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On Some Bivariate Gauss-Weierstrass Operators

GRAZYNA KRECH AND IRENEUSZ KRECH

ABSTRACT. The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-
Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be
estimated by these operators in the space of functions defined and continuous in the half-plane (0,00) X R, and
bounded by certain exponential functions.
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1. INTRODUCTION

Numerous issues related to positive linear integral operators were and still are the subject of re-
search. The reason lays with their numerous applications in different domains of mathematics
and physics. The classical Gauss-Weierstrass singular integral

oy L (x—y)

1) Wit = 5= [ exp( - )f(y)dy,

has been studied systematically in the past. The integral W is a solution of the heat equation.
The details can be found, for example, in [13]. Approximation properties of the operator W
were given in many papers and monographs (see, for example, [13, 14, 18]). In [4], Anastas-
siou and Mezei investigated the smooth Gauss-Weierstrass singular integral operators (not in
general positive) over the real line regarding their simultaneous global smoothness preserva-
tion property with respect to the L” norm, by involving higher order moduli of smoothness.
Some Lipschitz type results for the smooth Gauss-Weierstrass type singular integral operators
were established in [17]. Approximation properties of the classical Gauss-Weierstrass integrals
for functions of two variables in exponential weighted space were presented in [11] and a cer-
tain modification of these integrals which has a better order of approximation than the classical
integrals was investigated in [19]. Khan and Umar (see [16]) gave a generalization of the Gauss-
Weierstrass integrals and obtained the rate of convergence of the integral operator. In [5], Aral
proposed a definition of the A-Gauss Weierstrass singular integral with the kernel depend-
ing on a nonisotropic distance, its generalization, and gave some approximation properties of
these integrals in certain function spaces. In [3], Anastassiou and Duman studied statistical L,-
approximation properties of the double Gauss-Weierstrass singular integral operators which
do not need to be positive. Similar issues were also examined in the complex case in note [2].
Recently, various ¢-generalizations of Gauss-Weierstrass singular integral operators based on
g-calculus (see [15]) and their approximation properties were investigated intensively (see, for
example, [1, 6,7, 8]).
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The aim of this paper is to study approximation properties of the family of bivariate Gauss-
Weierstrass operators associated with the Riemann-Liouville operator (see [10]). This family is
of the form

VEF)(r2) = Va(firy e, t) = / / KX (r, 2, 5,9)f (s, y)dsdy,
RJO

where the kernel is defined by

2t)=(@+3/2) 2024002 srsy -
Kt (r 2, s,y) = ¢ _7,,(% I ( ) g2+
for o > —%, r>0,zveR,t>0,and I, is a modified Bessel function
> Za+2k:

’;) 20026 kI (e + K+ 1)

Ia(z) =

In paper [9], the operator V, is considered for functions belonging to L”, 1 < p < co and S,
which is a space of infinitely differentiable functions, rapidly decreasing together with all their
derivatives, even with respect to the first variable.

It is known (see [9, Proposition 3.4]) that the operator V,, is a positive linear operator from L?
into itself and for every f € LP, 1 < p < oo, we have

IWVa(Hllee < [l

Moreover, for every 1 < p < oo, the family (V!),~¢ is strongly continuous semigroup of opera-
tors on LP and it is called Gauss semigroup associated with the Riemann-Liouville operator.
Armi and Rachdi proved thatif f € S, then V, is a function of the class C*° on (0, o) x Rx (0, c0)
and satisfies the following equations (see [9]):

Ou(r,z,t) Ou(r, z,t) N 200+ 1 Ou(r, x,t) N Ou(r, z,t)

ot N Ox? r or orz 7
lirg)a+ Va(f;r,x,t) = f(r,z) uniformly on (0,00) x R.
t—

(1.2)

An interesting fact related to the study of the operator V,, is the following remark. If f(r,z) =
f1(r) f2(z), then

(13) Voz(f;/raxat) :Wa(fl;Tat)W(fQ;xvt)v

where )
1 [ _, gt r2+s rs
Walfr;rt) = 5 / r exp ( py ) 1, (2t) fi1(s)ds

and W is defined by (1.1). Note that WW_ is the classical Gauss-Weierstrass integral (1.1) and

irt) = = [ oo (-5 fisyas,

fi(s) ifs >0,

[N

_1
2

where

fi(s) =
fi(—s) if s < 0.
It is worth mentioning that for f(s) = s2*, k € N, the function W, (f) is a polynomial called
radial heat polynomial [12].
Some properties of the operator W,, in particular, an estimation of the rate of convergence,
were studied in [20].
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In this work, we will investigate approximation properties of V,, in the space Ex, K > 0,
consisting of all continuous functions f defined on the half-plane (0, c0) x R, and such that

|f(r,z)] < MKO*+%)

for some M > 0. The norm in Fi is given by

- ’I"2 12
IIfHEKz(SI;pDe KOS £ (r, )],
r,x)€E

where D = {(r,z) : r > 0,z € R}. Observe thatif 0 < K; < K, then Ex, C Ek, and
[l < 11f M1k

We shall prove that the operator V,, is bounded and maps Ex into Ex s, where § > 0. More-
over, we shall estimate an order of approximation by this operator.

2. APPROXIMATION PROPERTIES
Applying the method used in [20], we can prove the following theorem.

Theorem 2.1. Let f € Fi.
(a) The function V,,(f) is of the class C*° in the set

1
Q= t R, t< —
{(r,z,)r>0xe 0< <4K}

(if K =0,then 0 < t < 00).
(b) The function Vo (f) is a solution of the equation (1.2) in Q and
lim )Va(fm%t) = f(ro, o)

(rya,t)— (10, m0,0%
for every (1o, zo) € Q2. Moreover, we have
T Vo (fr,2,6) = f(r,2)
in every closed subset in ().
In what follows, it will be useful to consider the functions:
Po.0lr,z) = eK(err:rz)’ boi(r,x) = IieK(r2+12)7
Piolr, ) = r2eK ) for =12

Using (see [20])

o0 S a+2kp E+b+1
a+2b4+1 2 _ B (a+k+b+1)
/o s exp (—as®) Io(Bs) dS— - Wl(a + k + DaorFroTige oiT

a>—5,b>0,a>0,8 > 0and the equation (1 3), we have the following lemma.

Lemma 2.1. Let I = (0, ;) for K > 0 and I = (0,00) for K = 0. For t € I, we have

Va(too;mz,t) = A,
Vo(bo1;m2,t) = Ax(l—4Kt)™?
Va(ooirx,t) = A[22*(1—4Kt)"> +2t(1 —4Kt)"'],
Valbrosrma,t) = A[r3(1—4Kt) ™2 +4t(a +1)(1 - 4Kt)71],
Va(ooir,2,t) = Af[r*(1—4Kt)™ +8tr*(a +2)(1 — 4Kt)~®

+ 16t% (o + 2) (o + 1)(1 — 4Kt) 2]



60 G. Krech, I. Krech

K(r2+422)

where A = (1 — 4Kt)~ (@3¢ 1-1xe

Theorem 2.2. Let f € Ex. If K > 0, then for every § > 0and t € (0, m), the operator V,
maps the space Ex in Ex s and

2.4) Ve lens < (14 7) ik,
If K =0, then V,, maps the space Ey into itself and
(25) Va(Hllo < 171l
Proof. By the positivity and linearity of V,,, we get
Va(firz, )] < Vallflir z,t) < [ fllxVa(dooir,2,t) = All fllx.

From above we have (2.5) for K = 0.
Let K >0.1f6 >0andt € (0

,then —& __ < K + §. Hence

5
J 4K(K+5)) T—4Kt

2 (L‘2
IVillkss = (St;pDe‘(K”)(’* WValfir,z,t)]
r,T)E

< sup e_ﬁ(ruxz)wa(fﬂ‘axat”
(r,z)eD

IN

3
—(a+2 s\"?
(=)Dl < (14 ) Il

which gives (2.4). O

3. RATE OF CONVERGENCE

In this section, we shall state an estimate of the rate of convergence of the integral V,, in terms
of the modulus of continuity.

Let§ > 0 and
w(f; Fk,d) = sup |f(s,y) — f(r, x)|e_K(S2+y2), K >0.
vV (s=r)2+(y—x)2<s
Observe that

w(f; Ex,01) Sw(f; Ex,d2) for 0<d; < 0o,

Ww(f; B, A0) < (1 4+ Nw(f; Fk,6) for X>0.

K(r24a2

Theorem 3.3. Let f € E, K > 0and A= (1 — 4Kt)‘(a+%)eTKt). We have
Va(fir,2,t) — f(r,z)] < 24w(f; Bk, 0),
where
5 = {9:2 —22%(1 — 4Kt) "L 4 22(1 — AKt) "2 + 2t(1 — AKt)"!
+ [t =2t (1 —4Kt) 2 + 0 (1 — 4Kt) ™ = 8tr?(a+ 1)(1 — 4Kt) !
+ 862 (a + 2)(1 — AK1) ™% + 1662 (a + 2)(a + 1)(1 — 4K) 2] 1/2}1/2

forr>02€R,0<t< and K> 0.
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If K =0, we have

Vo (f;rzt) — f(r,z)| < 2w (f;Eo, \/2t+ V/8tr2 + 1662 (a + 2) (o + 1))

forr>0,z€R,t>0.

Proof. Let § > 0. Using the property of the modulus of continuity, we obtain

F(s,9) = (@) < X0 (f Bie, /s = 12+ (v — 2)?)
for f € Ex. From this, we get
F(s,) = f(r,)]
< K (1 VGV U x)2> w (f; Bk, 9)

- )

s o — )2 4 (y — )2
¢ e (14 LW

In view of (s —r)? < |s? — r?|, we can write

|2 =]+ (y — x)
+ 52

‘f(S,y)*f(T,I'N SeK(52+y2) (1 2>w(f’EK76)

The operator V,, is positive and linear (see also [9]), so
Vo (fir z,t) — f(r,z)|

< Vallf = flra)lir,2,t)

< w(f;Ek,0)Va (1/10.,0 +

20,0 — 2201 + o2 + &Yoo .
52 7,r’ :L.’ b

where ¢(s,y) = |s?> — r?|. Observe that
Vo (90,07, 2,t) < {Va(1/)0,0;7’,Ivt)vawzlffo,o;ﬂxvt)}lﬂ
= {Va(o,0;7 3,t) [r*Va(too;r,z,t)
— 20V (Y1037 @, t) + Vi (o057, 2, t)] }1/2 ‘
Hence
Vo (fsr @, t) = f(r,z)|
< W(f;EK,(S){Va(?/’o,o;T,xat)

1
+ 672 [I2Va (1/}070;T,I,t) - 21:VOL (1/)071;T,$,t) + VO/ (1/)0,2; T7I7t)]

1
+ (572 [Va(¢070; T,Z’,t) (7"4Va(1/10,0;?”,$’t) - 27"2Va(1/11,0;r,x,t)

+ Va('l/JQ,O;Tyx?t))]l/Q} .
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If K = 0, then from Lemma 2.1, we have

Vo (o051, 2,t) = 1,

Vo (Wo15m,2,t) = =,

Vo (hoosm oz, t) = 22°+2t,

Vo (105 m,t) = r?+4t(a+1),

Vo (057, x,t) = 1+ 8tr (o +2) + 1663 (a + 2) (o + 1).

Hence, we conclude

Vo (f;r,z,t) — f(r,z)] < 2w (f;Eo, \/2t+ V/8tr2 + 1612 (a + 2) (ar + 1))

forr >0,z €R,t>0.
For K > 0, we obtain from Lemma 2.1 the following estimation

|Voz(f;71axvt) - f(’f‘,(E)|
< Aw(f;Ek,0)

1
X {1 + 2 (2% —22%(1 —4Kt) ' 4+ 2%(1 — 4Kt) "> 4+ 2t(1 — 4Kt) "]

1 - — —
sz [t =2t (1= K™ (1= 4K T = 8t (a+ 1)(1 - 4K

+ 8tr2(a+2)(1 - 4K1) 7 +162(a + 2)(a + 1)(1 - 4K1) 2]}

Setting
§ = {x2 — 2221 — AKE) "L 4 22(1 — 4K)2 + 26(1 — 4K¢) "L
+ [t =27t (1 —4Kt) 2 + rt (1 — 4Kt ™ = 8tr? (a+ 1) (1 — 4Kt) !
+ 8tr*(a+2)(1 — 4Kt)7® + 16t* (a + 2) (o + 1)(1 — 4Kt) 7] 1/2}1/2 :
we get the assertion. O
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