A new family of k -- Gaussian Fibonacci numbers

Sait TAŞ*

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey.

Geliş Tarihi (Recived Date): 17.09.2018
Kabul Tarihi (Accepted Date): 12.02.2019

Abstract

In this manuscript, a new family of k -- Gaussian Fibonacci numbers has been identified and some relationships between this family and known Gaussian Fibonacci numbers have been found. Also, I the generating functions of this family for $k = 2$ has been obtained.

Key Words: Fibonacci numbers, Gaussian fibonacci numbers, Gaussian numbers.

k- Gaussian Fibonacci sayılarının yeni bir ailesi

Özet

Bu yazında, yeni bir k -- Gaussian Fibonacci sayıları ailesi tanımlanmış ve bu aile ile bilinen Gaussian Fibonacci sayıları arasında bazı ilişkiler bulunmaktadır. Ayrıca, $k=2$ için bu ailenin üretic fonksiyonlarını elde edilmiştir.

Anahtar Kelimeler: Fibonacci sayıları, Gaussian Fibonacci sayıları, Gaussian sayıları.

1. Introduction

Horadam [1] in 1963 and Berzsenyi [2] in 1977 defined complex Fibonacci numbers. Horadam introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers. Moawwad El-Mikkawy and Tomohiro Sogabe [3] in 2015 defined a new family of k- Fibonacci numbers and they gave $F_n^{(k)}$ and establish some properties of the relation to the F_n. There are many studies on Fibonacci and Gaussian Fibonacci numbers. See, e.g. [4-15].

The Binet’s formula of the Fibonacci numbers are defined as follows:

*Sait TAŞ, satitas@atauni.edu.tr, https://orcid.org/0000-0002-9815-8732
\[F_n = \frac{1}{\sqrt{5}} (\alpha^{n+1} - \beta^{n+1}), \quad n = 0, 1, 2, \ldots \]

where \(\alpha = \frac{1+\sqrt{5}}{2} \) and \(\beta = \frac{1-\sqrt{5}}{2} \). The first few Fibonacci numbers are 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots. For more detailed information on these numbers see [16]. The numbers \(F_n \) with the initial conditions \(F_0 = 0 \) and \(F_1 = 1 \) satisfy

\[F_{n+2} = F_{n+1} + F_n, \quad n \geq 0. \]

The Gaussian Fibonacci numbers: \(GF_n \) for \(n \geq 0 \) are defined

\[GF_n = GF_{n-1} + GF_{n-2} \]

where \(GF_0 = i, GF_1 = 1 \). The first few Gaussian Fibonacci numbers are \(i, 1, i + 1, i + 2, 2i + 3, 3i + 5, 5i + 8, \ldots \).

2. A new family of \(k \) – Gaussian Fibonacci numbers

Definition 2.1. Let \(n \) and \(k (k \neq 0) \) be natural numbers, then according to the division algorithm, there are \(m \) and \(r \) such that \(n = mk + r, \quad 0 \leq r < k \). According to this, we define a new family of generalized \(k \) – Gaussian Fibonacci numbers \(GF_n^{(k)} \) by

\[GF_n^{(k)} = \left[\left(\frac{\sqrt{5}}{5} + \left(\frac{5 - \sqrt{5}}{10} \right)i \right) \alpha^m + \left(-\frac{\sqrt{5}}{5} + \left(\frac{5 + \sqrt{5}}{10} \right)i \right) \beta^m \right]^{k-r} \left[\left(\frac{\sqrt{5}}{5} + \left(\frac{5 - \sqrt{5}}{10} \right)i \right) \alpha^{m+1} + \left(-\frac{\sqrt{5}}{5} + \left(\frac{5 + \sqrt{5}}{10} \right)i \right) \beta^{m+1} \right]^r. \]

For \(k = 2, 3 \) are as follows:

\[\{ GF_n^{(2)} \} = \{-1, i, 1, i + 1, 2i, 3i + 1, 4i + 3, 7i + 4, 12i + 5, \ldots \}, \]

\[\{ GF_n^{(3)} \} = \{-i, -1, i, 1, i + 1, 2i, 2i - 2, 4i - 2, 7i - 1, \ldots \}. \]

From Definition 2.1, \(GF_n^{(k)} \) and \(GF_n \) related by

\[GF_n^{(k)} = (GF_m)^{k-r}(GF_{m+1})^r. \]

If \(k = 1 \), we see that \(m = n \) and \(r = 0 \). So, \(GF_n^{(1)} \) is well-known Gaussian Fibonacci numbers \(GF_n \).

3. Main results

Theorem 3.1. Let \(k, m \in \{1, 2, 3, 4, \ldots \} \). For \(k \) and \(m \), \(GF_n^{(k)} \) and \(GF_n \) numbers satisfy
i) \[\sum_{j=0}^{k-1} (-1)^j \binom{k-1}{j} GF_{mk+j}^{(k)} = (-1)^{k-1} GF_m GF_{(m+1)(k-1)} \]

ii) \[\sum_{j=0}^{k-1} \binom{k-1}{j} GF_{mk+j}^{(k)} = GF_m GF_{(m+2)(k-1)} \]

iii) \[\sum_{j=0}^{k-1} GF_{mk+j}^{(k)} = \frac{GF_m}{GF_{m-1}} \left[GF_{(m+1)k} - GF_{mk}^{(k)} \right] \]

Proof.

i) I have
\[\sum_{j=0}^{k-1} (-1)^j \binom{k-1}{j} GF_{mk+j}^{(k)} = (-1)^{k-1} \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} (GF_m)^{k-j} (GF_{m+1})^j \]
\[= (-1)^{k-1} GF_m \sum_{j=0}^{k-1} \binom{k-1}{j} (GF_{m+1})^j (-GF_m)^{k-j} \]
\[= (-1)^{k-1} GF_m [((GF_{m+1} - GF_m)^{k-1}] \]
\[= (-1)^{k-1} GF_m GF_{(m+1)(k-1)} \]

ii) In a similar manner, I have
\[\sum_{j=0}^{k-1} \binom{k-1}{j} GF_{mk+j}^{(k)} = \sum_{j=0}^{k-1} \binom{k-1}{j} (GF_m)^{k-j} (GF_{m+1})^j \]
\[= GF_m \sum_{j=0}^{k-1} \binom{k-1}{j} (GF_{m+1})^j (GF_m)^{k-1-j} \]
\[= GF_m [((GF_{m+1} + GF_m)^{k-1}] \]
\[= GF_m GF_{(m+2)(k-1)} \]

iii) It follows I have
\[GF_{mk+j}^{(k)} = (GF_m)^{k-j} (GF_{m+1})^j = \left(\frac{GF_{m+1}}{GF_m} \right)^j (GF_m)^k. \]

Using the above equation and some algebraic operations, the desired result is obtained.

Theorem 3.2. For the \(GF_n^{(2)} \), I have the following relations:

i. \(GF_{2(m-1)}^{(2)} - GF_m GF_{m-2} = (-1)^{m-1}(i - 2), \quad m \geq 1 \)

ii. \(GF_n^{(2)} = GF_{n-1}^{(2)} + GF_{n-3}^{(2)} + GF_{n-4}^{(2)}, \quad n \geq 4 \)

Proof. i) Let \(A \) be the Fibonacci matrix of the form
\[A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}. \]

Then, from the matrix \(A \) and definition the Gaussian Fibonacci numbers I have
\[\begin{bmatrix} GF_m & GF_{m-1} \\ GF_{m-1} & GF_{m-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{m-1} \begin{bmatrix} GF_1 & GF_0 \\ GF_0 & GF_{-1} \end{bmatrix}. \]

The determinants of both sides of the above equation are taken
\[GF_{m}GF_{m-2} = (-1)^{m-1}(i + 2) \]
\[GF_{m-1} = GF_{m}GF_{m-2} = (-1)^{m-1}(i - 2) \]
\[GF_{2(m-1)}^{(2)} - GF_{m}GF_{2m-2} = (-1)^{m-1}(i - 2), \quad \text{from } GF_{m-1}^{2} = GF_{2(m-1)}^{(2)}. \]

ii) If \(n \) is even, i.e.,
\[GF_{2m}^{(2)} = GF_{2m-1}^{(2)} + GF_{2m-3}^{(2)} + GF_{2m-4}^{(2)}. \]

To illustrate the above equations, I will use the following relations:
\[GF_{2m}^{(2)} = (GF_{m})^{2} \]
\[GF_{2m+1} = GF_{m}GF_{m+1}. \]

The relations are readily obtained from Definition 2.1. Now, it can be written as
\[
GF_{2m}^{(2)} = (GF_{m})^{2}
= GF_{m}GF_{m}
= GF_{m}(GF_{m-1} + GF_{m-2})
= GF_{m-1}GF_{m} + GF_{m-2}GF_{m}
= GF_{m-1}GF_{m} + GF_{m-2}(GF_{m-1} + GF_{m-2})
= GF_{m-1}GF_{m} + GF_{m-2}GF_{m-1} + (GF_{m-2})^{2}
= GF_{2m-1}^{(2)} + GF_{2m-3}^{(2)} + GF_{2m-4}^{(2)}
\]

Similarly, if \(n \) is odd, i.e.,
\[GF_{2m+1} = GF_{2m}^{(2)} + GF_{2m-2}^{(2)} + GF_{2m-3}^{(2)}, \]
the desired result is obtained.

Theorem 3.3. The generating function of \(GF_{n}^{(2)} \) are given by
\[
C_{n}^{(2)}(x) = \frac{-1+(-1+i)x+(1-i)x^{2}+(1+i)x^{3}}{1-x-x^{3}-x^{4}}.
\]

Proof. I have \(C_{n}^{(2)}(x) = \sum_{n=0}^{\infty} GF_{n}^{(2)}x^{n} \). Then
\[
C_{n}^{(2)}(x) = \sum_{n=0}^{\infty} GF_{n}^{(2)}x^{n}
\]
\[
-xC_{n}^{(2)}(x) = \sum_{n=0}^{\infty} GF_{n-1}^{(2)}x^{n}
\]
\[-x^3 C_n^{(2)}(x) = \sum_{n=0}^{\infty} G_{n-3}^{(2)} x^n \]
\[-x^4 C_n^{(2)}(x) = \sum_{n=0}^{\infty} G_{n-4}^{(2)} x^n, \]

equations can be written. In this case

\[(1 - x - x^3 - x^4) C_n^{(2)}(x) = (1 - x - x^3 - x^4) C_n^{(2)}(x) \]
\[- \left(G_0^{(2)} x + G_1^{(2)} x^2 + G_2^{(2)} x^3 \right) - G_0^{(2)} x^3 \]
\[+ \sum_{n=4}^{\infty} \left(G_n^{(2)} - G_{n-1}^{(2)} - G_{n-2}^{(2)} - G_{n-3}^{(2)} \right) x^n \]
\[= G_0^{(2)} + \left(G_1^{(2)} - G_0^{(2)} \right) x + \left(G_2^{(2)} - G_1^{(2)} \right) x^2 \]
\[+ \left(G_3^{(2)} - G_2^{(2)} - G_0^{(2)} \right) x^3 + 0 \]
\[= -1 + (i + 1)x + (1 - i)x^2 + (1 + i)x^3. \]

Hence, \(C_n^{(2)}(x) \) of \(G_n^{(2)} \) is

\[C_n^{(2)}(x) = \frac{-1 + (i + 1)x + (1 - i)x^2 + (1 + i)x^3}{1 - x - x^3 - x^4}. \]

Finally, I give two identities without proofs:

- \[\sum_{j=0}^{n} G_{2j-1}^{(1)} = G_{2n}^{(1)} + (1 - 2i), \]
- \[\sum_{j=0}^{n} G_{2j-1}^{(2)} = \begin{cases} G_{2n}^{(2)} + (i + 2) & \text{if } n \text{ is even} \\ G_{2n}^{(2)} + (2i) & \text{if } n \text{ is odd} \end{cases}. \]

References

