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Abstract

In this paper, we use the Banach fixed point theorem to obtain the existence, interval of existence and
uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlo-
cal conditions. We also use the generalization of Gronwall’s inequality to show the estimate of the solutions.
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1. Introduction

Fractional differential equations with and without delay arise from a variety of applications including in
various fields of science and engineering such as applied sciences, practical problems concerning mechanics,
the engineering technique fields, economy, control systems, physics, chemistry, biology, medicine, atomic
energy, information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability and
instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional differential equations with and
without delay have received the attention of many authors, see [1]–[25] and the references therein.
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In [7], Dhaigude and Bhairat investigated the existence and stability of solutions of the following nonlinear
implicit fractional differential equation{

Dα
1x(t) = f (t, x(t),Dα

1x(t)) , t ∈ [1, b] , b > 1,

x(k) (1) = xk ∈ Rn, k = 0, 1, ...,m− 1,

where Dα
1 is the Caputo-Hadamard derivative of order m−1 < α ≤ m. By employing the modified version of

contraction principle and the successive approximation method, the authors obtained existence and stability
results.

The implicit fractional differential equation{
CDαx (t) = f

(
t, x (t) ,C Dαx (t)

)
,

x (0) + g (x) = x0,

has been investigated in [11], where CDα is the standard Caputo’s fractional derivative of order 0 < α < 1.
By using the contraction mapping principle, the existence, interval of existence and uniqueness of solutions
has been established.

In this paper, we are interested in the analysis of qualitative theory of the problems of the existence,
interval of existence and uniqueness of solutions to implicit Caputo-Hadamard fractional differential equations
with nonlocal conditions. Inspired and motivated by the works mentioned above and the references in this
paper, we concentrate on the existence, interval of existence and uniqueness of solutions for the nonlinear
implicit Caputo-Hadamard fractional differential equation with nonlocal conditions{

Dα
1x (t) = f (t, x (t) ,Dα

1x (t)) ,
x (1) + g (x) = x0,

(1)

where f : [1, T ] × R2 → R and g : C ([1, T ] ,R) → R are nonlinear continuous functions and Dα
1 denotes

the Caputo-Hadamard derivative of order 0 < α < 1. In passing, we note that the application of nonlinear
condition x (1) + g (x) = x0 in physical problems yields better effect than the initial condition x (1) = x0
(see [4]). To show the existence, interval of existence and uniqueness of solutions, we transform (1) into an
integral equation and then use the Banach fixed point theorem. Further, by the generalization of Gronwall’s
inequality we obtain the estimate of solutions of (1).

2. Preliminaries

In this section we present some basic definitions, notations and results of fractional calculus [1, 8, 10, 15,
16, 21] which are used throughout this paper.

Definition 2.1 ([16]). The Hadamard fractional integral of order α > 0 for a continuous function x :
[1,+∞)→ R is defined as

Iα1x (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
x (s)

ds

s
, α > 0. (2)

Definition 2.2 ([1, 10, 15]). The Caputo-Hadamard fractional derivative of order α for a continuous function
x : [1,+∞)→ R is defined as

Dα
1x (t) =

1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1
δn (x) (s)

ds

s
, n− 1 < α < n, (3)

where δn =

(
t
d

dt

)n
, n = [α] + 1.
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Lemma 2.3 ([15]). Let <(α) > 0. Suppose x ∈ Cn−1 [1,+∞) and δ(n)x(t) exists almost everywhere on any
bounded interval of [1,+∞). Then

Iα1 [Dα
1x (t)] = x (t)−

n−1∑
k=0

δk)x (1)

Γ (k + 1)
(log t)k .

In particular, when 0 < <(α) < 1, Iα1 [Dα
1x (t)] = x(t)− x(1).

Lemma 2.4 ([16]). For all µ > 0 and ν > −1, then

1

Γ (µ)

∫ t

1

(
log

t

s

)µ−1
(log s)ν

ds

s
=

Γ (ν + 1)

Γ (µ+ ν + 1)
(log t)µ+ν .

The following generalization of Gronwall’s lemma for singular kernels plays an important role in obtaining
our main results.

Lemma 2.5 ([20]). Let x : [1, T ] → [0,∞) be a real function and w is a nonnegative locally integrable
function on [1, T ]. Assume that there is a constant a > 0 such that for 0 < α < 1

x(t) ≤ w(t) + a

∫ t

1

(
log

t

s

)α−1
x (s)

ds

s
.

Then, there exist a constant K = K(α) such that

x(t) ≤ w(t) +Ka

∫ t

1

(
log

t

s

)α−1
w (s)

ds

s
,

for every t ∈ [1, T ].

3. Main results

In this section, we give the equivalence of the initial value problem (1) and prove the existence, interval
of existence, uniqueness and estimate of solutions of (1).

The proof of the following lemma is close to the proof of Lemma 6.2 given in [8].

Lemma 3.1. If the functions f : [1, T ]× R2 → R and g : C ([1, T ] ,R)→ R are continuous, then the initial
value problem (1) is equivalent to nonlinear fractional Volterra integro-differential equation

x (t) = x0 − g (x) +
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
f (s, x (s) ,Dα

1x (s))
ds

s
, t ∈ [1, T ] .

Theorem 3.2. Let T > 1. Assume f : [1, T ] × R2 → R and g : C ([1, T ] ,R) → R satisfy the following
condition

(H1) There exist K1 ∈ R+, K2,K3 ∈ (0, 1) such that

|f (t, u, v)− f (t, ũ, ṽ)| ≤ K1 |u− ũ|+K2 |v − ṽ| ,

and
|g (x)− g (x̃)| ≤ K3 ‖x− x̃‖ .

Let

1 < b < min

{
T, exp

(
(1−K3) (1−K2) Γ (α+ 1)

K1

) 1
α

}
,

then (1) has a unique solution x ∈ C ([1, b],R).
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Proof. Let
Dα

1x (t) = zx (t) , x (1) + g (x) = x0,

then by Lemma 3.1,

x (t) = x0 − g (x) +
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
zx (s)

ds

s
, t ∈ [1, T ] ,

where
zx (t) = f (t, x0 − g (x) + Iα1 zx (t) , zx (t)) .

That is x (t) = x0 − g (x) + Iα1 zx (t). Define the mapping P : C ([1, b],R)→ C ([1, b],R) as follows

(Px) (t) = x0 − g (x) +
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
zx (s)

ds

s
.

It is clear that the fixed points of P are solutions of (1). Let x, y ∈ C ([1, b],R), then we have

|(Px) (t)− (Py) (t)|

≤ |g (x)− g (y)|+ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1
|zx (s)− zy (s)| ds

s

≤ K3 ‖x− y‖+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
|zx (s)− zy (s)| ds

s
, (4)

and

|zx (t)− zy (t)| ≤ |f (t, x (t) , zx (t))− f (t, x (t) , zy (t))|
≤ K1 |x (t)− y (t)|+K2 |zx (t)− zy (t)|

≤ K1

1−K2
|x (t)− y (t)| . (5)

By replacing (5) in the inequality (4), we get

|(Px) (t)− (Py) (t)|

≤ K3 ‖x− y‖+
1

Γ (α)

K1

1−K2

∫ t

1

(
log

t

s

)α−1
|x (s)− y (s)| ds

s

≤ K3 ‖x− y‖+
1

Γ (α)

K1

1−K2

(∫ t

1

(
log

t

s

)α−1 ds
s

)
‖x− y‖

≤
(
K3 +

K1

1−K2

(log t)α

Γ (α+ 1)

)
‖x− y‖ .

Since t ∈ [1, b], then
‖Px− Py‖ ≤ β ‖x− y‖ , 0 < β < 1,

where
β = K3 +

K1

1−K2

(log b)α

Γ (α+ 1)
.

That is to say the mapping P is a contraction in C ([1, b],R). Hence, by the Banach fixed point theorem, P
has a unique fixed point x ∈ C ([1, b],R). Therefore, (1) has a unique solution.
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Theorem 3.3. Assume that f : [1, T ]×R2 → R and g : C ([1, T ] ,R)→ R satisfy (H1). If x is a solution of
(1), then

‖x‖ ≤ (1−K2) (1−K3) Γ (α+ 1) +K1K (log T )α

(1−K2) (1−K3)
2 Γ (α+ 1)

×
(
|x0|+Q1 +

Q2 (log T )α

(1−K2) Γ (α+ 1)

)
,

where Q1 = |g (0)|, Q2 = sup
t∈[1,T ]

|f (t, 0, 0)| and K ∈ R+ is a constant.

Proof. Let
Dα

1x (t) = zx (t) , x (1) + g (x) = x0.

By Lemma 3.1, x (t) = x0 − g (x) + Iα1 zx (t). Then by hypothesis (H1), for any t ∈ [1, T ] we have

|x (t)| ≤ |x0|+ |g (x)|+ Iα1 |zx (t)|
≤ |x0|+ |g (x)− g (0)|+ |g (0)|+ Iα1 |zx (t)|
≤ |x0|+Q1 +K3 ‖x‖+ Iα1 |zx (t)| ,

where Q1 = |g (0)|. On the other hand, for any t ∈ [1, T ] we get

|zx (t)| = |f (t, x (t) , zx (t))|
≤ |f (t, x (t) , zx (t))− f (t, 0, 0)|+ |f (t, 0, 0)|
≤ K1 |x (t)|+K2 |zx (t)|+ |f (t, 0, 0)|

≤ K1

1−K2
‖x‖+

Q2

1−K2
,

where Q2 = sup
t∈[1,T ]

|f (t, 0, 0)|. Therefore

|x (t)| ≤ |x0|+Q1 +K3 ‖x‖+ Iα1

(
Q2

1−K2
+

K1

1−K2
‖x‖
)
.

Thus

(1−K3) ‖x‖ ≤ |x0|+Q1 +
Q2 (log T )α

(1−K2) Γ (α+ 1)

+
K1

(1−K2) (1−K3)
Iα1 {(1−K3) ‖x‖} .

By Lemma 2.5, there is a constant K = K (α) such that

(1−K3) ‖x‖

≤ |x0|+Q1 +
Q2 (log T )α

(1−K2) Γ (α+ 1)

+
K1K (log T )α

(1−K2) (1−K3) Γ (α+ 1)

(
|x0|+Q1 +

Q2 (log T )α

(1−K2) Γ (α+ 1)

)
≤ (1−K2) (1−K3) Γ (α+ 1) +K1K (log T )α

(1−K2) (1−K3) Γ (α+ 1)

×
(
|x0|+Q1 +

Q2 (log T )α

(1−K2) Γ (α+ 1)

)
.
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Hence

‖x‖ ≤ (1−K2) (1−K3) Γ (α+ 1) +K1K (log T )α

(1−K2) (1−K3)
2 Γ (α+ 1)

×
(
|x0|+Q1 +

Q2 (log T )α

(1−K2) Γ (α+ 1)

)
.

This completes the proof.
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