THE CUBIC EIGENPARAMETER DEPENDENT DISCRETE DIRAC EQUATIONS WITH PRINCIPAL FUNCTIONS

TURHAN KOPRUBASI

Abstract. Let us consider the Boundary Value Problem (BVP) for the discrete Dirac Equations

\[
\begin{align*}
(\gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3) y_1^{(2)} + (\beta_0 + \beta_1 \lambda + \beta_2 \lambda^2 + \beta_3 \lambda^3) y_0^{(1)} &= 0,
\end{align*}
\]

where \((a_n), (b_n), (p_n), (q_n)\) are complex sequences, \(\gamma_i, \beta_i \in \mathbb{C},\ i = 0,1,2\) and \(\lambda\) is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if

\[
\sum_{n=1}^{\infty} \exp(\varepsilon n^2) \left( |a_n| + |b_n| + |p_n| + |q_n| \right) < \infty,
\]

holds, for some \(\varepsilon > 0\) and \(\frac{1}{2} \leq \delta \leq 1\).

1. Introduction

Difference equations are well suited to be solved with the computers since they become easily to an algorithmic form and they help to solve differential equations approximately with making discretizations. Also they arise as mathematical models of many practical problems arising in engineering, biology, economics and control theory. On the other hand, studies related on them lead to the rapid development of the theory of discrete difference equations. In the last decade, discrete boundary value problems have been intensively studied and the spectral analysis of the difference equations have been treated by various authors in connection with the classical moment problem ([1–5]). Moreover the spectral theory of the difference equations have been applied to the solution of classes of nonlinear discrete Korteveg-de Vriez equations and Toda lattices ([6,7]).

Received by the editors: August 17, 2018; Accepted: January 03, 2019.

2010 Mathematics Subject Classification. 34L40, 39A70, 47A10, 47A75.

Key words and phrases. Discrete Dirac equations, eigenparameter, spectral analysis, spectrum, principal functions.
Let the discrete boundary value problem (BVP)

\[
\begin{align*}
    y_{n+1}^{(2)} - y_n^{(2)} + p_n y_n^{(1)} &= \lambda y_n^{(1)} \\
    -y_n^{(1)} + y_{n-1}^{(1)} + p_n y_n^{(2)} &= \lambda y_n^{(2)} \\
    y_0^{(1)} &= 0,
\end{align*}
\]

(1.1)

is considered where \((p_n)\) and \((q_n)\) are complex sequences for \(n = 1, 2, \ldots\) and \(\lambda\) is a spectral parameter. The spectral analysis of the BVP (1.1)-(1.2) with spectrum and principal functions has been investigated in [8]. Moreover the authors in [8] found the integral representation for the Weyl function and the spectral expansion of (1.1)-(1.2) in terms of the principal functions. Some problems related to the spectral analysis of difference equations with spectral singularities have been studied in [9–14]. The spectral analysis of eigenparameter dependent non-selfadjoint BVP for the system of difference equations of first order have been studied in [15–18].

Let us consider the discrete Dirac equations with cubic eigenparameter dependent boundary conditions such as

\[
\begin{align*}
    a_{n+1} y_{n+1}^{(2)} + b_n y_n^{(2)} + p_n y_n^{(1)} &= \lambda y_n^{(1)} \\
    a_n y_{n-1}^{(1)} + b_n y_n^{(1)} + q_n y_n^{(2)} &= \lambda y_n^{(2)} , \quad n \in \mathbb{N},
\end{align*}
\]

(1.3)

\[
(\gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3) y_1^{(2)} + (\beta_0 + \beta_1 \lambda + \beta_2 \lambda^2 + \beta_3 \lambda^3) y_0^{(1)} = 0 ,
\]

(1.4)

where \(\left(\begin{array}{c} y_n^{(1)} \\ y_n^{(2)} \end{array}\right)\), \(n \in \mathbb{N}\) are vector sequences, \(a_n \neq 0\), \(b_n \neq 0\) for all \(n\). Also \((\gamma_0, \gamma_1, \gamma_2, \gamma_3)\) and \((\beta_0, \beta_1, \beta_2, \beta_3)\) are linearly independent with \(|\gamma_3| + |\beta_3| \neq 0\) and \(\gamma_3 \neq \frac{\lambda}{\gamma_0}\) where \(\gamma_i, \beta_i \in \mathbb{C}, i = 0, 1, 2\). If \(a_n \equiv 1\) and \(b_n \equiv -1\) for all \(n \in \mathbb{N}\), then the system (1.3) reduces to

\[
\begin{align*}
    \Delta y_n^{(2)} + p_n y_n^{(1)} &= \lambda y_n^{(1)} \\
    -\Delta y_{n-1}^{(1)} + q_n y_n^{(2)} &= \lambda y_n^{(2)} , \quad n \in \mathbb{N}
\end{align*}
\]

(1.5)

where \(\Delta\) is a forward difference operator. The system (1.5) is the discrete analogue of the well-known Dirac system

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
y_1' \\
y_2'
\end{pmatrix}
+
\begin{pmatrix}
0 & p(x) \\
q(x) & 0
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
= \lambda
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix},
\]

([19], Chap. 2). Therefore the system (1.5) (also (1.3)) is called the discrete Dirac system. In this article, we intend to investigate of spectrum and principal functions of the BVP (1.3)-(1.4) under the condition

\[
\sum_{n=1}^{\infty} \exp(\varepsilon n^\delta) (|1 - a_n| + |1 + b_n| + |p_n| + |q_n|) < \infty,
\]
for some $\varepsilon > 0$ and $\frac{1}{2} \leq \delta \leq 1$.

2. Jost solution of (1.3)

Suppose that the condition
\[
\sum_{n=1}^{\infty} \exp(\varepsilon n \delta) (|1 - a_n| + |1 + b_n| + |p_n| + |q_n|) < \infty
\] (2.1)
is satisfied for some $\varepsilon > 0$ and $\frac{1}{2} \leq \delta \leq 1$. It is well-known that [14], eq. (1.3) has the bounded solution
\[
f_n(z) = \begin{pmatrix} f_n^{(1)}(z) \\ f_n^{(2)}(z) \end{pmatrix} = \alpha_n \left( I_2 + \sum_{m=1}^{\infty} A_{nm} e^{imz} \right) \begin{pmatrix} e^{iz} \\ e^{iz} \end{pmatrix}, \ n \in \mathbb{N},
\] (2.2)
under the condition (2.1) for $\lambda = 2\sin \frac{z}{2}$ and $z \in \mathbb{T}_+ := \{ z : z \in \mathbb{C}, \ \text{Im} z \geq 0 \}$, where
\[
\alpha_n = \begin{pmatrix} \alpha_{n1}^{(1)} & \alpha_{n2}^{(1)} \\ \alpha_{n1}^{(2)} & \alpha_{n2}^{(2)} \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_{nm} = \begin{pmatrix} A_{nm}^{(11)} & A_{nm}^{(12)} \\ A_{nm}^{(21)} & A_{nm}^{(22)} \end{pmatrix}
\]
Note that $\alpha_{ni}^{ij}$ and $A_{nm}^{ij}$ ($i, j = 1, 2$) are expressed in terms of $(a_n), (b_n), (p_n)$ and $(q_n)$, $n \in \mathbb{N}$. Also
\[
|A_{nm}^{ij}| \leq C \sum_{k=\lceil n+\left\lceil \frac{m}{2} \right\rceil \rceil}^{\infty} (|1 - a_k| + |1 + b_k| + |p_k| + |q_k|)
\] (2.4)
holds, where $C > 0$ is a constant and $\left\lceil \frac{m}{2} \right\rceil$ is the integer part of $\frac{m}{2}$. Therefore $f_n$ is vector-valued analytic function with respect to $z$ in $\mathbb{C}_+ := \{ z : z \in \mathbb{C}, \ \text{Im} z > 0 \}$ and continuous in $\mathbb{T}_+ ([14])$. The solution $f_n(z) = \begin{pmatrix} f_n^{(1)}(z) \\ f_n^{(2)}(z) \end{pmatrix}$ is called Jost solution of (1.3).

Let $\tilde{\varphi}_n(\lambda) = \begin{pmatrix} \tilde{\varphi}_n^{(1)}(\lambda) \\ \tilde{\varphi}_n^{(2)}(\lambda) \end{pmatrix}$, $n \in \mathbb{N} \cup \{0\}$ be the another solution of (1.3) subject to the initial conditions
\[
\tilde{\varphi}_0^{(1)}(\lambda) = -\left( \gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3 \right), \quad \tilde{\varphi}_1^{(2)}(\lambda) = (\beta_0 + \beta_1 \lambda + \beta_2 \lambda^2 + \beta_3 \lambda^3).
\]
If we characterize
\[
\varphi_n(z) = \begin{pmatrix} \tilde{\varphi}_n(2\sin \frac{z}{2}) \\ \tilde{\varphi}_n(2\sin \frac{z}{2}) \end{pmatrix}, \ n \in \mathbb{N} \cup \{0\},
\]
then $\varphi_n$ is an entire function and is $4\pi$ periodic.
Let us take the semi-strips \( T_0 := \{ z : z \in \mathbb{C}, \quad z = x + iy, \quad 0 \leq x \leq 4\pi, \quad y > 0 \} \) and \( T := T_0 \cup [0, 4\pi] \). Then the Wronskian of the solutions \( f_n(z) \) and \( \varphi_n(z) \) is given by
\[
W[f_n(z), \varphi_n(z)] = a_n \left[ \frac{\varphi_n^{(2)}(z)}{\varphi_{n+1}^{(2)}(z)} f_n^{(1)}(z) - f_n^{(2)}(z) \varphi_n^{(1)}(z) \right] \\
= a_0 \left[ \frac{\varphi_1^{(2)}(z)}{\varphi_0^{(2)}(z)} f_1^{(1)}(z) - f_1^{(2)}(z) \varphi_0^{(1)}(z) \right].
\]
If we define
\[
f(z) = \frac{\varphi_1^{(2)}(z)}{\varphi_0^{(2)}(z)} f_1^{(1)}(z) - f_1^{(2)}(z) \varphi_0^{(1)}(z)
\]
then \( f \) is analytic in \( \mathbb{C}_+ \), continuous in \( \mathbb{T}_+ \) and \( f(z) = f(z + 4\pi) \). When \( f(z) \neq 0 \) for all \( z \in S \), \( f_n(z) \) and \( \varphi_n(z) \) are linearly independent. Here
\[
\hat{f}(z) = W[f_n(z), \varphi_n(z)] = a_0 f(z) \tag{2.5}
\]
is called Jost function of the BVP (1.3)-(1.4). Moreover, if we define \( g_n = (g_n^{(1)}, g_n^{(2)}) \) then,
\[
R_\lambda(L)g_n := -\frac{1}{f(z)} \left\{ \sum_{k=1}^{n} \left( g^{(1)}_{k-1}, g^{(2)}_k \right) \left( \frac{a_k-1}{a_k} \frac{\varphi^{(1)}_k}{\varphi^{(2)}_k} \right) \left( f^{(1)}_n, f^{(2)}_n \right) \right. \\
+ \sum_{k=n+1}^{\infty} \left( g^{(1)}_{k-1}, g^{(2)}_k \right) \left( \frac{a_k-1}{a_k} \frac{f^{(1)}_k}{f^{(2)}_k} \right) \left( \varphi^{(1)}_n, \varphi^{(2)}_n \right) \right\}
\]
is the resolvent of the BVP (1.3)-(1.4).

3. Eigenvalues and Spectral Singularities of (1.3)-(1.4)

From (2.5), we clearly obtain that the function
\[
\hat{f}(z) = a_0 \left[ f_1^{(2)}(z)(\gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 + \gamma_3 \lambda^3) \right. \\
+ f_0^{(1)}(z)(\beta_0 + \beta_1 \lambda + \beta_2 \lambda^2 + \beta_3 \lambda^3) \right] \tag{3.1}
\]
is analytic in \( \mathbb{C}_+ \), continuous up to the real axis and is \( 4\pi \) periodic. Also if we denote the set of all eigenvalues and spectral singularities of the BVP (1.3)-(1.4) by \( \sigma_d \) and \( \sigma_{ss} \) respectively, then it is clear that
\[
\sigma_d = \{ \lambda : \lambda = 2 \sin \frac{z}{2}, \quad z \in T_0, \quad \hat{f}(z) = 0 \}, \tag{3.2}
\]
\[
\sigma_{ss} = \{ \lambda : \lambda = 2 \sin \frac{z}{2}, \quad z \in [0, 4\pi], \quad \hat{f}(z) = 0 \}. \tag{3.3}
\]
From (2.2), (2.3) and (3.1) we obtain
\[
\hat{f}(z) = a_0 \left\{ -i a_0^{11} \beta_3 e^{-iz} - (\beta_2 a_0^{11} + a_1^{22} \gamma_3) e^{-iz} \right. \\
+ i \left[ (\beta_1 + 3 \beta_3) a_0^{11} - \gamma_3 a_1^{21} + \gamma_2 a_1^{22} \right] \\
- \left[ (\beta_0 + 2 \beta_2) a_0^{11} + \gamma_2 a_1^{21} - (\gamma_1 + 3 \gamma_3) a_1^{22} \right] e^{iz} \\
+ i \left[ (\beta_1 + 3 \beta_3) a_0^{11} + (\gamma_1 + 3 \gamma_3) a_1^{21} - (\gamma_0 + 2 \gamma_2) a_1^{22} \right] e^{iz}.
\]
$$\begin{align*}
&- [\beta_2 \alpha_{11}^{11} - (\gamma_0 + 2\gamma_2) \alpha_{1}^{21} + (\gamma_1 + 3\gamma_3) \alpha_{1}^{22}] e^{i\frac{\pi}{2}} \\
&+ i [\beta_3 \alpha_0^{11} - (\gamma_1 + 3\gamma_3) \alpha_{1}^{21} + \gamma_2 \alpha_{1}^{22}] e^{iz} \\
&- [\gamma_2 \alpha_1^{21} - \gamma_3 \alpha_1^{22}] e^{i\frac{\pi}{2}} + i\gamma_3 \alpha_1^{21} e^{iz} - \sum_{m=1}^{\infty} \beta_3 A_{0m}^{12} \alpha_0^{11} e^{i(m-\frac{1}{2})z} \\
&+ i \sum_{m=1}^{\infty} (\beta_2 A_{0m}^{12} - \beta_3 A_{0m}^{11}) \alpha_0^{11} e^{i(m-1)z} \\
&- \sum_{m=1}^{\infty} \{ [\beta_2 A_{0m}^{11} - (\beta_1 + 3\beta_3) A_{0m}^{12}] \alpha_0^{11} + \gamma_3 A_{1m}^{12} \alpha_{1}^{21} + \gamma_3 A_{1m}^{22} \alpha_{1}^{22} \} e^{i(m-\frac{1}{2})z} \\
&+ i \sum_{m=1}^{\infty} \{ [(\beta_1 + 3\beta_3) A_{1m}^{12} - (\beta_0 + 2\beta_2) A_{1m}^{12}] \alpha_0^{11} \\
&+ (\gamma_2 A_{1m}^{21} - \gamma_3 A_{1m}^{22}) \alpha_{1}^{21} + (\gamma_2 A_{1m}^{22} - \gamma_3 A_{1m}^{21}) \alpha_{1}^{22} \} e^{imz} \\
&- \sum_{m=1}^{\infty} \{ [(\beta_1 + 3\beta_3) A_{0m}^{12} - (\beta_0 + 2\beta_2) A_{0m}^{12}] \alpha_0^{11} + [\gamma_2 A_{1m}^{11} - (\gamma_1 + 3\gamma_3) A_{1m}^{12}] \alpha_{1}^{21} \\
&+ [\gamma_2 A_{1m}^{21} - (\gamma_1 + 3\gamma_3) A_{1m}^{22}] \alpha_{1}^{22} \} e^{i(m+\frac{1}{2})z} \\
&+ i \sum_{m=1}^{\infty} \{ [\beta_2 A_{1m}^{11} - (\beta_1 + 3\beta_3) A_{1m}^{12}] \alpha_0^{11} + [(\gamma_1 + 3\gamma_3) A_{1m}^{12} - (\gamma_0 + 2\gamma_2) A_{1m}^{12}] \alpha_{1}^{21} \\
&+ [(\gamma_1 + 3\gamma_3) A_{1m}^{21} - (\gamma_0 + 2\gamma_2) A_{1m}^{22}] \alpha_{1}^{22} \} e^{i(m+1)z} \\
&- \sum_{m=1}^{\infty} \{ [(\beta_2 A_{1m}^{11} - \beta_3 A_{1m}^{12}) \alpha_0^{11} + [(\gamma_1 + 3\gamma_3) A_{1m}^{12} - (\gamma_0 + 2\gamma_2) A_{1m}^{12}] \alpha_{1}^{21} \\
&+ [(\gamma_1 + 3\gamma_3) A_{1m}^{22} - (\gamma_0 + 2\gamma_2) A_{1m}^{21}] \alpha_{1}^{22} \} e^{i(m+\frac{1}{2})z} \\
&+ i \sum_{m=1}^{\infty} \{ \beta_3 A_{0m}^{11} \alpha_0^{11} + [\gamma_2 A_{1m}^{12} - (\gamma_1 + 3\gamma_3) A_{1m}^{11}] \alpha_{1}^{21} \\
&+ [\gamma_2 A_{1m}^{21} - (\gamma_1 + 3\gamma_3) A_{1m}^{22}] \alpha_{1}^{22} \} e^{i(m+2)z} \\
&- \sum_{m=1}^{\infty} \{ [(\gamma_2 A_{1m}^{12} - \gamma_3 A_{1m}^{12}) \alpha_{1}^{21} + (\gamma_2 A_{1m}^{22} - \gamma_3 A_{1m}^{22}) \alpha_{1}^{22} \} e^{i(m+\frac{3}{2})z} \\
&+ i \sum_{m=1}^{\infty} (\gamma_3 A_{1m}^{11} \alpha_{1}^{21} + \gamma_3 A_{1m}^{22} \alpha_{1}^{22}) e^{i(m+3)z} \}.
\end{align*}$$

Let

$$F(z) := \hat{f}(z) e^{iz},$$

then, the function $F$ is analytic in $\mathbb{C}_+$, continuous in $\mathbb{C}_+$,

$$F(z) = a_0 \left\{ -i \alpha_{011} \beta_3 - (\beta_2 \alpha_0^{11} + \alpha_1^{22} \gamma_3) e^{i\frac{\pi}{2}} \right\}.$$
+ i \left[ (\beta_1 + 3 \beta_3) \alpha_0^{11} - \gamma_3 \alpha_1^{21} + \gamma_2 \alpha_1^{22} \right] e^{iz} \\
- \left[ (\beta_0 + 2 \beta_2) \alpha_0^{11} + \gamma_2 \alpha_1^{21} - (\gamma_1 + 3 \gamma_3) \alpha_1^{22} \right] e^{i\frac{2\pi}{3}} \\
+ i \left[ (\beta_1 + 3 \beta_3) \alpha_0^{11} + (\gamma_1 + 3 \gamma_3) \alpha_1^{21} - (\gamma_0 + 2 \gamma_2) \alpha_1^{22} \right] e^{i2z} \\
- [\beta_2 \alpha_0^{11} - (\gamma_0 + 2 \gamma_2) \alpha_1^{21} + (\gamma_1 + 3 \gamma_3) \alpha_1^{22}] e^{i\frac{5\pi}{6}} \\
+ i [\beta_3 \alpha_0^{11} - (\gamma_1 + 3 \gamma_3) \alpha_1^{21} + \gamma_2 \alpha_1^{22}] e^{i3z} \\
- [\gamma_2 \alpha_1^{21} - \gamma_3 \alpha_1^{22}] e^{i\frac{7\pi}{6}} + i \gamma_3 \alpha_1^{21} e^{i4z} - \sum_{m=1}^{\infty} \beta_3 A_{0m}^{12} \alpha_0^{11} e^{i(m-\frac{\pi}{2})z} \\
+ i \sum_{m=1}^{\infty} (\beta_2 A_{0m}^{12} - \beta_3 A_{0m}^{11}) \alpha_0^{11} e^{imz} \\
- \sum_{m=1}^{\infty} \left\{ [\beta_2 A_{0m}^{11} - (\beta_1 + 3 \beta_3) A_{0m}^{12}] \alpha_0^{11} + \gamma_3 A_{1m}^{12} \alpha_1^{21} + \gamma_2 A_{1m}^{22} \alpha_1^{22} \right\} e^{i(m+\frac{1}{2})z} \\
+ i \sum_{m=1}^{\infty} \left\{ [(\beta_1 + 3 \beta_3) A_{0m}^{11} - (\beta_0 + 2 \beta_2) A_{0m}^{12}] \alpha_0^{11} \\
+ (\gamma_2 A_{1m}^{12} - \gamma_3 A_{1m}^{11}) \alpha_1^{21} + (\gamma_2 A_{1m}^{22} - \gamma_3 A_{1m}^{21}) \alpha_1^{22} \right\} e^{i(m+1)z} \\
- \sum_{m=1}^{\infty} \left\{ [(\beta_1 + 3 \beta_3) A_{0m}^{11} - (\beta_0 + 2 \beta_2) A_{0m}^{12}] \alpha_0^{11} + [\gamma_2 A_{1m}^{11} - (\gamma_1 + 3 \gamma_3) A_{1m}^{12}] \alpha_1^{21} \\
+ [\gamma_2 A_{1m}^{21} - (\gamma_1 + 3 \gamma_3) A_{1m}^{22}] \alpha_1^{22} \right\} e^{i(m+\frac{1}{2})z} \\
+ i \sum_{m=1}^{\infty} \left\{ [\beta_2 A_{0m}^{12} - (\beta_1 + 3 \beta_3) A_{0m}^{11}] \alpha_0^{11} + [(\gamma_1 + 3 \gamma_3) A_{1m}^{11} - (\gamma_0 + 2 \gamma_2) A_{1m}^{12}] \alpha_1^{21} \\
+ [(\gamma_1 + 3 \gamma_3) A_{1m}^{21} - (\gamma_0 + 2 \gamma_2) A_{1m}^{22}] \alpha_1^{22} \right\} e^{i(m+2)z} \\
- \sum_{m=1}^{\infty} \left\{ [\beta_2 A_{0m}^{12} - (\beta_1 + 3 \beta_3) A_{0m}^{11}] \alpha_0^{11} + [(\gamma_1 + 3 \gamma_3) A_{1m}^{12} - (\gamma_0 + 2 \gamma_2) A_{1m}^{11}] \alpha_1^{21} \\
+ [(\gamma_1 + 3 \gamma_3) A_{1m}^{22} - (\gamma_0 + 2 \gamma_2) A_{1m}^{21}] \alpha_1^{21} \right\} e^{i(m+\frac{5}{2})z} \\
+ i \sum_{m=1}^{\infty} \left\{ [\beta_3 A_{0m}^{12} \alpha_1^{11} + [\gamma_2 A_{1m}^{12} - (\gamma_1 + 3 \gamma_3) A_{1m}^{11}] \alpha_1^{21} \\
+ [\gamma_2 A_{1m}^{22} - (\gamma_1 + 3 \gamma_3) A_{1m}^{21}] \alpha_1^{22} \right\} e^{i(m+3)z} \\
- \sum_{m=1}^{\infty} \left\{ [(\gamma_2 A_{1m}^{11} - \gamma_3 A_{1m}^{22}) \alpha_1^{21} + (\gamma_2 A_{1m}^{22} - \gamma_3 A_{1m}^{21}) \alpha_1^{22}] e^{i(m+\frac{7}{2})z} \\
+ i \sum_{m=1}^{\infty} \left( \gamma_3 A_{1m}^{11} \alpha_1^{21} + \gamma_3 A_{1m}^{22} \alpha_1^{22} \right) e^{i(m+4)z} \right] (3.6)
and

\[ F(z + 4\pi) = F(z). \]

Using (3.2)-(3.5),

\[ \sigma_d = \left\{ \lambda : \lambda = 2 \sin \frac{z}{2}, \ z \in T_0, \ F(z) = 0 \right\}, \quad (3.7) \]

\[ \sigma_{ss} = \left\{ \lambda : \lambda = 2 \sin \frac{z}{2}, \ z \in [0, 4\pi], \ F(z) = 0 \right\}. \quad (3.8) \]

**Definition 3.1.** The multiplicity of a zero of \( F \) in \( T \) is called the multiplicity of the corresponding eigenvalue or spectral singularity of the BVP (1.3)-(1.4).

It follows from (3.2) and (3.3) that, in order to investigate the quantitative properties of the eigenvalues and the spectral singularities of the BVP (1.3)-(1.4), we need to discuss the quantitative properties of the zeros of \( F \) in \( T \).

Let

\[ M_1 := \{ z : z \in T_0, \ F(z) = 0 \}, \]

\[ M_2 := \{ z : z \in [0, 4\pi], \ F(z) = 0 \}. \quad (3.9) \]

We also denote the set of all limit points of \( M_1 \) by \( M_3 \) and the set of all zeros of \( F \) with infinite multiplicity by \( M_4 \).

From (3.2), (3.3) and (3.9) we get that

\[ \sigma_d = \left\{ \lambda : \lambda = 2 \sin \frac{z}{2}, \ z \in M_1 \right\}, \]

\[ \sigma_{ss} = \left\{ \lambda : \lambda = 2 \sin \frac{z}{2}, \ z \in M_2 \right\}. \quad (3.10) \]

**Theorem 3.1.** If (2.1) holds, then

(i) The set \( M_1 \) is bounded and countable.

(ii) \( M_1 \cap M_3 = \emptyset, \ M_1 \cap M_4 = \emptyset \).

(iii) The set \( M_2 \) is compact and \( \mu(M_2) = 0 \), where \( \mu \) denotes the Lebesgue measure in the real axis.

(iv) \( M_3 \subset M_2, \ M_4 \subset M_2 ; \mu(M_3) = \mu(M_4) = 0 \).

(v) \( M_3 \subset M_4 \).

**Proof.** Using (1.4), (2.4) and (3.6), we have

\[ F(z) = \begin{cases} -i\alpha_0^{11} \beta_3 + o(e^{-y}) & , \beta_3 \neq 0, \ z \in T, \ y \to \infty \\ -(\beta_2 \alpha_0^{11} + \alpha_1^{22} \gamma_3)e^{iz} + o(e^{-y}) & , \beta_3 = 0, \ z \in T, \ y \to \infty. \end{cases} \quad (3.11) \]

Eq. (3.11) shows that \( M_1 \) is bounded. Since \( F \) is analytic in \( \mathbb{C}_+ \) and is a \( 4\pi \) periodic function we get that \( M_1 \) has at most a countable number of elements. This proves (i).

From the uniqueness theorems of analytic functions we obtain (ii)-(iv) [20].

Using the continuity of all derivatives of \( F \) on \([0, 4\pi]\) we get (v).

\[ \Box \]

From (3.10) and Theorem 3.1, we have the following.
Theorem 3.2. Under the condition (2.1)

(i) the set of eigenvalues of the BVP (1.3)-(1.4) is bounded and countable and its limit points can lie only in \([-2,2]\).

(ii) \(\sigma_{ss} \subset [-2,2]\), \(\sigma_{ss} = \sigma_{ss}\) and \(\mu(\sigma_{ss}) = 0\).

For \(\delta = 1\) condition (2.1) reduces to

\[
\sum_{n=1}^{\infty} \exp(\varepsilon n) \left(|1 - a_n| + |1 + b_n| + |p_n| + |q_n|\right) < \infty. \tag{3.12}
\]

Theorem 3.3. Under the condition (3.12) the BVP (1.3)-(1.4) has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. Using (2.4) we find that

\[
|A_{nm}^{ij}| \leq C \exp\left[-\frac{\varepsilon}{5}(n + m)\right], \ i, j = 1, 2, \ n, m \in \mathbb{N},
\]

where \(C > 0\) is a constant. From (3.6) and (3.13) we observe that the function \(F\) has an analytic continuation to the half-plane \(\text{Im} \, z > -\frac{\varepsilon}{5}\). Since \(F\) is a \(4\pi\) periodic function, the limit points its zeros in \(T\) cannot lie in \([0, 4\pi]\). Using Theorem 3.1 we have the bounded sets \(M_1\) and \(M_2\) have a finite number of elements. From analyticity of \(F\) in \(\text{Im} \, z > -\frac{\varepsilon}{5}\), we get that all zeros of \(F\) in \(T\) a finite multiplicity. Therefore using (3.10), we obtain the finiteness of eigenvalues and spectral singularities of the BVP (1.3)-(1.4).

It is seen that the condition (3.12) guarantees the analytic continuation of \(F\) from the real axis to lower half-plane. So the finiteness of eigenvalues and spectral singularities of the BVP (1.3)-(1.4) are obtained as a result of this analytic continuation.

Now let us suppose that

\[
\sum_{n=1}^{\infty} \exp(\varepsilon n^A) \left(|1 - a_n| + |1 + b_n| + |p_n| + |q_n|\right) < \infty, \ \varepsilon > 0, \ \frac{1}{2} \leq \delta < 1 \tag{3.14}
\]

which is weaker than (3.12). It is evident that under the condition (3.14) the function \(F\) is analytic in \(\mathbb{C}_+\) and infinitely differentiable on the real axis. But \(F\) does not have an analytic continuation from the real axis to lower half-plane. Therefore under the condition (3.14) the finiteness of eigenvalues and spectral singularities of the BVP (1.3)-(1.4) cannot be shown in a way similar to Theorem 3.3.

Under the condition (3.14), to prove that the eigenvalues and the spectral singularities of the BVP (1.3)-(1.4) are of finite number we will use the following.

Theorem 3.4. ([8]) Let us assume that the \(4\pi\) periodic function \(g\) is analytic in \(\mathbb{C}_+\), all of its derivatives are continuous in \(\mathbb{C}_+\) and

\[
\sup_{z \in T} \left|g^{(k)}(z)\right| \leq A_k, \ k \in \mathbb{N} \cup \{0\}.
\]
If the set \( G \subset [0, 4\pi] \) with Lebesque measure zero is the set of all zeros the function \( g \) with infinite multiplicity in \( T \), if

\[
\int_0^{\omega} \ln K(s) d\mu(G_s) = -\infty,
\]

(3.15)

where \( K(s) = \inf_k \frac{A_k s^k}{\ln k} \) and \( \mu(G_s) \) is the Lebesque measure of s-neighborhood of \( G \) and \( \omega \in (0, 4\pi) \) is an arbitrary constant, then \( g \equiv 0 \) in \( \mathbb{C}_+ \).

Under the condition (3.14) from (2.4) and (3.6) we find

\[
\left| F^{(k)}(z) \right| \leq A_k, \quad k \in \mathbb{N} \cup \{0\}
\]

where

\[
A_k = 5^k C \sum_{m=1}^{\infty} m^k \exp\left(-\frac{\varepsilon}{5} m^\delta\right)
\]

and \( C > 0 \) is a constant. We can obtain the following estimate,

\[
A_k \leq 5^k C \int_0^{\infty} x^k \exp\left(-\frac{\varepsilon}{5} x^\delta\right) dx \leq Dd^k k! k^{\frac{1-\varepsilon}{\delta}},
\]

(3.16)

where \( D \) and \( d \) are constants depending \( C, \varepsilon \) and \( \delta \).

**Theorem 3.5.** If (3.14) holds, then \( M_4 = \emptyset \).

**Proof.** The function \( F \) satisfies all conditions of Theorem 3.4 except (3.15). But \( F \) is not identically equal to zero. In this case the function \( F \) satisfies the condition

\[
\int_0^{\omega} \ln K(s) d\mu(M_{4,s}) > -\infty
\]

(3.17)

instead of (3.15), where \( K(s) = \inf_k \frac{A_k s^k}{\ln k}, \quad k \in \mathbb{N} \cup \{0\} \) and \( \mu(M_{4,s}) \) is the Lebesque measure of s-neighborhood of \( M_4 \) and \( A_k \) is defined by (3.16). Substituting (3.16) in the definition of \( K(s) \), we get

\[
K(s) = D \exp\left\{-\frac{1 - \delta}{\delta} e^{-1} d^{-\frac{4}{\delta}} s^{-\frac{1}{\delta-1}} s^{-\frac{4}{\delta}}\right\}.
\]

(3.18)

It follows from (3.17) and (3.18) that

\[
\int_0^{\omega} s^{-\frac{1}{\delta-1}} d\mu(M_{4,s}) < \infty.
\]

(3.19)

Since \( \frac{\delta}{\delta-1} \geq 1 \), consequently (3.19) holds for arbitrary \( s \) if and only if \( \mu(M_{4,s}) = 0 \) or \( M_4 = \emptyset \).
Theorem 3.6. Under the condition (3.14) the BVP (1.3)-(1.4) has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. To be able to prove the theorem we have to show that the function $F$ has a finite number of zeros with finite multiplicities in $T$.

From Theorem 3.1 and Theorem 3.5 we get that $M_3 = \emptyset$. So the bounded sets $M_1$ and $M_2$ have no limit points, i.e., the function $F$ has only a finite number of zeros in $T$. Since $M_4 = \emptyset$, these zeros are of finite multiplicity. \[\square\]

4. Principal functions of (1.3)-(1.4)

Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ and $\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_\nu$ denote the zeros of $F$ in $T_0$ and $[0, 4\pi]$ with multiplicities $m_1, m_2, \ldots, m_k$ and $m_{k+1}, m_{k+2}, \ldots, m_\nu$, respectively.

Let us define $\ell := \left( \ell^{(1)} \ell^{(2)} \right)$ where

\[
\ell^{(1)}_n = a_{n+1} y_{n+1}^{(2)} + b_n y_n^{(2)} + p_n y_n^{(1)}, \quad n \in \mathbb{N}
\]

and

\[
\ell^{(2)}_n = a_{n-1} y_{n-1}^{(1)} + b_n y_n^{(1)} + q_n y_n^{(2)}, \quad n \in \mathbb{N}.
\]

Definition 4.1. Let $\lambda = \lambda_0$ be an eigenvalue of the BVP (1.3)-(1.4). If the vectors $y_n, \frac{d}{d\lambda} y_n, \frac{d^2}{d\lambda^2} y_n, \ldots, \frac{d^j}{d\lambda^j} y_n$;

\[
\frac{d^j}{d\lambda^j} y := \left\{ \frac{d^j}{d\lambda^j} y_n \right\}_{n \in \mathbb{N}}, \quad j = 0, 1, \ldots, \nu; \quad n \in \mathbb{N}
\]

satisfy the conditions

\[
(\ell y)_n - \lambda_0 y_n = 0,
\]

\[
\left( \ell \frac{d^j}{d\lambda^j} y \right)_n - \lambda_0 \frac{d^j}{d\lambda^j} y_n - \frac{d^{j-1}}{d\lambda^{j-1}} y_n = 0, \quad j = 1, 2, \ldots, \nu; \quad n \in \mathbb{N}
\]

then the vector $y_n$ is called the eigenvector corresponding to the eigenvalue $\lambda = \lambda_0$ of the BVP (1.3)-(1.4). The vectors $\frac{d}{d\lambda} y_n, \frac{d^2}{d\lambda^2} y_n, \ldots, \frac{d^j}{d\lambda^j} y_n$ are called the associated vectors corresponding to $\lambda = \lambda_0$. The eigenvector and the associated vectors corresponding to $\lambda = \lambda_0$ are called the principal vectors of the eigenvalue $\lambda = \lambda_0$. The principal vectors of the spectral singularities of the BVP (1.3)-(1.4) are defined analogously.

We define the vectors

\[
\frac{d^j}{d\lambda^j} V_n (\lambda_i) = \left( \frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(1)} (\lambda) \right\}_{\lambda = \lambda_i} \right), \quad n \in \mathbb{N}
\]

\[
\frac{d^j}{d\lambda^j} V_n (\lambda_i) = \left( \frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(2)} (\lambda) \right\}_{\lambda = \lambda_i} \right), \quad n \in \mathbb{N}
\]

\[j = 0, 1, \ldots, m_i - 1; \ i = 1, 2, \ldots, k, k + 1, \ldots, \nu \quad (4.1)\]
where $\lambda = 2 \sin \frac{z}{2}$ and

$$E_n (\lambda) = \begin{pmatrix} E_n^{(1)} (\lambda) \\ E_n^{(2)} (\lambda) \end{pmatrix} := f_n (2 \arcsin \lambda / 2)$$

$$= \begin{pmatrix} f_n^{(1)} (2 \arcsin \lambda / 2) \\ f_n^{(2)} (2 \arcsin \lambda / 2) \end{pmatrix}. \quad (4.2)$$

If

$$y (\lambda) = \{ y_n (\lambda) \} := \begin{pmatrix} y_n^{(1)} (\lambda) \\ y_n^{(2)} (\lambda) \end{pmatrix}_{n \in \mathbb{N}}$$

is a solution of (1.3), then

$$\frac{d^j}{d\lambda^j} y (\lambda) = \left\{ \begin{pmatrix} \frac{d^j}{d\lambda^j} y_n (\lambda) \end{pmatrix}_{n \in \mathbb{N}} \right\} := \left\{ \begin{pmatrix} \frac{d^j}{d\lambda^j} y_n^{(1)} (\lambda) \\ \frac{d^j}{d\lambda^j} y_n^{(2)} (\lambda) \end{pmatrix} \right\}$$

satisfies

$$\begin{pmatrix} a_{n+1} \frac{d^j}{d\lambda^j} y_{n+1}^{(2)} (\lambda) + b_n \frac{d^j}{d\lambda^j} y_{n+1}^{(2)} (\lambda) + p_n \frac{d^j}{d\lambda^j} y_{n+1}^{(1)} (\lambda) \\ a_{n-1} \frac{d^j}{d\lambda^j} y_{n-1}^{(1)} (\lambda) + b_n \frac{d^j}{d\lambda^j} y_{n-1}^{(1)} (\lambda) + q_n \frac{d^j}{d\lambda^j} y_{n-1}^{(2)} (\lambda) \end{pmatrix}$$

$$= \begin{pmatrix} \lambda \frac{d^j}{d\lambda^j} y_n^{(1)} (\lambda) + j \frac{d^{j-1}}{d\lambda^{j-1}} y_n^{(1)} (\lambda) \\ \lambda \frac{d^j}{d\lambda^j} y_n^{(2)} (\lambda) + j \frac{d^{j-1}}{d\lambda^{j-1}} y_n^{(2)} (\lambda) \end{pmatrix}. \quad (4.3)$$

From (4.1)-(4.3) we get that

$$(\ell V (\lambda_i))_n - \lambda_0 V_n (\lambda_i) = 0,$$

$$\left( \ell \left( \frac{d^j}{d\lambda^j} V (\lambda_i) \right) \right)_n - \lambda_0 \frac{d^j}{d\lambda^j} V_n (\lambda_i) - \frac{d^{j-1}}{d\lambda^{j-1}} V_n (\lambda_i) = 0, \quad n \in \mathbb{N}$$

$$j = 1, 2, \ldots, m_i - 1; \quad i = 1, 2, \ldots, \nu.$$

The vectors $\frac{d^j}{d\lambda^j} V_n (\lambda_i)$ for $j = 0, 1, 2, \ldots, m_i - 1; \quad i = 1, 2, \ldots, k$ and $\frac{d^j}{d\lambda^j} V_n (\lambda_i)$ for $j = 0, 1, 2, \ldots, m_i - 1; \quad i = k + 1, k + 2, \ldots, \nu$ are the principal vectors of eigenvalues and spectral singularities of the BVP (1.3)-(1.4), respectively.

**Theorem 4.1.**

$$\frac{d^j}{d\lambda^j} V_n (\lambda_i) \in \ell_2 (\mathbb{N}, \mathbb{C}^2), \quad j = 0, 1, 2, \ldots, m_i - 1; \quad i = 1, 2, \ldots, k$$

and

$$\frac{d^j}{d\lambda^j} V_n (\lambda_i) \notin \ell_2 (\mathbb{N}, \mathbb{C}^2), \quad j = 0, 1, 2, \ldots, m_i - 1; \quad i = k + 1, k + 2, \ldots, \nu.$$
Proof. Using (4.2) we get that
\[
\left\{ \frac{d^j}{d\lambda^j} E_n^{(1)} (\lambda) \right\}_{\lambda = \lambda_i} = \sum_{t=0}^{j} C_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z) \right\}_{z = z_i}, \quad n \in \mathbb{N}
\]
and
\[
\left\{ \frac{d^j}{d\lambda^j} E_n^{(2)} (\lambda) \right\}_{\lambda = \lambda_i} = \sum_{t=0}^{j} D_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(2)} (z) \right\}_{z = z_i}, \quad n \in \mathbb{N}
\]
where \( \lambda_i = 2 \sin \frac{z_i}{2}, \, z_i \in T \) for \( i = 1, 2, \ldots, k \) and \( C_t, D_t \) are constants depending on \( \lambda \). From (2.2) we obtain that
\[
\left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z) \right\}_{z = z_i} = \alpha_n^{11} t^t (n + 1/2)^t e^{iz_i(n+1/2)}
\]
\[
+ \sum_{m=1}^{\infty} \alpha_n^{11} \left\{ A_{nm}^{11} i^t (m + n + 1/2)^t e^{i(m+n+1/2)z_i} - A_{nm}^{12} i^{t+1} (m + n)^t e^{i(m+n)z_i} \right\}
\]
\[
(4.4)
\]
and
\[
\left\{ \frac{d^t}{d\lambda^t} f_n^{(2)} (z) \right\}_{z = z_i} = \alpha_n^{21} t^t (n + 1/2)^t e^{iz_i(n+1/2)} - i (in)^t \alpha_n^{22} e^{inz_i}
\]
\[
+ \sum_{m=1}^{\infty} \alpha_n^{21} \left\{ A_{nm}^{21} i^t (m + n + 1/2)^t e^{i(m+n+1/2)z_i} - A_{nm}^{22} i^{t+1} (m + n)^t e^{i(m+n)z_i} \right\}
\]
\[
+ \sum_{m=1}^{\infty} \alpha_n^{22} \left\{ A_{nm}^{21} i^t (m + n + 1/2)^t e^{i(m+n+1/2)z_i} - A_{nm}^{22} i^{t+1} (m + n)^t e^{i(m+n)z_i} \right\}.
\]
(4.5)

For the principal vectors \( \frac{d^t}{d\lambda^t} V_n \left( \lambda_i \right) = \left\{ \frac{d^t}{d\lambda^t} V_n \left( \lambda_i \right) \right\}_{n \in \mathbb{N}} \) for \( j = 0, 1, \ldots, m_i - 1 \); \( i = 1, 2, \ldots, k \) corresponding to the eigenvalues of the BVP (1.3)-(1.4) we get
\[
\frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(1)} (\lambda) \right\}_{\lambda = \lambda_i} = \frac{1}{j!} \sum_{t=0}^{j} C_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z_i) \right\}
\]
\[
j = 0, 1, \ldots, m_i - 1 ; i = 1, 2, \ldots, k
\]
(4.6)
and
\[
\frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(2)} (\lambda) \right\}_{\lambda = \lambda_i} = \frac{1}{j!} \sum_{t=0}^{j} D_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(2)} (z_i) \right\}
\]
\[ j = 0, 1, \ldots, m_i - 1 \ ; i = 1, 2, \ldots, k. \]\\

Since \( \text{Im} \lambda_i > 0 \) for \( i = 1, 2, \ldots, k \) from (4.6) and (4.7) we obtain that

\[
\left\| \frac{d^j}{d\lambda^j} V_n \right\|^2 = \sum_{n=1}^{\infty} \left( \left\| \frac{d^j}{d\lambda^j} E_n^{(1)} (\lambda) \right\|_{\lambda=\lambda_i} \right)^2 \\
\quad + \left( \frac{1}{j!} \left\| \frac{d^j}{d\lambda^j} E_n^{(2)} (\lambda) \right\|_{\lambda=\lambda_i} \right)^2 \\
\leq \left( \frac{1}{j!} \right)^2 \left\{ \sum_{n=1}^{\infty} \sum_{t=0}^{j} \max \{|C_t|, |D_t|\} \right\} \left\{ \left( |\alpha_n^{11}| + |\alpha_n^{21}| \right) \right. \\
\times \left( n + 1/2 |e^{-\left(n+1/2\right) \text{Im} z_i} + |\alpha_n^{22}| \left| n \right|^t e^{-n \text{Im} z_i} \right) \\
\quad + \sum_{t=0}^{j} \max \{|C_t|, |D_t|\} \left\{ \sum_{m=1}^{\infty} \left( |\alpha_n^{11}| + |\alpha_n^{21}| \right) \right. \\
\times \left( A_{nm}^{11} \left| m + n + 1/2 \right| e^{-\left(m+n+1/2\right) \text{Im} z_i} \right. \\
\quad + A_{nm}^{12} \left| m + n \right|^t e^{-\left(m+n\right) \text{Im} z_i} \right) \\
\quad + \sum_{t=0}^{j} \max \{|C_t|, |D_t|\} \left\{ \sum_{m=1}^{\infty} \left( A_{nm}^{21} \left| m + n + 1/2 \right| e^{-\left(m+n+1/2\right) \text{Im} z_i} \right. \\
\quad \left. + A_{nm}^{22} \left| m + n \right|^t e^{-\left(m+n\right) \text{Im} z_i} \right) \right\} \right\}^2. 
\] (4.8)

From (4.9), if we say

\[
Y = \frac{1}{j!} \sum_{n=1}^{\infty} \sum_{t=0}^{j} \max \{|C_t|, |D_t|\} \left\{ \left( |\alpha_n^{11}| + |\alpha_n^{21}| \right) \right. \\
\times \left( n + 1/2 |e^{-\left(n+1/2\right) \text{Im} z_i} + |\alpha_n^{22}| \left| n \right|^t e^{-n \text{Im} z_i} \right) 
\]
then

\[ Y \leq \frac{A(j+1)}{j!} \sum_{n=1}^{\infty} \left( (n+1/2)^j e^{-(n+1/2) \Im z_i} + n^j e^{-n \Im z_i} \right) < \infty \]  

holds where

\[ A = \max \{|C_i|, |D_i|\} \max \{|\alpha_{n}^{11}| + |\alpha_{n}^{21}|, |\alpha_{n}^{22}|\}. \]

Now we define the function

\[ g_n(z) = \sum_{t=0}^{j} \max \{|C_i|, |D_i|\} \left\{ \sum_{m=1}^{\infty} (|\alpha_{n}^{11}| + |\alpha_{n}^{21}|) \times \left( |A_{nm}^{11}| \left| m + n + 1/2 \right|^t e^{-(m+n+1/2) \Im z_i} + |A_{nm}^{12}| \left| m + n \right|^t e^{-(m+n) \Im z_i} \right) \right\} 
+ \sum_{t=0}^{j} \max \{|C_i|, |D_i|\} \left\{ \sum_{m=1}^{\infty} |\alpha_{n}^{22}| \left( |A_{nm}^{21}| \left| m + n + 1/2 \right|^t e^{-(m+n+1/2) \Im z_i} + |A_{nm}^{22}| \left| m + n \right|^t e^{-(m+n) \Im z_i} \right) \right\}. \]

So we get,

\[ \frac{1}{j!} \sum_{n=1}^{\infty} \left[ \sum_{t=0}^{j} \max \{|C_i|, |D_i|\} \left\{ \sum_{m=1}^{\infty} (|\alpha_{n}^{11}| + |\alpha_{n}^{21}|) \times \left( |A_{nm}^{11}| \left| m + n + 1/2 \right|^t e^{-(m+n+1/2) \Im z_i} + |A_{nm}^{12}| \left| m + n \right|^t e^{-(m+n) \Im z_i} \right) \right\} 
+ \sum_{t=0}^{j} \max \{|C_i|, |D_i|\} \left\{ \sum_{m=1}^{\infty} |\alpha_{n}^{22}| \left( |A_{nm}^{21}| \left| m + n + 1/2 \right|^t e^{-(m+n+1/2) \Im z_i} + |A_{nm}^{22}| \left| m + n \right|^t e^{-(m+n) \Im z_i} \right) \right\} \right] 
= \frac{1}{j!} \sum_{n=1}^{\infty} g_n(z). \]

Using the boundedness of \( A_{nm}^{ij} \) and \( \alpha_{n}^{ij} \) for \( i, j = 1, 2 \), we obtain that

\[ g_n(z) \leq \max \{|C_i|, |D_i|\} M \sum_{t=0}^{j} \sum_{m=1}^{\infty} \left\{ \left| m + n + 1/2 \right|^t e^{-(m+n+1/2) \Im z_i} + \left| m + n \right|^t e^{-(m+n) \Im z_i} \right\} \]

where

\[ M = \max \{|\alpha_{n}^{11}| + |\alpha_{n}^{21}|, |A_{nm}^{11}|, |\alpha_{n}^{22}|, |A_{nm}^{22}|\}. \]
If we take \( \max \{ |C_l|, |D_l| \} M = N \), we can write
\[
g_n (z) \leq N \sum_{t=0}^{j} e^{-n \text{Im} z_i} \left\{ \sum_{m=1}^{\infty} \left( (m + n + 1/2)^t e^{-m \text{Im} z_i} + (m + n)^t e^{-m \text{Im} z_i} \right) \right\}
\]
\[
= N e^{-n \text{Im} z_i} \left\{ \sum_{m=1}^{\infty} 2 e^{-m \text{Im} z_i} + \sum_{m=1}^{\infty} e^{-m \text{Im} z_i} ((m + n + 1/2) + (m + n)) \right\}
\]
\[
+ \ldots + \sum_{m=1}^{\infty} e^{-m \text{Im} z_i} \left( (m + n + 1/2)^j + (m + n)^j \right) \right\}
\]
\[
\leq N e^{-n \text{Im} z_i} \sum_{m=1}^{\infty} \sum_{t=0}^{j} e^{-m \text{Im} z_i} \left( (m + n + 1/2)^t + (m + n)^t \right) \right\}
\]
\[
\leq B e^{-n \text{Im} z_i}
\]
where
\[
B = N \sum_{t=0}^{j} e^{-m \text{Im} z_i} \left( (m + n + 1/2)^t + (m + n)^t \right).
\]
Therefore, we have,
\[
\left( \frac{1}{j!} \sum_{n=1}^{\infty} g_n (z) \right)^2 \leq \left( \frac{1}{j!} \sum_{n=1}^{\infty} B e^{-n \text{Im} z_i} \right)^2 < \infty. \tag{4.12}
\]
From (4.10) and (4.12), \( \frac{d}{dx} V_n (\lambda_i) \in \ell_2 (\mathbb{N}, \mathbb{C}^2) \) for \( j = 0, 1, \ldots, m_i - 1 ; i = 1, 2, \ldots, k \).

On the other hand, since \( \text{Im} z_i = 0 \) for \( j = 0, 1, \ldots, m_i - 1 ; i = k + 1, k + 2, \ldots, \nu \) using (4.4), we find that
\[
\sum_{n=1}^{\infty} \left| \alpha_n^{(1)} (n + 1/2)^t e^{i z_i (n+1/2)} \right|^2 = \infty,
\]
but the other terms in (4.4) belong to \( \ell_2 (\mathbb{N}, \mathbb{C}^2) \), so \( \frac{d}{dx} E_n^{(1)} (\lambda) \notin \ell_2 (\mathbb{N}, \mathbb{C}^2) \). Similarly, from (4.5), we get \( \frac{d}{dx} E_n^{(2)} (\lambda) \notin \ell_2 (\mathbb{N}, \mathbb{C}^2) \), then we obtain that \( \frac{d}{dx} V_n (\lambda_i) \notin \ell_2 (\mathbb{N}, \mathbb{C}^2) \) for \( j = 0, 1, \ldots, m_i - 1 ; i = k + 1, k + 2, \ldots, \nu \). \( \square \)

Let us introduce Hilbert space \( H_{-j} (\mathbb{N}) \), \( j = 0, 1, 2, \ldots \),
\[
H_{-j} (\mathbb{N}) = \left\{ y = \left( \begin{array}{c} y^{(1)}_n \\ y^{(2)}_n \end{array} \right) : \sum_{n \in \mathbb{N}} (1 + |n|)^{-2j} \left( |y^{(1)}_n|^2 + |y^{(2)}_n|^2 \right) < \infty \right\}
\]
with
\[
\| y \|_{-j}^2 = \sum_{n \in \mathbb{N}} (1 + |n|)^{-2j} \left( |y^{(1)}_n|^2 + |y^{(2)}_n|^2 \right).
\]
Now we have the following result:

**Theorem 4.2.** \( \frac{d^j}{d\lambda^j} V_n (\lambda_i) \in H_{-(j+1)} (\mathbb{N}) \) for \( j = 0, 1, 2, \ldots, m_i - 1 \); \( i = k + 1, k + 2, \ldots, \nu \).

**Proof.** Using (2.1), (2.6) and (2.7) we have

\[
\sum_{n \in \mathbb{N}} (1 + |n|)^{-2(j+1)} \left( \left| \frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(1)} (\lambda) \right\}_{\lambda=\lambda_i} \right|^2 + \left| \frac{1}{j!} \left\{ \frac{d^j}{d\lambda^j} E_n^{(2)} (\lambda) \right\}_{\lambda=\lambda_i} \right|^2 \right)
\]

\[
= \sum_{n \in \mathbb{N}} (1 + |n|)^{-2(j+1)} \left( \left| \sum_{t=0}^j C_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z_i) \right\} \right|^2 + \left| \sum_{t=0}^j D_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(2)} (z_i) \right\} \right|^2 \right)
\]

\[
\leq \frac{1}{(j!)^2} \sum_{n=1}^\infty (1 + |n|)^{-2(j+1)} \left( \left| \sum_{t=0}^j C_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z_i) \right\} \right|^2 + \left| \sum_{t=0}^j D_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(2)} (z_i) \right\} \right|^2 \right)
\]

(4.13)

for \( j = 0, 1, 2, \ldots, m_i - 1 \); \( i = k + 1, k + 2, \ldots, \nu \). Since \( \text{Im} z_i = 0 \), using (4.13) we get

\[
\sum_{n \in \mathbb{N}} (1 + |n|)^{-2(j+1)} \frac{1}{(j!)^2} \left( \sum_{t=0}^j \left| C_t \left\{ \frac{d^t}{d\lambda^t} f_n^{(1)} (z_i) \right\} \right| \right)^2
\]

\[
\leq \frac{1}{(j!)^2} \sum_{n=1}^\infty \left\{ \sum_{t=0}^j (1 + |n|)^{-(j+1)} (n + 1/2)^t |\alpha_n^{11}| |C_t| \right.
\]

\[
+ \sum_{t=0}^j |C_t| |\alpha_n^{11}| (1 + |n|)^{-(j+1)} \sum_{m=1}^\infty |A_{nm}^{11}| (m + n + 1/2)^t
\]

\[
+ \left. |A_{nm}^{12}| (m + n)^t \right\}^2
\]

\[
= \frac{1}{(j!)^2} \sum_{n=1}^\infty \left( \sum_{t=0}^j (1 + |n|)^{-(j+1)} (n + 1/2)^t |\alpha_n^{11}| |C_t| \right)^2
\]
\[ + 2 (1 + |n|)^{-2(j+1)} |\alpha_n^{11}|^2 \left[ \sum_{t=0}^{j} (n + 1/2)^t |C_t| \right] \]
\[ \times \left[ \sum_{t=0}^{j} |C_t| \sum_{m=1}^{\infty} |A_{nm}^{11}| (m + n + 1/2)^t + |A_{nm}^{12}| (m + n)^t \right] \]
\[ + \left( \sum_{t=0}^{j} |C_t| (1 + |n|)^{-(j+1)} |\alpha_n^{11}| \sum_{m=1}^{\infty} |A_{nm}^{11}| \right. \]
\[ \times (m + n + 1/2)^t + |A_{nm}^{12}| (m + n)^t \right) \left. \right)^2 \]. \quad (4.14) \]

Using (4.14), (2.1) and (2.4) we first obtain that
\[ \left( \sum_{t=0}^{j} |C_t||\alpha_n^{11}| (1 + |n|)^{-(j+1)} \sum_{m=1}^{\infty} \left( |A_{nm}^{11}| (m + n + 1/2)^t + |A_{nm}^{12}| (m + n)^t \right) \right)^2 \]
\[ \leq 4 \left( \sum_{t=0}^{j} |\alpha_n^{11}| \sum_{m=1}^{\infty} (1 + |n|)^{-(j+1)} (m + n + 1/2)^t \exp \left( -\varepsilon ((m + n)/4) \right) \right. \]
\[ \left. \times \exp \left( \sum_{j=n+[m/2]}^{\infty} e^{x^j} [1 - a_j + |1 + b_j| + |p_j| + |q_j|] \right) \right)^2 \]
\[ \leq C_1 \left( \sum_{t=0}^{j} (1 + |n|)^{-(j+1)} \sum_{m=1}^{\infty} (m + n + 1/2)^t \exp \left( -\varepsilon \sqrt{2} (n^{1/2} + m^{1/2})/4 \right) \right)^2 \]
\[ = C_1 (1 + |n|)^{-2(j+1)} \exp \left( -\varepsilon \sqrt{2} n^{1/2}/2 \right) \]
\[ \times \left( \sum_{t=0}^{j} \sum_{m=1}^{\infty} (m + n + 1/2)^t \exp \left( -\varepsilon \sqrt{2} m^{1/2}/4 \right) \right)^2 \]
\[ = G \exp \left( -\varepsilon \sqrt{2} n^{1/2}/2 \right) (1 + |n|)^{-2(j+1)} \] \quad (4.15)
Hence we get from (4.15)

\[
\sum_{n=1}^{\infty} \left( \sum_{t=0}^{j} |C_t| (1 + |n|)^{-(j+1)} |\alpha_n^{11}| \sum_{m=1}^{\infty} |A_{nm}^{11}| \right) \\
\times \left( (m + n + 1/2)^t + |A_{nm}^{12}| (m + n)^t \right)^2 \\
\leq G \sum_{n=1}^{\infty} \exp \left( -\varepsilon \sqrt{2n^{1/2}}/2 \right) (1 + |n|)^{-2(j+1)} \\
< \infty.
\] (4.16)

Secondly, using (4.14) and (4.15) we obtain that

\[
\sum_{n=1}^{\infty} 2 \left\{ \left( \sum_{t=0}^{j} |\alpha_n^{11}| |C_t| (1 + |n|)^{-(j+1)} (n + 1/2)^t \right) \right. \\
\times \left[ \sum_{t=0}^{j} |C_t| |\alpha_n^{11}| \sum_{m=1}^{\infty} (1 + |n|)^{-(j+1)} \left( (m + n + 1/2)^t |A_{nm}^{11}| \right) \right. \\
\left. + (m + n)^t |A_{nm}^{12}| \right\} \\
\leq T \sum_{n=1}^{\infty} \left[ \sum_{t=0}^{j} (1 + |n|)^{-2(j+1)} (n + 1/2)^t \exp \left( -\varepsilon \sqrt{2n^{1/2}}/4 \right) \right] \\
< \infty
\] (4.17)

where

\[ T = |\alpha_n^{11}| G^{1/2} \max |C_t| \]

and also expression of the left side of (4.15) is obviously convergent. So, we get from (4.16) and (4.17)

\[
\sum_{n \in \mathbb{N}} (1 + |n|)^{-2(j+1)} \frac{1}{(jl)^2} \left( \sum_{t=0}^{j} |C_t| \left\{ \frac{d^l}{dx} f_n^{(1)}(z_i) \right\} \right)^2 < \infty
\]

and similarly

\[
\sum_{n \in \mathbb{N}} (1 + |n|)^{-2(j+1)} \frac{1}{(jl)^2} \left( \sum_{t=0}^{j} |D_t| \left\{ \frac{d^l}{dx} f_n^{(2)}(z_i) \right\} \right)^2 < \infty.
\]

Finally \( \frac{d^l}{dx} V_n(\lambda_i) \in H_{-(j+1)}(\mathbb{N}) \) for \( j = 0, 1, 2, \ldots, m_i - 1 \); \( i = k + 1, k + 2, \ldots, \nu \).
References


Current address: Turhan Koprubasi: Department of Mathematics, Kastamonu University, 37150 Kuzeykent, Kastamonu, Turkey
E-mail address: tkoprubasi@kastamonu.edu.tr
ORCID Address: http://orcid.org/0000-0003-1551-1527