called graceful. This labeling, together with three other labelings, was introduced by Rosa [1] as a mean to
study a problem in combinatorial design associated with the decomposition of the complete graph K2m+1 into copies of any tree of size m.
Rosa proved that if there is a graceful labeling of a tree T of size m, then there exists a (cyclic) decomposition of K2m+1 into copies of T .
Several applications of gracefully labeled graphs are known, we can mentioned here the ones presented by Bloom and Golomb [2] and [3],
and the ones given by Brankovic and Wanless [4].

An α-labeling of G is a graceful labeling f for which there exists an integer λ , called the boundary value of f , such that for each edge uv
of G, either f (u)≤ λ < f (v) or f (v)≤ λ < f (u). If G admists an α-labeling, then it is called an α-graph. This definition of an α-graph
implies that G is bipartite and λ is the smaller of the two vertex labels that yield the weight 1. This type of labeling is the most restrictive one
among the four labelings introduced by Rosa [1]. The existence of an α-labeling implies the existence of several other types of labelings; so,
they are located at the center of this research area. Not all graphs are graceful or α , this fact motivates the search of new families of graphs
admitting these types of labelings.

Let G be a graph of order n and size m. Suppose that f is a graceful labeling of G. The labeling f̄ : V (G)→ {0,1, . . . ,m}, defined as
f̄ = m− f (v) for every v ∈V (G), is called the complementary labeling of f ; this is also a graceful labeling; thus, its existence can be used
to prove that the number of graceful labelings of any graph is always even. Let g be a labeling of G defined as g(v) = c+ f (v) for every
v ∈V (G); we say that g is a c units shifting of f . It is not difficult to see that both, f and g, induce the same weights. Suppose now that f is
an α-labeling of G with boundary value λ ; the labeling h, defined for every v ∈V (G) as

h(v) =
{

f (v) if f (v)≤ λ ,
d−1+ f (v) if f (v)> λ ,
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is called a d-graceful labeling of G. This type of labeling was introduced in 1982, independently, by Maheo and Thuillier [5] and Slater [6].

Suppose that f (v)− f (u)=w> 0, then h(v)−h(u)= d−1+ f (v)− f (u)= d−1+w. Since 1≤w≤m, we get that d≤ d−1+w≤ d−1+m.
In other terms, the weights induced by h on the edges of G are d,d+1, . . . ,d−1+m. This property of the α-labelings has been widely used
to construct new graceful and α-graphs starting with smaller α-graphs. The reverse of f , denoted by fr, is another α-labeling of G, it is
defined as

fr(v) =
{

λ − f (v) if f (v)≤ λ ,
m+λ +1− f (v) if f (v)> λ .

Note that f and fr have the same boundary value; in addition, if f (v)− f (u) = w, for any weight w ∈ {1,2, . . . ,m}, then fr(v)− fr(u) =
m+λ +1− f (v)−λ + f (u) = m+1− ( f (v)− f (u)) = m+1−w.

In Section 2 we present an α-labeling for a large family of connected subgraphs of the grid Pm×Pn. This family, denoted by F , is formed
by all the graphs built in the following way:

For every i ∈ {1,2, . . . ,m}, let Pi
n be the path of order n with vertex set V (Pi

n) = {vi,0,vi,1, . . . ,vi,n−1} and edge set E(Pi
n) = {vi,0vi,1,

vi,1vi,2, . . . ,vi,n−2vi,n−1}. Now, for every i ∈ {1,2, . . . ,m−1}, decide whether Pi
n is connected to Pi+1

n with one or two edges (also called
links). If only one edge connects them, then choose any j ∈ {0,1, . . . ,n−1} and connect with an edge the vertices vi, j and vi+1, j. If two
edges connect them, then choose j1, j2 ∈ {0,1, . . . ,n−1}, where | j2− j1| is odd, and introduce the edges vi, j1 vi+1, j1 and vi, j2 vi+1, j2 . Given
that the number of edges connecting two copies of Pn may vary, we refer to this type of graph as an irregular fence. In Figure 1.1 we show
all the nonisomorphic fences in F built on [1,3]× [1,4]. We claim that all the irregular fences are α-graphs.

Figure 1.1: All nonisomorphic irregular fences built on [1,3]× [1,4]

In Section 3 we study this type of irregular fences from an enumerative perspective. We present a closed formula for the number of
nonisomorphic irregular fences built on [1,m]× [1,n]. When every pair of consecutive copies of Pn is connected with only one edge, the
resulting fence corresponds to a type of tree called path-like tree; it is known that they are α-trees [7]. In Section 4 we consider a subfamily
of the path-like trees built on [1,m]× [1,5], with the extra property that they are lobsters. We characterize the lobsters that are irregular
fences, therefore, α-trees; in addition we show that some other α-lobsters can be obtained from them by adding pendant vertices to some or
all the vertices at distance one from the central path.

All graphs considered in this work are simple, i.e., no loops nor multiple edges are allowed. We mainly follow the notation and terminology
used in [8] and [9].

2. α-labelings of irregular fences

As we mentioned before, α-labelings were introduced by Rosa [1]; he presented a labeling scheme for caterpillars that can be easily adapted
for the case of paths. For the sake of completeness, we present here Rosa’s α-labeling of the path Pn; we use this labeling in the construction
of the α-labeled irregular fences.

Lemma 2.1. For every n≥ 1, the path Pn is an α-graph.

Assuming that V (Pn) = {v0,v1, . . . ,vn−1} and E(Pn) = {v0v1,v1v2, . . . ,vn−2vn−1}, the α-labeling f : V (Pn)→{0,1, . . . ,n−1} is defined
as:

f (vi) =

{ i
2 if i is even,
n− i+1

2 if i is odd.
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The labeling f has boundary value λ = n−2
2 when n is even and λ = n−1

2 when n is odd. Moreover, f (v0) = 0 regardless the parity of n but
f (vn−1) =

n
2 = λ +1 when n is even and f (vn−1) =

n−1
2 = λ when n is odd. We say that v ∈V (Pn) is a black vertex if f (v)≤ λ , otherwise

v is a white vertex. In Figure 2.1 we show two examples of this labeling on P12 and P17. Just for the examples, the boundary value is on a red
vertex.

P12 : P17 :

11 10 9 8 7 6

0 1 2 3 4 5

16 15 14 13 12 11 10 9

0 1 2 3 4 5 6 7 8

Figure 2.1: α-labelings of P12 and P17

The construction of the α-labeled irregular fences, built on Pm×Pn, is based on an embedding of the path Pmn on the grid [1,m]× [1,n]. The
division algorithm tell us that for each i ∈ {1,2, . . . ,mn}, there exist unique q and r such that i = qn+ r, where 0≤ r < n. Using this fact we
can define the embedding of Pmn on the grid [1,m]× [1,n] to be the bijective function φ : {v0,v1, . . . ,vmn−1}→ [1,m]× [1,n], where

φ(vi) =

{
(q+1,r+1) if q is even,
(q+1,n− r) if q is odd.

Once the embedding is done, we proceed to label the vertices of Pmn using the function f given in Lemma 2.1. In the first part of Figure 2.2
we show an embedding of P15 on the grid [1,5]× [1,3], on the second part we exhibit the α-labeling of this path at this embedding.

v0 v5 v6 v11 v12 0 12 3 9 6

v1 v4 v7 v10 v13 14 2 11 5 8

v2 v3 v8 v9 v14 1 13 4 10 7

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5,3)

Figure 2.2: Embedding of P15 on [1,5]× [1,3] and its α-labeling

In the following lemmas we present the essential results that will allow us to prove that any irregular fence in F is an α-graph.

Lemma 2.2. Any fence built on [1,2]× [1,n], with only one edge connecting the two copies of Pn, is an α-graph.

Proof. Suppose that P2n has been embedded in the grid [1,2]× [1,n] in the way described before. In addition, assume that P2n has been
labeled using the function f given in Lemma 2.1. In the following diagram we show this labeling where the labels on the black vertices are at
most λ , the boundary value of f , while the labels on the white vertices are at least λ +1. Note that the edge connecting the vertices on (1,n)
and (2,n) has weight y− x−5, independently of the parity of n.

x

y

x+1

y−1

x+2

y−2

y−5

x+5

y−4

x+4

y−3

x+3

n even

...
...

y

x

y−1

x+1

y−2

x+2

x+5

y−5

x+4

y−4

x+3

y−3

n odd

...
...

If for any feasible value of t, the vertices on (1,n− t) and (2,n− t) are connected, the new edge also has weight y− x−5. This implies that
all the horizontal “edges” on this embedding of P2n have the same weight and any of them can be used to connect the two copies of Pn, being
the final fence an α-graph.
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Lemma 2.3. Any fence built on [1,2]× [1,n], with two edges connecting the two copies of Pn, is an α-graph.

Proof. As we did in Lemma 2.2, suppose that P2n has been embedded in the grid [1,2]× [1,n], in the way described before, and that it has
been labeled using the α-labeling f in Lemma 2.1. In the following diagram, we show new labelings for the two copies of Pn.

x

y+1

x+1

y

x+2

y−1

y−4

x+6

y−3

x+5

y−2

x+4

n even

...
...

y+1

x

y

x+1

y−1

x+2

x+6

y−4

x+5

y−3

x+4

y−2

n odd

...
...

These labelings are obtained from f by fixing the labels on the black vertices of the first copy of Pn and adding one unit to all other vertices.
In this way, the edges on the first copy of Pn have the weights n+2,n+3, . . . ,2n; the weights on the edges of the second copy of Pn are
1,2, . . . ,n−1. We use all the labels in {0,1, . . . ,2n} except d n

2 e. Since the white vertices on the second copy of Pn were augmented one
unit while the black vertices on the first copy were fixed, any line connecting a black vertex with a white vertex will be an edge of weight
y− x−4. Similarly, any line connecting a white vertex with a black vertex will be an edge of weight y− x−5 because the labels of both
endvertices were augmented one unit. Hence, by connecting both copies of Pn with two edges, one of each kind, that is, one black-white
and one white-black, we obtain an α-labeled irregular fence. This fence is in F because these types of edges are in alternated levels. This
concludes the proof.

In Figure 2.3 we show four examples of these labeled irregular fences, two for each lemma.
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Figure 2.3: α-labelings of four irregular fences

Theorem 2.4. If G is an irregular fence in F , then G is an α-graph.

Proof. Suppose that G is an irregular fence built on Pm×Pn such that it contains 1≤ k ≤ m−1 pairs of consecutive copies of Pn connected
by two edges. Thus, G has size m(n−1)+(m−1)+ k = mn−1+ k. Assume that the path Pmn has been labeled using the function f in
Lemma 2.1 and is embedded in the grid [1,m]× [1,n]. Thus, the weights induced on the edges of every copy of Pn are consecutive integers,
and the horizontal edges, of this embedding of Pmn, have weights (m−1)n,(m−2)n, . . . ,2n,n.
Now we delete all the horizontal edges connecting consecutive copies of Pn in Pmn. Once this is done, we draw new horizontal edges
following the pattern in G, In this way, we have a labeling of G; based on Lemma 2.2, this is an α-labeling when G is a tree, that is, when
only one edge connects any pair of consecutive copies of Pn. If this is not the case, i.e., when there are k > 0 pairs of consecutive copies of
Pn connected with two edges, these two horizontal edges have the same weight. To eliminate this duplicity, we apply the procedure used in
the proof of Lemma 2.3.
Suppose that i1, i2, . . . , ik are the indices for which there are two horizontal edges connecting Pi j

n and Pi j+1
n . For every i≤ i j, the labels of

the black vertices of all Pi
n are fixed and all the other labels are augmented in one unit. In this way, these horizontal edges have different
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weights that are consecutive integers. Once this process has been applied to every pair of consecutive copies of Pn connected by two edges,
the resulting labeling is indeed an α-labeling of G. In fact, since there are exactly k pairs of consecutive copies of Pn connected by two edges,
the original labels of the white vertices have been shifted k units, avoiding the duplicity of vertex labels; the weights on each copy of Pn are
consecutive integers, and the weights on the horizontal edges complement the ones on the vertical edges. Therefore, the final labeling of G is
an α-labeling and G is an α-graph.

In Figure 2.4 we show an example of this labeling where G is built on P10×P10 and k = 7.
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Figure 2.4: α-labelings of a fence of size 106 built on [1,10]× [1,10]

3. Enumerating irregular fences

Motivated by the result in the previous section, we want to determine the number of this type of fences. In [10], we found the number of
fences that can be built on the grid [1,m]× [1,n]. Using that result, we present here a closed formula for the number of nonisomorphic
irregular fences built on the grid.
We start by counting the number of irregular fences that can be built on [1,2]× [1,n]. Since the grid [1,m]× [1,n] can be seen as a linear
amalgamation of m−1 copies of [1,2]× [1,n] we refer to the fences on [1,2]× [1,n] as building blocks, or just blocks, of [1,m]× [1,n]. Thus,
a block in an irregular fence consists of two copies of Pn and 1 or 2 (horizontal) links (edges), It is not difficult to see that the number of
blocks with only one link is C(n,1) = n, i.e., the number of ways of selecting one element from {1,2, . . . ,n}. To determine the number of
blocks with two links we may count the 2-element subsets of {1,2, . . . ,n}, such that the difference between the two elements is odd. Thus,
for any subset {i, j}, with i < j, the possible values for j are determined by the value of i. When i is odd, there are b n

2c−
i−1

2 possible values
for j. When i is even, there are d n

2e−
i
2 possible values for j.

Hence, when n is even, the number of 2-element subsets satisfying the conditions is given by

n
2

∑
i=1

i+

n
2−1

∑
i=1

i = 2

n
2−1

∑
i=1

i+
n
2
=

2( n
2 −1) n

2
2

+
n
2
=

n
2
(n

2
−1+1

)
=

n2

4
.

When n is odd, this number is

2

n−1
2

∑
i=1

i =
2( n−1

2 )( n+1
2 )

2
=

n2−1
4

.

Therefore, the number of blocks is n+ n2

4 = n2+4n
4 when n is even and n+ n2−1

4 = n2+4n−1
4 when n is odd. For n≥ 1, the sequence a(n)

formed by these values corresponds to the sequence A002620 in OEIS [11].

Another number needed in our counting process is the number of symmetric blocks. Once again, we start analyzing the case where the
block has exactly one link. If n is even, there are no symmetric blocks. If n is odd, there is only one symmetric block. We have a similar
situation when the block has two links. When n is odd there are no two numbers i < j in {1,2, . . . ,n} such that j− i is odd and i−1 = n− j.
When n is even, for every 1≤ i≤ n

2 , the number j = n+1− i belongs to { n
2 +1, n

2 +2, . . . ,n}, j− i = n+1− i− i = n+1−2i is odd and
i−1 = n− j = n− (n+1− i) = i−1. Then, if s(n) denotes the number of symmetric blocks, we get
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s(n) =
{ n

2 if n is even,
1 if n is odd.

For n≥ 1, the sequence s(n) is the sequence A152271 in OEIS [12].
Now we turn our attention to the general case. Given any irregular fence F built on [1,m]× [1,n], there are other three fences that are
isomorphic to F : when F is rotated 180◦ around a central vertical axis, when F is rotated 180◦ around a central horizontal axis, and when F
is rotated 180◦ around a central axis perpendicular to the plane containing F . Thus, there are three possible situations: F has four different
representations, F has two different representations, or F has one representation. Let T be the set of all irregular fences on [1,m]× [1,n]; we
define V to be the subset of T containing the fences with a vertical symmetry, H to be the subset of T containing the fences with a horizontal
symmetry, C to be the subset of T containing the fences with a central symmetry, and A to be the subset of T containing the fences with all
these symmetries. In Figure 3.1 we show four examples, one for each of these subsets.

V H C A

Figure 3.1: Different types of symmetric fences

Since the fences in A have all the described symmetries, each of them appears only once in the list of all possible fences built on [1,m]× [1,n].
Every element of V −A, H−A, or C−A appears twice in this list. Every nonsymmetric fence appears four times in the list. Thus, if we take
the addition of cardinalities

|T |+ |V |+ |H|+ |C|

every fence is counted four times. Therefore, the number of nonisomorphic irregular fences built on [1,m]× [1,n] is given by

f (m,n) = 1
4 (|T |+ |V |+ |H|+ |C|).

In order to find a closed formula for f (m,n) we just need to determine explicitely these four cardinalities.

Based on the number of blocks and symmetric blocks, found above, and the fact that [1,m]× [1,n] can be formed with m− 1 copies of
[1,2]× [1,n], we can say that

|T |=

{
( n2+4n

4 )m−1 if n is even,
( n2+4n−1

4 )m−1 if n is odd.

If F is a fence in V , then its ith block is identical to its (m− i)th block. This implies that we need to determine the number of posibilities for
the first bm

2 c blocks. Thus,

|V |=

{
( n2+4n

4 )b
m
2 c if n is even,

( n2+4n−1
4 )b

m
2 c if n is odd.

If F ∈ H, each block in F must be symmetric. So,

|H|=
{

( n
2 )

m−1 if n is even,
1 if n is odd.

When F ∈ C, there are two cases that we need to analyze that depend on the parity of m. Recall that in this case the ith block of F is
represented up side down in the (m− i)th block.

If m is even and i = m
2 , then i = m− i. This implies that the ith block of F must be symmetric. So,

|C|=

{
( n2+4n

4 )
m−2

2 · n
2 if n is even,

( n2+4n−1
4 )

m−2
2 ·1 if n is odd.
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If m is odd

|C|=

{
( n2+4n

4 )
m−1

2 if n is even,
( n2+4n−1

4 )
m−1

2 if n is odd.

Thus, we have found a closed formula for F(m,n). We summarize these results in the following theorem.

Theorem 3.1. The number f (m,n) of nonisomorphic irregular fences built on [1,m]× [1,n] is:

• When both m and n are even.
f (m,n) = 1

4

(
( n2+4n

4 )m−1 +( n2+4n
4 )

m
2 +( n

2 )
m−1 +( n2+4n

4 )
m−2

2 · n
2

)
• When m is even and n is odd.

f (m,n) = 1
4

(
( n2+4n−1

4 )m−1 +( n2+4n−1
4 )

m
2 +1+( n2+4n−1

4 )
m−2

2

)
• When m is odd and n is even.

f (m,n) = 1
4

(
( n2+4n

4 )m−1 +( n2+4n
4 )

m−1
2 +( n

2 )
m−1 +( n2+4n

4 )
m−1

2

)
• When both m and n are odd

f (m,n) = 1
4

(
( n2+4n−1

4 )m−1 +( n2+4n−1
4 )

m−1
2 +1+( n2+4n−1

4 )
m−1

2

)
In Table 1, read by rows, we show the first values of f (m,n) for 2≤ m,n≤ 10. We have omitted the cases where m = 1 or n = 1 because
f (m,n) = 1.

2 3 4 5 6 7 8 9 10
2 2 3 5 6 9 10 14 15 20
3 4 9 21 36 66 100 160 225 330
4 10 39 150 366 918 1810 3640 6315 11100
5 25 169 1060 3721 12789 32761 83296 177241 375925
6 70 819 8360 40626 190917 620830 1994944 5134095 13143500
7 196 3969 65808 443556 2849526 11764900 47783680 148718025 459591750
8 574 19719 525600 4875786 42730578 223502230 1146718720 4312651995 16085261781
9 1681 97969 4196416 53597041 640749609 4245955921 27519010816 125061956881 562969695625
10 5002 489219 33564800 589530846 9611072577 80672576050 660454273024 3626791798575 19703925162500

Table 1: Initial values for the numebr f (m,n) of nonisomorphic irregular fences builon [1,m]× [1,n]

4. Lobsters with an α-labeling

A lobster is a tree with the property that the removal of all its leaves results in a caterpillar, and a caterpillar is a tree with the property that
the removal of all its leaves results in a path. We refer to this path as the central path of the lobster. An alternative definition was given in
[13]. Let P be any of the longest paths in a tree T ; T is called a k-distance tree if every vertex is at distance at most k from P. Thus, paths are
0-distance trees, caterpillars are 1-distance trees, and lobsters are 2-distance trees.

It was conjectured by Bermond [14] that all lobsters are graceful. Several families of graceful lobsters are known. Using the construction of
Stanton and Zarnke [15] it is possible to obtain a graceful labeling of any lobster constructed by attaching, to every vertex of a path, a leaf of
the star K1,n. Burzio and Ferrarese [16] proved that any tree obtained from a graceful tree by replacing each edge with a path of fixed length
is graceful. Thus, if the starting tree is a caterpillar and every edge is replaced with a path of length 2, the resulting graph is a lobster. This is
one of the strongest results in this area, the weakest part is that the distance between any two leaves, at distance two, is always even. This
problem is solved in the work of Wang et al. [17], as well as in the series of articles of Mishra and Panagrahi [18], [19], [20], and [21]. In all
these papers, the lobsters considered share the property that all the vertices in the central path have degree larger than two and the subtrees
attached to them must satisfy some structural conditions. Morgan [13] proved that all lobsters with a perfect matching are graceful. In a
similar line, Krop [22] showed the same for lobsters with an almost perfect matching.

In this section we explore lobsters that are path-like trees and how to use the α-labeling, given in Section 2, to produce new α-labeled lobsters.

Suppose that the path P5m has been labeled using the labeling in Lemma 2.1, and embedded in the grid [1,m]× [1,5], as we did in Section 2.
Thus, every column in this embedding is a copy of P5; moreover, the labeling of the ith copy of P5 is a di-graceful labeling shifted ci units,
where di = n(m− i)+1 and

ci =

{
n(i−1)

2 if i is odd,
n(i−1)+1

2 if i is even.

We claim that when every copy of P5 is replaced by a copy of any caterpillar of diameter four, the result still holds; that is, we can concatenate
the central vertices of these caterpillars to obtain a lobster with an α-labeling. In Figure 4.1 we show the labeling scheme given by Rosa [1]
to get an α-labeling of a caterpillar of size n−1.
Let G be a caterpillar of diameter 4 and order n. If all the leaves of G are deleted, we get the path P3; thus, we can use the notation
C(n1,n2,n3) to denote the caterpillar of order n = n1 +n2 +n3 +3, obtained from P3 by attaching ni pendant vertices to the vertex vi of P3.
In Figure 4.2 we show an α-labeling f of C(n1,n2,n3) together with the reverse of its complementary labeling.



8 Universal Journal of Mathematics and Applications

0 1 2 3 4 5 6

n−1 n−2 n−3 n−4 n−5 n−6 n−7

. . .

. . .

Figure 4.1: α-labeling scheme of a caterpillar of size n−1
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Figure 4.2: α-labelings of C(n1,n2,n3)

Lemma 4.1. The lobster L, obtained by connecting with an edge the central vertices of two copies of the caterpillar C(n1,n2,n3), is an
α-tree.

Proof. The caterpillar C(n1,n2,n3) has size n1,n2,n3 +2; the α-labeling f of it has boundary value λ = n1 +n3. Then, we label the first
copy of this caterpillar using the labeling f , which is transformed into a (n+1)-graceful labeling. In this way, its central vertex has label n1.
The second copy of the caterpillar is originally labeled using f r, this labeling is shifted n1 +n3 +1 units, thus there is no repetition of labels
between both copies. The new label of the central vertex of the second copy is (n1 +n2 +2)+(n1 +n3 +1) = n+n1. Hence, if we connect
with an edge the central vertices, this edge will have weight n. Therefore, the lobster L is an α-tree.

This process can be applied to any number of copies of C(n1,n2,n3), in the same way that it was applied to any number of copies of Pn in
Section 2. Thus, we get the following theorem.

Theorem 4.2. For each 1 ≤ i ≤ k, let Gi be a copy of the caterpillar C(n1,n2,n3). If for every 1 ≤ i ≤ k−1, the central vertex of Gi is
connected with an edge to the central vertex of Gi+1, then the resulting graph is a lobster that admits an α-labeling.

In Figure 4.3 we show an example of this construction using the caterpillar C(2,4,3) four times. We must observe that the lobsters obtained
using these caterpillars do not have a perfect (or almost perfect) matching.
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Figure 4.3: α-labeling of a lobster in G



Universal Journal of Mathematics and Applications 9

For each 1≤ i≤ k, let Gi be a copy of the caterpillar C(n1,n2,n3). The family Gk consists of all lobsters formed connecting with an edge the
central vertices of Gi and Gi+1 where 1≤ i≤ k−1. Thus we can say that all members of Gk are α-trees. Furthermore, for any G ∈ Gk, the
α-labeling of G, obtained using Theorem 4.2, assigns the label 0 to a leaf of G and the label λ (when k is odd) or λ +1 (when k is even) to
another leaf, and the distance between these leaves is k+3, that is, the diameter of G. In [23] we proved that if B1,B2, . . . ,Bk is a collection
of α-labeled blocks, with boundary value λi, then the graph obtained amalgamating the vertex labeled 0 in Bi with the vertex labeled λi−1 in
Bi−1, for every 2≤ i≤ k, is an α-graph. We refer to this process as the (0,λ )-amalgamation. As we showed before, if G is a caterpillar,
there exists an α-labeling of G that assigns the labels 0 and λ (when the diameter is even) or 0 and λ +1 (when the diameter is odd) on the
leaves of a path of maximum length in G. These two properties allow us to prove the following theorem.

Theorem 4.3. Let G1,G2, . . . ,Gt be a collection of α-graphs, such that Gi ∈ Gki or Gi is a caterpillar. Then, the lobster L, obtained via
(0−λ )-amalgamation of these graphs, is an α-tree.

Proof. Suppose that fi is an α-labeling of Gi with boundary value λi. If Gi is a caterpillar, we assume that fi is the labeling f in Figure 4.1.
If Gi is a lobster in Gki , we assume that fi is the labeling obtained in Theorem 4.2. In both cases, the vertex of Gi labeled 0 belongs to a path
of maximum length in Gi. If the vertex of Gi labeled λi is on a leaf, then we can identify the vertex labeled 0 in Gi+1 with the vertex labeled
λi in Gi. The α-labeling of the new graph, denoted by Γi+1, is obtained by shifting λi units the labeling fi+1 and transforming fi into a
di-graceful labeling where di−1 is the size of Gi+1. If the boundary value of this labeling of Γi+1 is on a leaf, we concatenate Γi+1 with
Gi+2, to obtain an α-graph Γi+2, and so on until all the amalgamations are done. If the boundary value of this labeling of Γi+1 is not on a
leaf, then we use the complementary labeling, which puts its boundary value on a leaf, and connect Γi+1 with Gi+2, and continue in this way
until all the amalgamations are done. Given the position of the vertices labeled 0 and λi, the final graph is a lobster with an α-labeling.

In Figure 4.4 we show an example of this construction where G1 ∈ G2, G2 is a caterpillar of size 10, and G3 ∈ G3.
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Figure 4.4: α-labeling of a lobster

5. Conclusions

There is a wide variety of fences, we explored here one of these varieties where two consecutive copies of Pn are connected by one or two
links, if two links are used, the distance between them is odd. These constraints can be modified to explore the existence of α-labelings of
general fences, where the number of links is not restricted to 1 or 2. We think that all fences admit an α-labeling, except when the fence is
isomorphic to the cycle Cn with n≡ 2(mod 4), that is not a graceful graph.

The construction of α-lobsters presented in Theorem 4.3 can be use in a more general case, where a lobster could be decomposed into
sublobsters, each of them with an α-labeling that assigns the labels 0 and λ to leaves u and v such that the distance between them equals the
diameter of the sublobster. We think that this technique should be explored with more details in future works.
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