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Abstract

In this paper, we introduce some new multiplier sequence spaces by using sequences in a normed space X and matrix domain of Cesáro
summability method in `∞ and c0. Then we obtain the characterizations of completeness and barrelledness of normed space X through its
weakly and weakly* unconditionally Cauchy series.
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1. Introduction

By w, we denote the space of all real sequences x = (xk). Any vector subspace of w is called a sequence space. Let `∞, c and c0 be the
spaces of all bounded, convergent and null sequences x = (xk), respectively, normed by ‖x‖∞ = supk|xk|, where k ∈ N, the set of positive
integers. Also by cs and `1, we denote the spaces of all convergent and absolutely convergent series, respectively.
A sequence space λ with a linear topology is called a K-space provided each of the maps pi : λ → R defined by pi(x) = xi is continuous for
all i ∈N. A K-space λ is called an FK-space provided λ is a complete linear metric space. We say that an FK space λ ⊃ c00 has AD if c00 is
dense in λ , where c00 = span{en : n ∈N}, the set of all finitely non-zero sequences and en (n ∈N) the sequences with en

n = 1 and en
k = 0 for

k 6= n.
Let A = (ank) be an infinite matrix of real numbers ank, where n, k ∈ N. Then, we write Ax =

(
(Ax)n

)
, the A-transform of x ∈ w, if

(Ax)n = ∑k ankxk converges for each n ∈ N. For simplicity in notation, here and in what follows, the summation without limits runs from 1
to ∞. For a sequence space λ , the matrix domain λA of an infinite matrix A is defined by

λA =
{

x = (xk) ∈ w : Ax ∈ λ
}
,

which is a sequence space. The Cesàro matrix C with Cesàro mean of order one, which is a well–known method of summability and is
defined by the matrix C = (cnk) as follows;

cnk =

{ 1
n , 1≤ k ≤ n,
0, k > n.

The C-transform of a sequence a = (ak) is the sequence τ(a) = (τn(a)) defined by

τn(a) =
1
n

n

∑
k=1

ak for all n ∈ N.

The set of all sequences whose C-transforms are in the spaces `∞ and c0 were defined by Shiue in [12], Ng and Lee in [10], and Şengönül
and Başar in [13], respectively. Some other works about the study of sequence spaces are [3, 6, 7, 8, 9, 14].
Let X be a real Banach space, X∗ is a dual space of X and ∑i xi be a series in X . A series ∑i xi is called weakly unconditionally Cauchy series
(wuCs) if

(
∑

n
i=1 xπi

)
n∈N is a weakly Cauchy for every permutation π of N. It is known that ∑i xi is a wuCs if and only if ∑i | f (xi)|< ∞ for

every f ∈ X∗. A series ∑i xi is called unconditionally convergent series (ucs) if ∑i xπ(i) converges for every permutation π of N. By ucs(X),
uCs(X), `1(X), cs(X), wcs(X) and wuCs(X), we denote the X-valued sequence spaces of unconditionally convergent, unconditionally
Cauchy, absolutely convergent, convergent, weakly convergent and weakly unconditionally Cauchy series, respectively.
It is well known that [2, 4, 5]:
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(1) The sequence x = (xk) ∈ ucs(X) if and only if (akxk) ∈ cs(X) for every a = (ak) ∈ l∞.
(2) The sequence x = (xk) ∈ wuCs(X) if and only if (akxk) ∈ cs(X) for every a = (ak) ∈ c0.
(3) Let X be a normed space. The sequence x = (xi) ∈ wuCs(X) if and only if the set

S =

{
n

∑
i=1

aixi : |ai| ≤ 1, i = 1,2, . . . ,n; n ∈ N

}
(1.1)

is bounded.

Let x = (xi) be a sequence in normed space X and f = ( fi) be a sequence in X∗. In this work we will study the following subspaces of (`∞)C,
which are defined by

SC(x) =

{
a = (ai) ∈ (`∞)C : ∑

i
τi(a)xi converges inX

}
,

SCw(x) =

{
a = (ai) ∈ (`∞)C : ∑

i
τi(a)xi weakly converges inX

}
,

and

SCw∗( f ) =

{
a = (ai) ∈ (`∞)C : ∑

i
τi(a) fi weak∗− converges inX∗

}
.

The sets SC(x), SCw(x) and SCw∗( f ) are linear spaces with the co-ordinatewise addition and scalar multiplication which are the normed
spaces with the norm ‖a‖SC = ‖Ca‖∞.

2. Main results

In the section, for x ∈ wuCs(X) we will give necessary and sufficient conditions to be complete of a normed space X by means of the spaces
SC(x) and SCw(x). Also, for f ∈ w∗uCs(X∗) we will characterize the barrelledness of a normed space X through the space SCw∗( f ).
Firstly, we give a sufficient condition for equality between SC(x) and SCw(x).

Lemma 2.1. Let X be a normed space and x ∈ uCs(X). Then, SC(x) = SCw(x).

Proof. Since every convergent sequence is weakly convergent the inclusion SC(x)⊆ SCw(x) holds.
We will prove that SCw(x)⊆ SC(x). Let a = (ai) ∈ SCw(x). Then there exists x ∈ X such that for every f ∈ X∗,

∞

∑
i=1

τi(a) f (xi) = f (x).

On the other hand, since x ∈ uCs(X) the partial sums of the series ∑
∞
i=1 τi(a)xi form a Cauchy sequence in X . Then, there exists x∗∗ ∈ X∗∗

such that

∞

∑
i=1

τi(a)xi = x∗∗.

Hence, from uniqueness of limit, x∗∗ = x. That is a = (ai) ∈ SC(x).

Now, we obtain necessary and sufficient condition for the space SC(x) to be complete.

Theorem 2.2. Let X be a Banach space. Then, x = (xk) is a sequence in wuCs(X) if and only if the space SC(x) is a Banach space.

Proof. First, we will show that necessary condition holds.
Let x ∈ wuCs(X). Then, since S defined be equation (1.1) is a bounded set, we suppose that ‖s‖ ≤ K for every s ∈ S. Let (am) be a Cauchy
sequence in SC(x). Since SC(x)⊂ (`∞)C and (`∞)C is a Banach space, there exists a = (a0

i ) ∈ (`∞)C such that am→ a0 in (`∞)C as m→ ∞.
Therefore, for ε > 0, there exists m0 ∈ N such that for every m≥ m0 and i ∈ N,∣∣∣τi(am)− τi(a0)

∣∣∣< ε

3K
.

Since 3K
ε
|τi(am)− τi(a0)|< 1, 3K

ε ∑
n
i=1(τi(am)− τi(a0))xi ∈ S, and hence for m > m0 we have∥∥∥∥∥ n

∑
i=1

(
τi(am)− τi(a0)

)
xi

∥∥∥∥∥< ε

3
.

Since for each m ∈ N the sequence (am) is in SC(x), there exists a sequence (ym)⊂ X such that for n≥ n0∥∥∥∥∥ n

∑
i=1

τi(am)xi− ym

∥∥∥∥∥< ε

3
.
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Then for p > q > m0 and n ∈ N,

‖yp− yq‖ ≤

∥∥∥∥∥ n

∑
i=1

τi(ap)xi− yp

∥∥∥∥∥+
∥∥∥∥∥ n

∑
i=1

τi(aq)xi− yq

∥∥∥∥∥+
∥∥∥∥∥ n

∑
i=1

(τi(aq)− τi(ap))xi

∥∥∥∥∥
<

ε

3
+

ε

3
+

ε

3
= ε.

and thus (ym) is a Cauchy sequence in X . Hence, for ε > 0 there exists y0 ∈ X such that for each m > m1

‖ym− y0‖<
ε

3
.

Take m2 = max{m0,m1}. Then for n≥ n0 and m > m2, we have∥∥∥∥∥ n

∑
i=1

τi(a0)xi− y0

∥∥∥∥∥ ≤

∥∥∥∥∥ n

∑
i=1

(τi(a0)− τi(am))xi

∥∥∥∥∥+
∥∥∥∥∥ n

∑
i=1

τi(am)xi− ym

∥∥∥∥∥+‖ym− y0‖

<
ε

3
+

ε

3
+

ε

3
= ε.

As a consequence, (a0) ∈ SC(x) and hence SC(x) is complete.

Now, suppose that SC(x) is complete, but x is not in wuCs(X). Then there exists a sequence a0 = (a0
i ) in c0 such that ∑

n
i=1 a0

i xi is
not convergent. Therefore there exists b0 = (b0

i ) ∈ (c0)C such that τi(b0) = a0
i and hence ∑

n
i=1 τi(b0)xi is not convergent. That is,

b0 = (b0
i ) /∈ SC(x) and so (c0)C 6⊆ SC(x). On the other hand, since (c0)C is a AD-space by [13, Theorem 2.4], there exists a Cauchy sequence

y = (ym
i ) in c00 (also in SC(x)) such that

lim
m→∞

ym
i = b0

i .

Consequently, SC(x) is not complete.

The following theorem gives us a characterization of completeness of normed spaces.

Theorem 2.3. The normed space X is a Banach space if and only if SC(x) is a Banach space for every x = (xk) in wuCs(X).

Proof. Necessary condition is obtained from Theorem 2.2.
Suppose that X is not a Banach space. Then there exists a sequence x = (xk) ∈ `1(X)\ cs(X) such that for every k ∈ N

‖xk‖<
1

k2k .

We define the sequence y = (yk) by

yk =

{
kxk, if k is odd,
−kxk, if k is even,

and consider the sequence b = (bk) ∈ (c0)C defined by

bk =


1
2 , if k = 1,

2k+1
k+1 , if k 6= 1 and k is odd,

− 2k−1
k , if k is even,

then y = (yk) ∈ wuCs(X) and ∑k τk(b)yk does not converge. This proves (c0)C 6⊆ SC(y). Hence the space SC(y) is not complete.

Now, we will extend some of the above results to weak topology. First, let us start with the following lemma.

Lemma 2.4. Let X be a Banach space. Then x = (xk) in wuCs(X) if and only if (c0)C ⊆ SCw(x).

Proof. Let x be a sequence in wuCs(X). Then for a = (ai) ∈ c0, the series ∑
n
i=1 aixi is convergent. If we take τi(b) = ai for b = (bi) ∈ (c0)C,

the series ∑
n
i=1 τi(b)xi is convergent, and hence weakly convergent. Therefore b = (bi) ∈ SCw(x).

Conversely, suppose that (c0)C ⊆ SCw(x). Then for every sequence b = (bi) ∈ (c0)C, the sequence (τi(b)xk) is in wcs(X). We define the
sequence

zn =

{
τn(b), if n = nk,

0, if n 6= nk

for an increasing sequence of positive integers (nk). Then the series ∑
n
i=1 zixi = ∑

n
k=1 τik (b)xik is weakly convergent, and thus ∑

n
i=1 τi(b)xi is

subseries weakly convergent. From Orlicz-Pettis Theorem, (τi(b)xi) is in ucs(X). Then the series (τi(b)xi) belongs to cs(X), and hence x is
in wuCs(X).

Theorem 2.5. Let X be a Banach space and x = (xk) is a sequence in X. SCw(x) is complete if and only if x ∈ wuCs(X).
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Proof. Necessary condition can be easily obtained from Lemma 2.4.
Let x ∈ wuCs(X). Then, since S is a bounded set, let ‖s‖ ≤ K for every s ∈ S. Let a = (am) be a Cauchy sequence in SCw(x) such that
am→ a0 in (`∞)C as m→ ∞. Therefore, for ε > 0 there exists m0 ∈ N such that for every m≥ m0 and i ∈ N∣∣∣τi(am)− τi(a0)

∣∣∣< ε

3K
.

Since 3K/ε|τi(am)− τi(a0)|< 1, 3K/ε ∑
n
i=1
(
τi(am)− τi(a0)

)
xi ∈ S, and hence for m > m0∥∥∥∥∥ n

∑
i=1

(
τi(am)− τi(a0)

)
xi

∥∥∥∥∥< ε

3
.

On the other hand, there exists a sequence (ym)⊂ X such that for n≥ n0 and for all f ∈ X∗∣∣∣∣∣ n

∑
i=1

τi(am) f (xi)− f (ym)

∣∣∣∣∣< ε

3
.

Also there exists f ∈ BX∗ such that ‖yp− yq‖= | f (yp− yq)|. Then for p > q > m0 and n ∈ N

‖yp− yq‖= | f (yp− yq)|< ε,

and thus (ym) is a Cauchy sequence in X . Hence, for ε > 0 there exists y0 ∈ X such that for m > m1

‖ym− y0‖<
ε

3
.

Take m2 = max{m0,m1}. Then for n≥ n0 and m > m2 we have∣∣∣∣∣ n

∑
i=1

τi(a0) f (xi)− f (y0)

∣∣∣∣∣ ≤
∣∣∣∣∣ n

∑
i=1

(
τi(a0)− τi(am)

)
f (xi)

∣∣∣∣∣+
∣∣∣∣∣ n

∑
i=1

τi(am) f (xi)− f (ym)

∣∣∣∣∣
+| f (ym)− f (y0)|

<
ε

3
+

ε

3
+

ε

3
= ε.

Therefore (a0) ∈ SCw(x) and hence SCw(x) is complete.

Theorem 2.6. X is a Banach space if and only if SCw(x) is a Banach space for every x ∈ wuCs(X).

Proof. As in the proof of Theorem 2.2, suppose that X is not a Banach space. Then we can find a sequence y = (yk) ∈ wuCs(X) and
(c0)C 6⊆ SC(y). Thus SC(y) is not a Banach space. Since y = (yk) ∈ uCs(X), by Lemma 2.1 we obtain that SC(y) = SCw(y), and hence
SCw(y) is not a Banach space.

Finally, we give a characterization of barrelledness of normed spaces.

Theorem 2.7. Let X be a normed space and f = ( fi) be a sequence in X∗. Consider the following statements:

(1) f ∈ wuCs(X∗).
(2) SCw∗( f ) = (l∞)C.
(3) f ∈ w∗uCs(X∗); that is, ∑i | fi(x)|< ∞ for every x ∈ X.

Then (1)⇒ (2)⇒ (3). The normed space X is a barrelled space if and only if (3)⇒ (1).

Proof. ((1) ⇒ (2)). We consider b = (bi) ∈ (l∞)C. Then there exists a = (ai) ∈ l∞ such that τi(b) = (ai). Since f ∈ wuCs(X∗),
(ai fi) ∈ wuCs(X∗), and hence (τi(b) fi) ∈ wuCs(X∗). Therefore (sn) is a bounded sequence in X∗ and a Cauchy sequence for the weak∗

topology on X∗, where sn = ∑
n
i=1 τi(b) fi. Thus, ∑i τi(b) fi is weak∗ convergent.

((2)⇒ (3)). Let Sw∗ = (`∞)C. Then for every x ∈ X and b = (bi) ∈ (`∞)C the sequence (τi(b)i fi(x)) in cs(X). If we take τi(b) = sgn fi(x),
then we have ∑i | fi(x)|< ∞.

Now, let X be a barrelled space. We will show (3) implies (1).
We define the set S′ by

S′ =

{
n

∑
i=1

ai fi : |ai| ≤ 1, i = 1,2, . . . ,n; n ∈ N

}
.

It can be easily seen that the set S′ is pointwise bounded and hence S′ is bounded for the norm topology of X∗. So, ( fi) ∈ wuCs(X∗).
Assume that (3) implies (1) holds but X is not a barrelled space. Then there exists a weak∗-bounded set A⊆ X∗ that is not bounded. Let
( fi) ∈ A such that ‖ fi‖> 22i for i ∈ N. If we take gi =

1
2i fi for i ∈ N, then it is obvious that for every x ∈ X , (gi(x)) ∈ `1.

On the other hand, since ‖gi‖> 2i for every i ∈ N, the series ∑i
1
2i gi does not converge. Hence, (gi) 6∈ wuCs(X∗).

Corollary 2.8. X is a barrelled normed space if and only if wuCs(X∗) = w∗uCs(X∗).
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3. Conclusion

In [1], some new spaces were defined and, by means of these spaces conditionally and weakly unconditionally Cauchy series were
characterized. Also using these spaces, Pérez-Fernández et al. [11] obtained new characterizations of completeness and barrelledness of a
normed space via the behaviour of its weakly and weak* unconditionally Cauchy series.
In this paper, we will characterize the completeness and barrelledness of a normed space X in terms of SC(x), SCw(x) and SCw∗( f ).
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[13] M. Şengönül, F. Başar, Some new Cesàro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math. Vol:31, No.1

(2005), 107-119.
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