On generalized weakly symmetric $(LCS)_n$-manifolds

Kanak Kanti Baishya

Department of Mathematics, Kurseong College, Kurseong, W. Bengal- 734 203, India

Abstract

The object of the present paper is to study generalized weakly symmetric and weakly Ricci symmetric $(LCS)_n$-manifolds. Our aim is to bring out different type of curvature restrictions for which $(LCS)_n$-manifolds are sometimes Einstein and some other time remain η-Einstein. Finally, the existence of such manifold is ensured by a non-trivial example.

Mathematics Subject Classification (2010). Primary 53C15, Secondary 53C25

Keywords. $(LCS)_n$-manifold, generalized weakly symmetric manifold, Einstein space, η-Einstein space

1. Introduction

The notion of Lorentzian concircular structure manifolds (briefly $(LCS)_n$-manifolds) has been initiated by Shaikh [25]. Thereafter, a lot of study has been carried out. For details we refer [5, 12, 19, 27–30, 33] and the references therein.

The notion of weakly symmetric Riemannian manifold have been introduced by Tamássy and Binh [34]. Thereafter, a lot research has been carried out in this topic. For details, we refer to see [1, 2, 10, 13, 14, 21–24, 26, 31, 32] and the references there in.

In the spirit of Tamássy and Binh [34], a Riemannian manifold $(M^n, g)(n > 2)$, is said to be a weakly symmetric manifold, if its curvature tensor \bar{R} of type $(0, 4)$ is not identically zero and admits the identity

\[
(\nabla_X \bar{R})(Y, U, V, W) = A_1(X) \bar{R}(Y, U, V, W) + B_1(Y) \bar{R}(X, U, V, W) + B_1(U) \bar{R}(Y, X, V, W) + D_1(V) \bar{R}(Y, U, X, W) + D_1(W) \bar{R}(Y, U, V, X)
\]

where A_1, B_1 & D_1 are non-zero 1-forms defined by $A_1(X) = g(X, \sigma_1), B_1(X) = g(X, g_1)$ and $D_1(X) = g(X, \pi_1)$, for all X and $\bar{R}(Y, U, V, W) = g(\bar{R}(Y, U)V, W)$, ∇ being the operator of the covariant differentiation with respect to the metric tensor g. An n-dimensional Riemannian manifold of this kind is denoted by $(WS)_n$-manifold.
Keeping in tune with Dubey [11], the author have introduced the notion of a generalized weakly symmetric Riemannian manifold (which is abbreviated hereafter as (GWS)$_n$-manifold). An n-dimensional Riemannian manifold is said to be generalized weakly symmetric if it admits the equation

\[(\nabla_X \bar{R})(Y, U, V, W) = A_1(X) \bar{R}(Y, U, V, W) + B_1(Y) \bar{R}(X, U, V, W) + B_1(W) \bar{R}(Y, X, V, W) + D_1(V) \bar{R}(X, Y, U, W) + D_1(W) \bar{R}(Y, X, U, V) + D_2(V) \bar{G}(Y, U, V, W) + D_2(W) \bar{G}(Y, U, V, X)\] \hspace{0.5cm} (1.2)

where

\[\bar{G}(Y, U, V, W) = [g(U, V)g(Y, W) - g(Y, V)g(U, W)]\] \hspace{0.5cm} (1.3)

and A_i, B_i & D_i are non-zero 1-forms defined by $A_i(X) = g(X, \sigma_i)$, $B_i(X) = g(X, g_i)$, and $D_i(X) = g(X, \pi_i)$, for $i = 1, 2$. The beauty of such $(GWS)_n$-manifold is that it has the flavour of

(i) locally symmetric space [7] (for $A_i = B_i = D_i = 0$),
(ii) locally recurrent space [36] (for $A_1 \neq 0$, $A_2 = B_1 = D_1 = 0$),
(iii) generalized recurrent space [11] (for $A_1 \neq 0$. $B_1 = D_1 = 0$),
(iv) pseudo symmetric space [8] \hspace{0.5cm} (for $\frac{D_1}{2} = B_1 = D_1 = H_1 \neq 0$, $A_2 = B_2 = D_2 = 0$),
(v) generalized pseudo symmetric space [3] (for $\frac{D_1}{2} = B_1 = D_1 = H_1 \neq 0$),
(vi) semi-pseudo symmetric space [35] (for $A_i = B_2 = D_2 = 0$, $B_1 = D_1 \neq 0$),
(vii) generalized semi-pseudo symmetric space [4] (for $A_1 = 0$, $B_1 = D_1 \neq 0$),
(viii) almost pseudo symmetric space [9] (for $A_1 = H_1 + K_1$, $B_1 = D_1 = H_1 \neq 0$ and $A_2 = B_2 = D_2 = 0$),
(ix) almost generalized pseudo symmetric space [6] (for $A_1 = H_i + K_i$, $B_1 = D_1 = H_i \neq 0$),
(x) weakly symmetric space [34] (for A_1, B_1, $D_1 \neq 0$, $A_2 = B_2 = D_2 = 0$).

An n-dimensional Riemannian manifold is said to be generalized weakly Ricci symmetric if it admits the equation

\[(\nabla_X S)(Y, Z) = A_1(X)S(Y, Z) + B_1(Y)S(X, Z) + D_1(Z)S(Y, X) + A_2(X)\bar{g}(Y, Z) + B_2(Y)\bar{g}(X, Z) + D_2(Z)\bar{g}(Y, X)\] \hspace{0.5cm} (1.4)

where and A_i, B_i & D_i are non-zero 1-forms defined by $A_i(X) = g(X, \sigma_i)$, $B_i(X) = g(X, g_i)$, and $D_i(X) = g(X, \pi_i)$, for $i = 1, 2$. The beauty of generalized weakly Ricci symmetric manifold is that it has the flavour of Ricci symmetric, Ricci recurrent, generalized Ricci recurrent, pseudo Ricci symmetric, generalized pseudo Ricci symmetric, semi-pseudo Ricci symmetric, generalized semi-pseudo Ricci symmetric, almost pseudo Ricci symmetric, almost generalized pseudo Ricci symmetric and weakly Ricci symmetric space as special cases.

Now, if the vectors associated to the 1-forms A_1, B_1 & D_1 are respectively co-directional with that of A_2, B_2 & D_2 that is $A_1(X) = \phi A_2(X)$, $B_1(X) = \phi B_2(X)$ & $D_1(X) = \phi D_2(X) \forall X$, where ϕ being a non-zero constant function, then the relation (1.4) turns into

\[(\nabla_X Z)(Y, U) = A_1(X)Z(Y, U) + B_1(Y)Z(X, U) + D_1(U)Z(X, U)\]

where $Z(X, Y) = S(X, Y) + \phi g(X, Y)$ is well known Z-tensor introduced in ([15, 18]).

This leads to the following

Proposition 1.1. Every generalized weakly Ricci symmetric manifold is a weakly Z-symmetric manifold provided the vector fields associated to the 1-forms A_1, B_1 \& D_1 are co-directional with that of A_2, B_2 \& D_2 respectively.
Our work is structured as follows. Section 2 is concerned with \((LCS)_n\)-manifolds and some known results. In section 3, we have investigated a generalized weakly symmetric \((LCS)_n\)-manifold and it is observed that such a space is an \(\eta\)-Einstein manifold provided
\(B^*(\xi) \neq -\alpha\). We also tabulated different type of curvature restrictions for which \((LCS)_n\)-manifolds are sometimes Einstein and some other time remain \(\eta\)-Einstein. Section 4, is concerned with a generalized weakly Ricci-symmetric \((LCS)_n\)-manifold which is found to be an \(\eta\)-Einstein space. Finally, we have constructed an example of a generalized weakly symmetric \((LCS)_n\)-manifold.

2. \((LCS)_n\)-manifolds and some known results

An \(n\)-dimensional Lorentzian manifold \(M\) is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric \(g\), that is, \(M\) admits a smooth symmetric tensor field \(g\) of type (0, 2) such that for each point \(p \in M\), the tensor \(g_p : T_pM \times T_pM \rightarrow R\) is a non-degenerate inner product of signature \((-\ldots,+,\ldots+)\), where \(T_pM\) denotes the tangent vector space of \(M\) at \(p\) and \(R\) is the real number space. A non-zero vector \(v \in T_pM\) is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies \(g_p(U,U) < 0\) (resp, \(\leq 0\), \(= 0, > 0\), [20]. The category to which a given vector falls is called its causal character.

Let \(M^n\) be a Lorentzian manifold admitting a unit timelike concircular vector field \(\xi\), called the characteristic vector field of the manifold. Then we have
\[g(\xi, \xi) = -1.\] (2.1)

Since \(\xi\) is a unit concircular vector field, there exists a non-zero 1-form \(\eta\) such that for
\[g(X, \xi) = \eta(X)\] (2.2)

the equation of the following form holds
\[(\nabla_X \eta)(Y) = \alpha \{g(X,Y) + \eta(X)\eta(Y)\}\] (\(\alpha \neq 0\)) (2.3)

for all vector fields \(X, Y\) where \(\nabla\) denotes the operator of covariant differentiation with respect to the Lorentzian metric \(g\) and \(\alpha\) is a non-zero scalar function satisfies
\[\nabla_X \alpha = (X\alpha) = \alpha(X) = \rho \eta(X),\] (2.4)

\(\rho\) being a certain scalar function. If we put
\[\phi X = \frac{1}{\alpha} \nabla_X \xi,\] (2.5)

then from (2.3) and (2.5), we have
\[\phi X = X + \eta(X)\xi,\] (2.6)

from which it follows that \(\phi\) is a symmetric (1, 1) tensor. Thus the Lorentzian manifold \(M^n\) together with the unit timelike concircular vector field \(\xi\), its associated 1-form \(\eta\) and (1,1) tensor field \(\phi\) is said to be a Lorentzian concircular structure manifold (briefly \((LCS)_n\)-manifold) [5]. In a \((LCS)_n\)-manifold, the following relations hold [25]:
\[
\begin{align*}
\eta(\xi) &= -1, & \phi \circ \xi &= 0, \quad (2.7) \\
\eta(\phi X) &= 0, & g(\phi X, \phi Y) &= g(X, Y) + \eta(X)\eta(Y), \quad (2.8) \\
\eta(R(X, Y)Z) &= (\alpha^2 - \rho)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)], \quad (2.9) \\
R(X, Y)\xi &= (\alpha^2 - \rho)[\eta(Y)X - \eta(X)Y], \quad (2.10) \\
S(X, \xi) &= (n - 1)(\alpha^2 - \rho)\eta(X) \quad (2.11)
\end{align*}
\]
for any vector fields X, Y, Z.

Lemma 2.1. Let (M^n, g) be a $(LCS)_n$-manifold. Then for any $X; Y; Z$ the following relation holds:

\[
(\nabla_W S)(X, \xi) = (n - 1)[\alpha(\alpha^2 - \rho)g(X, W) + (2\alpha\rho - \beta)\eta(W)\eta(X)] - \alpha S(X, W)
\]

(2.12)

In this connection we would like to mention that equation (2.3) is the defining property of concircular or unit time-like torse-forming vector field. In ([16], Theorem 2.1), the authors proved that a Lorentzian manifold is twisted, i.e. the metric is written in the form

\[
ds^2 = -dt^2 + f(t, x^\gamma)^2 \tilde{g}_{\alpha\beta} dx^\alpha dx^\beta,
\]

if and only if it admits a unit time-like torse-forming vector field. Moreover eq (2.4) and the consequent integrability relations (2.10) and (2.11) in [16] ensure that the unit time-like vector is an eigen vector of the Ricci tensor. Also, Proposition 3.7 of [17] ensures that the space-time is a generalized Robertson-Walker space-time, i.e. the metric is written in the form

\[
ds^2 = -dt^2 + f(t)^2 \tilde{g}_{\alpha\beta} dx^\alpha dx^\beta,
\]

\tilde{g} being the metric tensor of a $n - 1$ dimensional Riemannian manifold.

3. Generalized weakly symmetric $(LCS)_n$-manifold

A non-flat n-dimensional $(LCS)_n$-manifold $(M^n; g)$ $(n > 2)$, is termed as generalized weakly symmetric manifold, if its Riemannian curvature tensor \tilde{R} of type $(0; 4)$ is not identically zero and admits the identity

\[
(\nabla_X \tilde{R})(Y, U, V, W) = A^\ast(X)\tilde{R}(Y, U, V, W) + B^\ast(Y)\tilde{R}(X, U, V, W)
\]

\[+ D^\ast(W)\tilde{R}(Y, U, V, X) + \alpha^\ast(X)G(Y, U, V, W)
\]

\[+ \beta^\ast(Y)G(X, U, V, W) + \beta^\ast(U)G(Y, X, V, W)
\]

\[+ \gamma^\ast(V)G(Y, U, X, W) + \gamma^\ast(W)G(Y, U, V, X)
\]

(3.1)

where

\[
G(Y, U, V, W) = [g(U, V)g(Y, W) - g(Y, V)g(U, W)]
\]

(3.2)

and A^\ast, B^\ast, D^\ast, α^\ast, β^\ast & γ^\ast are non-zero 1-forms which are defined as $A^\ast(X) = g(X, \theta_1), B^\ast(X) = g(X, \phi_1), D^\ast(X) = g(X, \pi_1), \alpha^\ast(X) = g(X, \theta_2), \beta^\ast(X) = g(X, \phi_2)$ and $\gamma^\ast(X) = g(X, \pi_2)$.

Now, contracting U over V in both sides of (3.1) we find

\[
(\nabla_X S)(Y, W) = A^\ast(X)S(Y, W) + B^\ast(Y)S(X, W) + D^\ast(W)S(Y, X)
\]

\[- B^\ast(R(Y, X)W) + D^\ast(R(X, W)Y) + (n - 1)[\alpha^\ast(X)
\]

\[g(Y, W) + \beta^\ast(Y)g(X, W) + \gamma^\ast(W)g(Y, X) - \beta^\ast(Y)g(X, W)
\]

\[+ [\beta^\ast(X) + \gamma^\ast(X)]g(Y, W) - \gamma^\ast(W)g(X, Y)
\]

(3.3)

which yields

\[(n - 1)[\alpha(\alpha^2 - \rho)g(X, W) + (2\alpha\rho - \beta)\eta(W)\eta(X)] - \alpha S(X, W)
\]

\[= (\alpha^2 - \rho)[(n - 1)\{A^\ast(X)\eta(W) + D^\ast(W)\eta(X)\} + \eta(W)B^\ast(X)
\]

\[- g(X, W)B^\ast(\xi) + \eta(W)D^\ast(X) - \eta(X)D^\ast(W)] + B^\ast(\xi)S(X, W)
\]

\[+ (n - 1)[\alpha^\ast(X)\eta(W) + \beta^\ast(\xi)g(X, W) + \gamma^\ast(W)\eta(X)]
\]

\[= \beta^\ast(\xi)g(X, W) + [\beta^\ast(X) + \gamma^\ast(X)]\eta(W) - \gamma^\ast(W)\eta(X)
\]

(3.4)
for $Y = \xi$. Setting $X = W = \xi$ in the foregoing equation, we obtain
\[
-(2\alpha \rho - \beta) = (\alpha^2 - \rho)[A^*(\xi) + B^*(\xi)] + [\alpha^*(\xi) + \beta^*(\xi) + \gamma^*(\xi)].
\tag{3.5}
\]
In a weakly symmetric $(LCS)_n$-manifold we have the relation (3.4). Setting $X = \xi$ in (3.4) we get
\[
(n - 2)[(\alpha^2 - \rho)D^*(W) + \gamma^*(W)] = [(n - 1)\{(2\alpha \rho - \beta) + (\alpha^2 - \rho)\{A^*(\xi) + B^*(\xi)\}\}
+ (\alpha^2 - \rho)D^*(\xi)]\eta(W) + [(n - 1)\{\alpha^*(\xi) + \beta^*(\xi)\}
+ \gamma^*(\xi)]\eta(W).
\tag{3.6}
\]
In view of (3.5), the relation (3.6) reduces to
\[
[(\alpha^2 - \rho)D^*(W) + \gamma^*(W)] = -[(\alpha^2 - \rho)D^*(\xi) + \gamma^*(\xi)]\eta(W).
\tag{3.7}
\]
Again, contracting over Y and W in (3.1) we get
\[
(\nabla_X S)(U, V) = A^*(X)S(U, V) + B^*(R(X, U)V) + B^*(U)S(X, V)
+ D^*(V)S(U, X) + D^*(R(X, V)U) + (n - 1)[\{\alpha^*(X)g(U, V)
+ \beta^*(U)g(X, V) + \gamma^*(V)g(X, U)\}] + [\gamma^*(X)g(U, V)
- \gamma^*(V)g(U, X) + \beta^*(X)g(U, V) - \beta^*(U)g(X, V).
\tag{3.8}
\]
Setting $V = \xi$ in (3.8) and using (2.12), (2.11), we get
\[
(n - 1)[\alpha(\alpha^2 - \rho)g(X, U) + (2\alpha \rho - \beta)\eta(U)\eta(X)] - \alpha S(X, U)
= (\alpha^2 - \rho)[(n - 1)\{A^*(X)\eta(U) + B^*(U)\eta(X)\} + B^*(X)\eta(U) - B^*(U)\eta(X)
+ D^*(X)\eta(U) - D^*(\xi)g(X, U)] + D^*(\xi)S(U, X) + (n - 1)[\{\alpha^*(X)\eta(U)
+ \beta^*(U)\eta(X) + \gamma^*(\xi)g(X, U)\}] + [\gamma^*(X)\eta(U)
- \gamma^*(\xi)g(U, X) + \beta^*(X)\eta(U) - \beta^*(U)\eta(X),
\tag{3.9}
\]
which turns into
\[
[(\alpha^2 - \rho)B(U) + \beta(U)] = -[(\alpha^2 - \rho)B(\xi) + \beta(\xi)]\eta(U)
\tag{3.10}
\]
for $X = \xi$ and
\[
[(\alpha^2 - \rho)A^*(X) + \alpha^*(X)] = -[(\alpha^2 - \rho)A^*(\xi) + \alpha^*(\xi)]\eta(X)
\tag{3.11}
\]
for $U = \xi$. In view of (3.5), (3.7), (3.10) and (3.11) we have
\[
(2\alpha \rho - \beta)\eta(X) = (\alpha^2 - \rho)[A^*(X) + B^*(X) + D^*(X)]
+ [\alpha^*(X) + \beta^*(X) + \gamma^*(X)].
\tag{3.12}
\]
Now, making use of (3.10)-(3.12) in (3.4), we find that
\[
-\{\alpha + B^*(\xi)\}S(X, W) = [(n - 2)\beta^*(\xi) - (\alpha^2 - \rho)\{(n - 1)\alpha + B^*(\xi)\}]g(X, W)
- (n - 2)[(2\alpha \rho - \beta)\eta(W)\eta(X) + (\alpha^2 - \rho)\{A^*(X)\eta(W)
+ D^*(W)\eta(X)\}] + \{\alpha^*(X)\eta(W) + \gamma^*(W)\eta(X)\}
\tag{3.13}
\]
which leaves
\[
S(X, W) = \left[\frac{(n - 2)(\alpha^2 - \rho)\{\alpha - B^*(\xi)\}}{\alpha + B^*(\xi)}\right]g(X, W)
- \frac{(n - 2)[\{\alpha^2 - \rho\}B^*(\xi) + \gamma^*(\xi)]}{\alpha + B^*(\xi)}\eta(W)\eta(X).
\tag{3.14}
\]
after a straight forward calculation. Approaching in a different manner, we can also have

\[S(X, W) = \left[(\alpha^2 - \rho) + (n - 2) \left(\frac{\alpha - \gamma^*}{\alpha + D^*(\xi)} \right) \right] g(X, W) \]

\[- \frac{(n - 2)\left[(\alpha^2 - \rho)D^*(\xi) + \beta^*(\xi) \right]}{\alpha + D^*(\xi)} \eta(W)\eta(X). \] (3.15)

This leads to the followings.

Theorem 3.1. A generalized weakly symmetric \((LCS)_n\)-manifold \(M^n(\phi, \xi, \eta, g)(n > 2)\) is an \(\eta\)-Einstein provided that \(B^*(\xi) \neq -\alpha\).

Theorem 3.2. In an \((LCS)_n\)-manifold the following table hold good

<table>
<thead>
<tr>
<th>Type of curvature restriction</th>
<th>Nature of the space corresponding to curvature restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>locally symmetric space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>locally recurrent space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>generalized recurrent space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>pseudo symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>generalized pseudo symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>semi-pseudo symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>almost pseudo symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>almost generalized pseudo symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>weakly symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
</tbody>
</table>

Note that if a manifold is locally recurrent, then it is Ricci recurrent, i.e. \(\nabla_k R_{jl} = \beta_k R_{jl}\), for a non-null one form \(\beta_i\) which leaves after transvection \(\nabla_k R = \beta_k R\). Consequently, the manifold is Ricci flat as it is known that the scalar curvature of an Einstein manifold is constant. Thus we can state the following corollary.

Corollary 3.3. Every locally recurrent \((LCS)_n\)-manifold is Ricci flat.

4. Generalized weakly Ricci symmetric \((LCS)_n\)-manifold

A non-flat \(n\)-dimensional \((LCS)_n\)-manifold \((M^n; g)(n > 2)\), is said to be a generalized weakly Ricci symmetric manifold, if its Ricci tensor \(S\) of type \((0, 2)\) is not identically zero and admits the identity

\[(\nabla_X S)(Y, Z) = A^*_1(X)S(Y, Z) + B^*_1(Y)S(X, Z) + D^*_1(Z)S(Y, X) \]

\[+ A^*_2(X)g(Y, Z) + B^*_2(Y)g(X, Z) + D^*_2(Z)g(Y, X) \] (4.1)

where \(A^*_i, B^*_i & D^*_i\) are non-zero 1-forms which are defined as \(A^*_i(X) = g(X, \theta_i)\), \(B^*_i(X) = g(X, \phi_i)\), \(D^*_1(X) = g(X, \pi_i)\) for \(i = 1, 2\). Setting, \(Y = \xi\) in (4.1) and then making use of (2.12), we have

\[(n - 1)[\alpha(\alpha^2 - \rho)g(X, Z) + (2\alpha \rho - \beta)\eta(Z)\eta(X)] - \alpha S(X, Z) \]

\[= (\alpha^2 - \rho)(n - 1)[A^*_1(X)\eta(Z) + D^*_1(Z)\eta(X)] + B^*_1(\xi)S(X, Z) \]

\[+ A^*_2(X)\eta(Z) + B^*_2(\xi)g(X, Z) + D^*_2(Z)\eta(X) \] (4.2)
On generalized weakly symmetric \((LCS)_{\eta}\)-manifolds

which yields

\[
(\alpha^2 - \rho)(n - 1)[A_1^*(\xi) + B_1^*(\xi) + D_1^*(\xi)] + [A_2^*(\xi) + B_2^*(\xi) + D_2^*(\xi)] = -(n - 1)(2\alpha\rho - \beta),
\]

for \(X = Z = \xi\).

Setting \(Z = \xi\) in (4.2) we obtain

\[
(n - 1)(\alpha^2 - \rho)[A_1^*(X) + A_2^*(\xi)] = -[A_2^*(X) + A_2^2(\xi)\eta(X)].
\]

Proceeding in a similar manner we can find

\[
(\alpha^2 - \rho)(n - 1)[B_1^*(X) + B_2^*(\xi)] = -[B_2^*(X) + B_2^2(\xi)\eta(X)],
\]

(4.5)

\[
(\alpha^2 - \rho)(n - 1)[D_1^*(X) + D_2^*(\xi)] = -[D_2^*(\xi) + D_2^2(\xi)\eta(X)].
\]

(4.6)

\textbf{Theorem 4.1.} In a generalized weakly Ricci symmetric \((LCS)_{\eta}\)-manifold \(M^n(\phi, \xi, \eta, g)(n > 2)\) the 1-forms are related by

\[
(\alpha^2 - \rho)(n - 1)[A_1^*(X) + B_1^*(X) + D_1^*(X)] + [A_2^*(X) + B_2^*(X) + D_2^*(X)]
= (n - 1)(2\alpha\rho - \beta)\eta(X).
\]

(4.7)

\textbf{Proof.} Adding (4.4), (4.5) & (4.6) and then making use of (4.3) in the resultant, one can easily obtain (4.7). \(\square\)

Now, making use of (4.3)-(4.7) in (4.2), we find that

\[
S(X, Z) = \left[\frac{(n - 1)\alpha(\alpha^2 - \rho) - B_2^*(\xi)}{\alpha + B_1^*(\xi)}\right]g(X, Z)
- \left[\frac{(\alpha^2 - \rho)(n - 1)B_1^*(\xi) + B_2^*(\xi)}{\alpha + B_1^*(\xi)}\right]\eta(X)\eta(Z)
\]

(4.8)

This leads to the followings

\textbf{Theorem 4.2.} A generalized weakly Ricci symmetric \((LCS)_{\eta}\)-manifold \(M^n(\phi, \xi, \eta, g)\) is an \(\eta\)-Einstein provided that \(B_1^*(\xi) \neq -\alpha\).

\textbf{Theorem 4.3.} In an \((LCS)_{\eta}\)-manifold the following table holds good

<table>
<thead>
<tr>
<th>Type of curvature restriction</th>
<th>Nature of the space corresponding to curvature restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricci symmetric space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>Ricci recurrent space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>generalized Ricci-recurrent space</td>
<td>Einstein space</td>
</tr>
<tr>
<td>pseudo Ricci-symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>generalized pseudo</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>semi-pseudo Ricci-symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>generalized semi-pseudo</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>almost pseudo</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>almost generalized pseudo</td>
<td>(\eta)-Einstein space</td>
</tr>
<tr>
<td>weakly Ricci-symmetric space</td>
<td>(\eta)-Einstein space</td>
</tr>
</tbody>
</table>
Note that if a manifold is Ricci recurrent, i.e. $\nabla_k R_{jl} = \beta_k R_{jl}$, for a non-null one form β_k which leaves after transvection $\nabla_k R = \beta_k R$. Consequently, the manifold is Ricci flat as it is known that the scalar curvature of an Einstein manifold is constant. Thus we can state the following corollary.

Corollary 4.4. Every locally Ricci recurrent $(LCS)_n$ manifold is Ricci flat.

5. Existence of generalized weakly symmetric $(LCS)_3$-manifold

Example 5.1. Let $M^3(\phi, \xi, \eta, g)$ be an $(LCS)_n$-manifold (M^3, g) with a ϕ-basis

$$e_1 = e^2 \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), e_2 = \phi e_1 = e^3 \frac{\partial}{\partial y}, e_3 = \xi = e^2 \frac{\partial}{\partial z}.$$

Then from Koszul’s formula for Lorentzian metric g, we can obtain the Levi-Civita connection as follows

$$\nabla_{e_1} e_3 = -e^2 e_1, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_1 = -e^2 e_3,$$

$$\nabla_{e_2} e_3 = -e^2 e_2, \quad \nabla_{e_2} e_2 = -e^2 e_3 - e^3 e_1, \quad \nabla_{e_2} e_1 = -e^2 e_2,$$

$$\nabla_{e_3} e_3 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_1 = 0.$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an $(LCS)_3$ structure on M. Consequently $M^3(\phi, \xi, \eta, g)$ is an $(LCS)_3$-manifold with $\alpha = -e^2 \neq 0$ and $\rho = 2e^4$. Using the above relations, one can easily calculate the non-vanishing components of the curvature tensor \bar{R} (up to symmetry and skew-symmetry)

$$\bar{R}(e_1, e_2, e_1, e_2) = (1 - e^2) e^2,$$

$$\bar{R}(e_1, e_3, e_1, e_3) = -e^4 = \bar{R}(e_2, e_3, e_2, e_3).$$

Since $\{e_1, e_2, e_3\}$ forms a basis, any vector field $X, Y, U, V \in \chi(M)$ can be written as

$$X = \sum_i a_i e_i, \quad Y = \sum_i b_i e_i, \quad U = \sum_i c_i e_i, \quad V = \sum_i d_i e_i,$$

Then

$$\bar{R}(X, Y, U, V) = \left([(a_1 b_2 - a_2 b_1)(c_1 d_2 - c_2 d_1)](1 - e^2) e^2 + \right.$$

$$\left. -[(a_1 b_3 - a_3 b_1)(c_1 d_3 - c_3 d_1)]e^4 + \right.$$

$$\left. -[(a_2 b_3 - a_3 b_2)(c_2 d_3 - c_3 d_2)]e^4 \right) = T_1 \text{ (say),}$$

$$\bar{R}(e_1, Y, U, V) = -b_3(c_1 d_3 - c_3 d_1) e^4 + b_2(c_1 d_2 - c_2 d_1)(1 - e^2) e^2 = \lambda_1 \text{ (say),}$$

$$\bar{R}(e_2, Y, U, V) = -b_3(c_2 d_3 - c_3 d_2) e^4 - b_1(c_1 d_2 - c_2 d_1)(1 - e^2) e^2 = \lambda_2 \text{ (say),}$$

$$\bar{R}(e_3, Y, U, V) = b_1(c_1 d_3 - c_3 d_1) e^4 + b_2(c_2 d_3 - c_3 d_2) e^4 = \lambda_3 \text{ (say),}$$

$$\bar{R}(X, e_1, U, V) = a_3(c_1 d_3 - c_3 d_1) e^4 - a_2(c_1 d_2 - c_2 d_1)(1 - e^2) e^2 = \lambda_4 \text{ (say),}$$

$$\bar{R}(X, e_2, U, V) = a_3(c_2 d_3 - c_3 d_2) e^4 + a_1(c_1 d_2 - c_2 d_1)(1 - e^2) e^2 = \lambda_5 \text{ (say),}$$

$$\bar{R}(X, e_3, U, V) = -a_1(c_1 d_3 - c_3 d_1) e^4 - a_2(c_2 d_3 - c_3 d_2) e^4 = \lambda_6 \text{ (say),}$$

$$\bar{R}(X, Y, e_1, V) = -d_3(a_1 b_3 - a_3 b_1) e^4 + d_2(a_1 b_2 - a_2 b_1)(1 - e^2) e^2 = \lambda_7 \text{ (say),}$$

$$\bar{R}(X, Y, e_2, V) = -d_3(a_2 b_3 - a_3 b_2) e^4 + d_1(a_1 b_2 - a_2 b_1)(1 - e^2) e^2 = \lambda_8 \text{ (say),}$$

$$\bar{R}(X, Y, e_3, V) = -d_3(a_3 b_3 - a_3 b_2) e^4 + d_0(a_1 b_2 - a_2 b_1)(1 - e^2) e^2 = \lambda_9 \text{ (say).}$$
\begin{align*}
\bar{R}(X, Y, e_2, V) &= -d_3(a_2b_3 - a_3b_2)e^{4z} - d_1(a_1b_2 - a_2b_1)(1 - e^{2z})e^{2z} \\
&= \lambda_8 \text{ (say)}, \\
\bar{R}(X, Y, e_3, V) &= d_1(a_1b_3 - a_3b_1)e^{4z} + d_2(a_2b_3 - a_3b_2) = \lambda_9 \text{ (say)}, \\
\bar{R}(X, Y, U, e_1) &= c_3(a_1b_3 - a_3b_1)e^{4z} - c_2(a_1b_2 - a_2b_1)(1 - e^{2z})e^{2z} \\
&= \lambda_{10} \text{ (say)}, \\
\bar{R}(X, Y, U, e_2) &= c_3(a_2b_3 - a_3b_2)e^{4z} + c_1(a_1b_2 - a_2b_1)(1 - e^{2z})e^{2z} \\
&= \lambda_{11} \text{ (say)}, \\
\bar{R}(X, Y, U, e_3) &= -c_1(a_1b_3 - a_3b_1)e^{4z} - c_2(a_2b_3 - a_3b_2)e^{4z} = \lambda_{12} \text{ (say)}, \\
\bar{G}(X, Y, U, V) &= (b_1c_1 + b_2c_2 - b_3c_3)(a_1d_1 + a_2d_2 - a_3d_3) \\
&- (a_1c_1 + a_2c_2 - a_3c_3)(b_1d_1 + b_2d_2 - b_3d_3) = T_2 \text{ (say)}, \\
\bar{G}(e_1, Y, U, V) &= (b_2c_2 - b_3c_3)d_1 - (b_2d_2 - b_3d_3)c_1 = \omega_1 \text{ (say)}, \\
\bar{G}(e_2, Y, U, V) &= (b_1c_1 - b_3c_3)d_2 - (b_1d_1 - b_3d_3)c_2 = \omega_2 \text{ (say)}, \\
\bar{G}(e_3, Y, U, V) &= -(b_1c_1 + b_2c_2)d_3 + (b_1d_1 + b_2d_2)c_3 = \omega_3 \text{ (say)}, \\
\bar{G}(X, e_1, U, V) &= (a_2d_2 - a_3d_3)c_1 - (a_2c_2 - a_3c_3)d_1 = \omega_4 \text{ (say)}, \\
\bar{G}(X, e_2, U, V) &= (a_1d_1 - a_3d_3)c_2 - (a_1c_1 - a_3c_3)d_2 = \omega_5 \text{ (say)}, \\
\bar{G}(X, e_3, U, V) &= -(a_1d_1 + a_2d_2)c_3 + (a_1c_1 + a_2c_2)d_3 = \omega_6 \text{ (say)}, \\
\bar{G}(X, Y, e_1, V) &= (a_2d_2 - a_3d_3)b_1 - (b_2d_2 - b_3d_3)a_1 = \omega_7 \text{ (say)}, \\
\bar{G}(X, Y, e_2, V) &= (a_1d_1 - a_3d_3)b_2 - (b_1d_1 - b_3d_3)a_2 = \omega_8 \text{ (say)}, \\
\bar{G}(X, Y, e_3, V) &= -(a_1d_1 + a_2d_2)b_3 + (b_1d_1 + b_2d_2)a_3 = \omega_9 \text{ (say)}, \\
\bar{G}(X, Y, U, e_1) &= (b_2c_2 - b_3c_3)a_1 - (a_2c_2 - a_3c_3)b_1 = \omega_{10} \text{ (say)}, \\
\bar{G}(X, Y, U, e_2) &= (b_1c_1 - b_3c_3)a_2 - (a_1c_1 - a_3c_3)b_2 = \omega_{11} \text{ (say)}, \\
\bar{G}(X, Y, U, e_3) &= -(b_1c_1 + b_2c_2)a_3 + (a_1c_1 + a_2c_2)b_3 = \omega_{12} \text{ (say)},
\end{align*}

and the components which can be obtained from these by the symmetry properties. Now, we calculate the covariant derivatives of the non-vanishing components of the curvature tensor as follows

\begin{align*}
(\nabla_{e_1}\bar{R})(X, Y, U, V) &= e^{2z}[a_1\lambda_3 + a_3\lambda_1 + b_1\lambda_6 + b_3\lambda_4] \\
&+ c_1\lambda_9 + c_3\lambda_7 + d_1\lambda_{12} + b_3\lambda_{10}], \\
(\nabla_{e_2}\bar{R})(X, Y, U, V) &= e^{2z}[(a_1 + a_3)\lambda_2 + a_2\lambda_3 + (b_1 + b_3)\lambda_5 + b_2\lambda_6] \\
&+ (c_1 + c_3)\lambda_8 + c_2\lambda_9 + (d_1 + d_3)\lambda_{11} + d_2\lambda_{12}] \\
&+ e^2[a_2\lambda_1 + b_2\lambda_4 + c_2\lambda_7 + d_2\lambda_{10}], \\
(\nabla_{e_3}\bar{R})(X, Y, U, V) &= 2[(a_1b_2 - a_2b_1)(c_1d_2 - c_2d_1)](1 - 2e^{2z})e^{4z} \\
&- 4[(a_1b_3 - a_3b_1)(c_1d_3 - c_3d_1)]e^{6z} \\
&- 4[(a_2b_3 - a_3b_2)(c_2d_3 - c_3d_2)]e^{6z}.
\end{align*}

For the following choice of the 1-forms

\begin{align*}
A_1^*(e_1) &= \frac{e^{2z}[a_1\lambda_3 + a_3\lambda_1 + b_1\lambda_6 + b_3\lambda_4]}{T_1}, \\
A_2^*(e_1) &= \frac{c_1\lambda_9 + c_3\lambda_7 + d_1\lambda_{12} + b_3\lambda_{10}}{T_2}, \\
A_1^*(e_2) &= \frac{- e^{2z}\{(a_1 + a_3)\lambda_2 + a_2\lambda_3 + (b_1 + b_3)\lambda_5 + b_2\lambda_6(c_1 + c_3)\lambda_8 + c_2\lambda_9 + d_1\}}{T_1},
\end{align*}
\[A_2^i(e_2) = -e^{2z}\left\{d_3\lambda_{11} + d_2\lambda_{12}\right\} + e^z\left\{a_2\lambda_1 + b_2\lambda_4 + c_2\lambda_7 + d_2\lambda_{10}\right\}, \]
\[A_1^i(e_3) = -4, \]
\[B_1^i(e_3) = \frac{1}{a_3\lambda_3 + b_3\lambda_6}, \]
\[B_2^i(e_3) = \frac{1}{a_3\omega_3 + b_3\omega_6}, \]
\[D_1^i(e_3) = -\frac{1}{c_3\lambda_9 + d_3\lambda_{12}}, \]
\[D_2^i(e_3) = -\frac{1}{c_3\omega_9 + d_3\omega_{12}}, \]
\[A_2^i(e_3) = -2(\frac{a_1b_2 - a_2b_1)(c_1d_2 - c_2d_1)e^{2z}}{T_2}, \]

one can easily verify the relations
\[
(\nabla_{e_i}\bar{R})(X, Y, U, V) = A_1^i(e_i)\bar{R}(X, Y, U, V) \\
+ B_1^i(X)\bar{R}(e_i, Y, U, V) + B_1^i(Y)\bar{R}(X, e_i, U, V) \\
+ D_1^i(U)\bar{R}(X, Y, e_i, V) + D_1^i(V)\bar{R}(X, Y, U, e_i) \\
+ A_2^i(e_i)\bar{G}(X, Y, U, V) \\
+ B_2^i(X)\bar{G}(e_i, Y, U, V) + B_2^i(Y)\bar{G}(X, e_i, U, V) \\
+ D_2^i(U)\bar{G}(X, Y, e_i, V) + D_2^i(V)\bar{G}(X, Y, U, e_i)
\]

for \(i = 1, 2, 3\).

From the above, we can state the following theorem.

Theorem 5.2. There exists an \((LCS)_3\)-manifold \((M^3, g)\) which is a generalized weakly symmetric.

Acknowledgment. The author would like to express his sincere thanks to the referees for their valuable suggestions to improve this manuscript. Author would also like to thank UGC, ERO-Kolkata, for their financial support, File no. PSW-194/15-16.

References

On generalized weakly symmetric \((LCS)_n\)-manifolds

