A NEW RESULT FOR WEIGHTED ARITHMETIC MEAN SUMMABILITY FACTORS OF INFINITE SERIES INVOLVING ALMOST INCREASING SEQUENCES

ŞEBNEM YILDIZ

ABSTRACT. In this paper, a known theorem dealing with weighted mean summability methods of non-decreasing sequences has been generalized for $|A, p_n; \delta|_k$ summability factors of almost increasing sequences. Also, some new results have been obtained concerning $|N, p_n|_k$, $|N, p_n; \delta|_k$ and $|C, 1; \delta|_k$ summability factors.

1. INTRODUCTION

Let $\sum a_n$ be a given infinite series with the partial sums (s_n). We denote u_n^α the nth Cesàro mean of order α, with $\alpha > -1$, of the sequence (s_n), that is (see [9]),

$$u_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=0}^{n} A_n^{\alpha-1} s_v$$ \hspace{1cm} (1)

where

$$A_n^\alpha = \frac{(\alpha + 1)(\alpha + 2)\ldots(\alpha + n)}{n!} = O(n^\alpha), \quad A_n^{\alpha-n} = 0 \quad \text{for} \quad n > 0. \hspace{1cm} (2)$$

A series $\sum a_n$ is said to be summable $|C, \alpha; \delta|_k$, $k \geq 1$ and $\delta \geq 0$, if (see [10]),

$$\sum_{n=1}^{\infty} n^{\delta k + k-1} |u_n^\alpha - u_{n-1}^\alpha|^k < \infty.$$ \hspace{1cm} (3)

If we take $\delta = 0$, then we have $|C, \alpha|_k$ summability (see [12]).

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \quad \text{as} \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \geq 1).$$ \hspace{1cm} (4)

Received by the editors: July 31, 2018; Accepted: January 15, 2019.

2010 Mathematics Subject Classification. Primary 26D15, 40D15; Secondary 40F05, 40G99.

Key words and phrases. Riesz mean, absolute summability, infinite series.

Submitted via 2nd International Conference of Mathematical Sciences (ICMS 2018).
The sequence-to-sequence transformation

\[w_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v \]

defines the sequence \((w_n)\) of the weighted arithmetic mean or simply the \((\tilde{N}, p_n)\) mean of the sequence \((s_n)\) generated by the sequence of coefficients \((p_n)\) (see [11]).

The \((\tilde{N}, p_n)\) mean of \((s_n)\) reduces to the Cesàro mean \((C, 1)\) when \((p_n) = \frac{1}{n+1}\) [17]. \((\tilde{N}, p_n)\) means were used in many applications of summability theory such as Tauberian and Korovkin type-theorems (see e.g. [18], [19] and [2]).

The series \(\sum a_n\) is said to be summable \(|\tilde{N}, p_n; \delta|k, k \geq 1\) and \(\delta \geq 0\), if (see [5]),

\[\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} |\Delta w_{n-1}| < \infty. \]

where

\[\Delta w_{n-1} = - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \geq 1. \]

In the special case if we take \(\delta = 0\), we have \(|\tilde{N}, p_n|k\) summability (see [3]). When \(p_n = 1\) for all values of \(n\), \(|\tilde{N}, p_n; \delta|k\) summability is the same as \(|C, 1; \delta|k\) summability. Also if we take \(\delta = 0\) and \(k = 1\), then we have \(|\tilde{N}, p_n|\) summability.

Let \(A = (a_{nv})\) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Given a normal matrix \(A = (a_{nv})\), we associate two lower semimatrices \(\tilde{A} = (\tilde{a}_{nv})\) and \(\hat{A} = (\hat{a}_{nv})\) as follows:

\[\tilde{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \ldots \]

and

\[\hat{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \tilde{a}_{nv} - \tilde{a}_{n-1,v}, \quad n = 1, 2, \ldots \]

Then \(A\) defines the sequence-to-sequence transformation, mapping the sequence \(s = (s_n)\) to \(As = (A_n(s))\), where

\[A_n(s) = \sum_{v=0}^{n} a_{nv} s_v, \quad n = 0, 1, \ldots \]

It may be noted that \(\tilde{A}\) and \(\hat{A}\) are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

\[A_n(s) = \sum_{v=0}^{n} a_{nv} s_v = \sum_{v=0}^{n} a_{nv} \sum_{i=0}^{v} a_i = \sum_{i=0}^{n} a_i \sum_{v=i}^{n} a_{nv} \]
\[\sum_{i=0}^{n} a_i \bar{\alpha}_{ni} = \sum_{v=0}^{n} \bar{\alpha}_{nv} a_v. \]

(11)

Since \(\bar{\alpha}_{n-1,n} = \sum_{i=n}^{n-1} a_{n-1,i} = 0, \)

\[\bar{\Delta} A_n(s) = A_n(s) - A_{n-1}(s) = \sum_{v=0}^{n} \bar{\alpha}_{nv} a_v - \sum_{v=0}^{n-1} \bar{\alpha}_{n-1,v} a_v \]

\[= \sum_{v=0}^{n} (\bar{\alpha}_{nv} - \bar{\alpha}_{n-1,v}) a_v + \bar{\alpha}_{n-1,n} a_n = \sum_{v=0}^{n} \bar{\alpha}_{nv} a_v. \]

(12)

The series \(\sum a_n \) is said to be summable \(|A,p_n;\delta|_k, k \geq 1 \) and \(\delta \geq 0 \), if (see [16])

\[\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |\bar{\Delta} A_n(s)|^k < \infty \]

(13)

where

\(\Delta A_n(s) = A_n(s) - A_{n+1}(s), \) and \(\bar{\Delta} A_n(s) = A_n(s) - A_{n-1}(s). \)

By a weighted mean matrix we state

\[a_{nv} = \begin{cases} \frac{P_v}{p_n}, & 0 \leq v \leq n \\ 0, & v > n, \end{cases} \]

where \((p_n) \) is a sequence of positive numbers with \(P_n = p_0 + p_1 + p_2 + \ldots + p_n \to \infty \) as \(n \to \infty. \)

If we take \(\delta = 0 \), then \(|A,p_n;\delta|_k \) summability is the same as \(|A,p_n|_k \) summability (see [20]) and if we take \(\delta = 0 \) and \(a_{nv} = \frac{P_v}{p_n} \), then \(|A,p_n;\delta|_k \) summability is the same as \(|\tilde{N},p_n|_k \) summability. Also, if we take \(\delta = 0 \), \(a_{nv} = \frac{P_v}{p_n} \) and \(p_n = 1 \) for all \(n, \) then \(|A,p_n;\delta|_k \) summability is the same as \(|C,1|_k \) summability.

2. The Known Results

Quite recently, Bor has proved the following theorems concerning on weighted arithmetic mean summability factors of infinite series.

Theorem 1. Let \((X_n) \) be a positive non-decreasing sequence and suppose that there exists sequences \((\beta_n) \) and \((\lambda_n) \) such that

\[|\Delta \lambda| \leq \beta_n, \]

\[\beta_n \to 0 \quad \text{as} \quad n \to \infty \]

(14)

(15)

\[\sum_{n=1}^{\infty} n |\Delta \beta| X_n < \infty, \]

\[|\lambda| X_n = O(1). \]

(16)

(17)
If
\[
\sum_{n=1}^{m} \frac{|s_n|^k}{n} = O(X_m) \quad \text{as} \quad m \to \infty, \tag{18}
\]
and \((p_n)\) is a sequence that
\[
P_n = O(np_n), \tag{19}
\]
\[
P_n \Delta p_n = O(p_n p_{n+1}), \tag{20}
\]
then the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\) is summable \(|N, p_n|k, k \geq 1\).

Theorem 2. [6] Let \((X_n)\) be a positive non-decreasing sequence. If the sequences \((X_n), (\beta_n), (\lambda_n), (p_n)\) satisfy the conditions (14)-(17), (19)-(20) of Theorem 1, and
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right) \delta^k \frac{|s_n|^k}{n} = O(X_m) \quad \text{as} \quad m \to \infty, \tag{21}
\]
\[
\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right) \delta^{k-1} \frac{1}{p_{n-1}} = O \left(\frac{P_v}{p_v} \delta^k \frac{1}{P_v} \right) \quad \text{as} \quad m \to \infty, \tag{22}
\]
then the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\) is summable \(|N, p_n; \delta|k, k \geq 1\) and \(0 < \delta < 1/k\).

Theorem 3. [7] Let \((X_n)\) be a positive non-decreasing sequence. If the sequences \((X_n), (\beta_n), (\lambda_n), (p_n)\) satisfy the conditions (14)-(17), (19)-(20) of Theorem 1, and
\[
\sum_{n=1}^{m} \frac{|s_n|^k}{n^{k-1} X_n} = O(X_m) \quad \text{as} \quad m \to \infty, \tag{23}
\]
then the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\) is summable \(|N, p_n; \delta|k, k \geq 1\) and \(0 \leq \delta < 1/k\).

Theorem 4. [7] Let \((X_n)\) be a positive non-decreasing sequence. If the sequences \((X_n), (\beta_n), (\lambda_n), (p_n)\) satisfy the conditions (14)-(17), (19)-(20) of Theorem 1, and
\[
\sum_{n=1}^{m} \frac{|s_n|^k}{n^{k-1} X_n^k} = O(X_m) \quad \text{as} \quad m \to \infty, \tag{24}
\]
then the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\) is summable \(|N, p_n|k, k \geq 1\).

Theorem 5. [8] Let \((X_n)\) be a positive non-decreasing sequence. If the sequences \((X_n), (\beta_n), (\lambda_n), (p_n)\) satisfy the conditions (14)-(17), (19)-(20) of Theorem 1, condition (22) of Theorem 2, and
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right) \delta^k \frac{|s_n|^k}{n X_n^{k-1}} = O(X_m) \quad \text{as} \quad m \to \infty, \tag{25}
\]
then the series \(\sum a_n \frac{P_n}{np_n} \) is summable \(|\mathcal{N}, p_n; \delta|_k \), \(k \geq 1 \), \(0 \leq \delta < 1/k \).

We need the following lemmas.

Lemma 6. [13] Under the conditions on \((X_n), (\beta_n), \) and \((\lambda_n)\) as expressed in the statement of Theorem 1, we have the following:

\[
\begin{align*}
nX_n\beta_n &= O(1), \quad (26) \\
\sum_{n=1}^{\infty} \beta_n X_n &< \infty. \quad (27)
\end{align*}
\]

Lemma 7. [15] If the conditions (19) and (20) of Theorem 1 are satisfied, then

\[
\Delta \left(\frac{P_n}{np_n} \right) = O \left(\frac{1}{n} \right).
\]

Remark 8. Under the conditions on the sequence \((\lambda_n)\) of Theorem 1, we have that \((\lambda_n)\) is bounded and \(\Delta \lambda_n = O(1/n)\) (see [4]).

3. The Main Results

A positive sequence \((b_n)\) is said to be almost increasing if there exists a positive increasing sequence \((z_n)\) and two positive constants \(C\) and \(B\) such that \(Cz_n \leq b_n \leq Bz_n\) (see [1]). It is known that every increasing sequences is an almost increasing sequence but the converse need not be true. In this paper we generalize Theorem 5 to \(|A, p_n; \delta|_k\) summability method using almost increasing sequences and normal matrix instead of non-decreasing sequences and weighted mean matrix, respectively. The following our main theorem is generalized the above results concerning \(|\mathcal{N}, p_n|_k\) and \(|\mathcal{N}, p_n; \delta|_k\) summability methods.

Theorem 9. [22] Let \(k \geq 1\) and \(0 \leq \delta < 1/k\). Let \(A = (a_{nv})\) be a positive normal matrix such that

\[
\begin{align*}
p_{n0} &= 1, \quad n = 0, 1, \ldots, \quad (28) \\
a_{n-1,v} &\geq a_{nv}, \quad \text{for } n \geq v + 1, \quad (29) \\
a_{nn} &= O \left(\frac{p_n}{n} \right), \quad (30) \\
\sum_{v=1}^{n-1} a_{nv} \hat{a}_{n,v+1} &= O(a_{nn}), \quad (31)
\end{align*}
\]

\[
\begin{align*}
\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} \left| \Delta_v (\hat{a}_{nv}) \right| &= O \left\{ \left(\frac{P_v}{p_v} \right)^{\delta k-1} \right\} \quad \text{as } m \to \infty, \quad (32) \\
\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} \left| \hat{a}_{n,v+1} \right| &= O \left\{ \left(\frac{P_v}{p_v} \right)^{\delta k} \right\} \quad \text{as } m \to \infty. \quad (33)
\end{align*}
\]
Let \((X_n)\) be an almost increasing sequence. If the sequences \((X_n)\), \((\beta_n)\), \((\lambda_n)\), and \((p_n)\) satisfy all the conditions of Theorem 5, then the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\) is summable \(|A, p_n, \delta|_k, k \geq 1, 0 \leq \delta < 1/k\).

4. PROOF OF THEOREM 9

Proof. Let \((V_n)\) denotes the A-transform of the series \(\sum a_n \frac{P_n \lambda_n}{np_n}\). Then, by the definition, we have that

\[
\tilde{\Delta} V_n = \sum_{v=1}^{n} \tilde{a}_{nv} a_v \frac{P_v \lambda_v}{vp_v}.
\]

Applying Abel’s transformation to this sum, we have that

\[
\tilde{\Delta} V_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\tilde{a}_{nv} P_v \lambda_v}{vp_v} \right) \sum_{r=1}^{v} a_r + \frac{\tilde{a}_{nn} P_n \lambda_n}{np_n} \sum_{r=1}^{n} a_r
\]

\[
\tilde{\Delta} V_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\tilde{a}_{nv} P_v \lambda_v}{vp_v} \right) s_v + \frac{\tilde{a}_{nn} P_n \lambda_n}{np_n} s_n,
\]

\[
\tilde{\Delta} V_n = \frac{a_{nn} P_n \lambda_n}{np_n} s_n + \sum_{v=1}^{n-1} \frac{P_v \lambda_v}{vp_v} \Delta_v (\tilde{a}_{nv}) s_v + \sum_{v=1}^{n-1} \tilde{a}_{n,v+1} \lambda_v \Delta \left(\frac{P_v}{vp_v} \right) s_v
\]

\[
+ \sum_{v=1}^{n-1} \tilde{a}_{n,v+1} \frac{P_{v+1}}{(v+1)p_{v+1}} \Delta \lambda_v s_v
\]

\[
\tilde{\Delta} V_n = V_{n,1} + V_{n,2} + V_{n,3} + V_{n,4}.
\]

To complete the proof of Theorem 9, by Minkowski inequality, it is sufficient to show that

\[
\sum_{n=1}^{\infty} \frac{P_n}{p_n} \delta^{k+1} \left| V_{n,r} \right|^k < \infty, \text{ for } r = 1, 2, 3, 4.
\]

First, by applying Hölder’s inequality with indices \(k\) and \(k'\), where \(k > 1\) and \(\frac{1}{k} + \frac{1}{k'} = 1\), we have that

\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k+1} \left| V_{n,1} \right| \leq \sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k+1} \frac{k}{n^{k}} a_{nn} \left(\frac{P_n}{p_n} \right)^{k} |\lambda_n|^{k} \left| s_n \right|^{k} = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{n^{k}} |\lambda_n|^{k} \left| s_n \right|^{k}
\]

\[
= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{n^{k-1}} |\lambda_n| \left| s_n \right|^{k}
\]

\[
= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \left(\frac{P_v}{p_v} \right)^{\delta k} \frac{1}{v^{k-1}} |\lambda_n| \left| s_n \right|^{k} + O(1) |\lambda_m| \sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{n^{k-1}}
\]

\[
= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \left(\frac{P_v}{p_v} \right)^{\delta k} \frac{1}{v^{k-1}} |\lambda_n| \left| s_n \right|^{k} + O(1) |\lambda_m| \sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{n^{k-1}}
\]
as $m \to \infty$. By applying Hölder’s inequality with indices k and k', where $k > 1$ and $\frac{1}{k} + \frac{1}{k'} = 1$ and as in $V_{n,1}$, we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} |V_{n,2}|^k = \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left| \sum_{v=1}^{n-1} P_v \lambda_v \Delta_v(\hat{a}_{nv}) s_v \right|^k
$$

$$
\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left\{ \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k|s_v|^k \frac{1}{v^k} \left(\frac{P_v}{p_v} \right)^k \right\} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1}
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} a_{nn}^{-1} \left| \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k|s_v|^k \frac{1}{v^k} \left(\frac{P_v}{p_v} \right)^k \right|
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{X_v^{k-1}} |s_v|^k |\lambda_v| \frac{1}{v^k} \left(\frac{P_v}{p_v} \right)^{k-1}
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} \frac{1}{X_v^{k-1}} |s_v|^k |\lambda_v| \frac{1}{v^k} v^{-k-1}
$$

$$
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k} \frac{1}{X_v^{k-1}} |s_v|^k |\lambda_v| \frac{1}{v^k} v^{-k}
$$

Also, by using conditions of Theorem 9, we obtain that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} |V_{n,3}|^k = \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left| \sum_{v=1}^{n-1} a_{nv}^k \Delta_v(\hat{a}_{nv+1}) \lambda_v s_v \right|^k
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} \left\{ \sum_{v=1}^{n-1} a_{nv}^k \Delta_v(\hat{a}_{nv+1}) |\lambda_v|^k |s_v|^k \frac{1}{v^k} \right\} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1}
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k - 1} a_{nn}^{-1} \left(\frac{P_v}{p_v} \right)^{k-1} \Delta_v(\hat{a}_{nv+1}) |\lambda_v|^k |s_v|^k \frac{1}{v^k}
$$

$$
= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k} |\lambda_v|^k |\lambda_v|^k |s_v|^k \frac{1}{v^k} \sum_{n=v+1}^{m+1} \hat{a}_{nv+1}
$$
Finally, by virtue of the hypotheses of Theorem 9, by Lemma 6, we have $v \beta_v = O(1)$, then

\begin{align*}
&= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k} |\lambda_v|^{k-1} |\lambda_v| s_v \left| \frac{v}{p_v} \right| \\
&= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k} \frac{1}{X_v^{k-1}} |\lambda_v| s_v \left| \frac{v}{p_v} \right| = O(1) \quad \text{as} \quad m \to \infty.
\end{align*}

This completes the proof of Theorem 9.

Conclusion 10. If we take $\delta = 0$ in Theorem 9, then Theorem 9 reduces to $|A, p_m|$ summability theorem (see [21]).

Let (X_n) be a positive non-decreasing sequence. The following results have been obtained.

1. If we take $a_{nv} = \frac{P_{nv}}{p_{nv}}$ in Theorem 9, then Theorem 9 reduces to Theorem 5.

2. If we take $\delta = 0$ and $a_{nv} = \frac{P_{nv}}{p_{nv}}$ in Theorem 9, then we obtain Theorem 4 and
if we put $\delta = 0$ and $k = 1$ in Theorem 5, we have a known result of Mishra and Srivastava dealing with $[N, p_n]$ summability factors of infinite series (see [15]).

3. If we take $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of n in Theorem 9, then we obtain a known result of Mishra and Srivastava concerning the $[C, 1; \delta]_k$ summability factors of infinite series.

4. If we take $\delta = 0$, $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of n in Theorem 9, then we obtain a known result of Mishra and Srivastava concerning the $[C, 1]_k$ summability factors of infinite series (see [14]).

References

Current address: Şebnem Yıldız: Kirşehir Ahi Evran University, Department of Mathematics, Arts and Sciences Faculty
E-mail address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com
ORCID Address: https://orcid.org/0000-0003-3763-0308