

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

A Note on Quasi-Statistical Convergence of Order α in Rectangular Cone Metric Space

Nihal Turan¹ and Metin Başarır^{1*}

¹Department of Mathematics, Sakarya University, 54050, Sakarya, Turkey *Corresponding author E-mail: basarir@sakarya.edu.tr

Abstract

The main purpose of this paper is to describe the quasi-statistical convergence of order α in the rectangular cone metric space and investigate some relations of these sequences.

Keywords: Rectangular cone metric space, statistical convergence, quasi-statistical convergence. 2010 Mathematics Subject Classification: 40G15,40A30,41A25,41A36

1. Introduction

The concept of statistical convergence has been studied by many researchers from past to now. The idea of statistical convergence which is a generalization of convergence, was first introduced by Zygmund in 1935 and later introduced independently by Steinhaus [1] and Fast [2] in 1951. In 1959, Schoenberg [3] gave some basic properties of statistical convergence and also examined the concept of a summability method. The relationship between statistical convergence, Cesaro summability and strong p-Cesaro summability concepts was studied by some authors, [4], [5]. This concept has been studied under different names in different spaces such as real space, topological space, cone metric space [6], [7], [8], [9]. Recently, İlkhan and Kara [10] have defined a new type statistical Cauchy sequence in metric spaces. On the other hand, the authors in [11] defined the concept of quasi-statistical filter. Sakaoğlu and Yurdakadim [12] have defined the notion of quasi-statistical convergence by motivating from [11]. In 2007, Guang and Xian [13] introduced the idea of a cone metric space by replacing the set of real numbers with an ordering Banach space and generalized the concept of metric space. Later Azam et all [14] introduced the notion of a rectangular cone metric space by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the concepts of statistical convergence, Cesaro summability, strongly *p*-Cesaro summability and quasi-statistical convergence of order α in rectangular cone metric space. Later, we give some theorems related to statistical convergence and quasi-statistical convergence of order α in the rectangular cone metric space.

2. Preliminaries and lemmas

Definition 2.1. [13] Let $(E, \|.\|)$ be a real Banach space. A subset P of E is called a cone if it satisfies the following conditions: (1) $P \neq \oslash$, $P \neq \{0\}$ and P is closed. (2) $ax + by \in P$ for all $x, y \in P$ and $a, b \in \mathbb{R}$ with $a, b \ge 0$. (3) If $x \in P$ and $-x \in P$, then x = 0 for all $x, y \in P$.

A partial ordering " \leq " with respect to *P* is defined by $x \leq y \Leftrightarrow y - x \in P$. Also, we mean $x \prec y \Leftrightarrow x \leq y$, $x \neq y$ and $x \prec \forall \varphi \Rightarrow y - x \in E^+$, where E^+ denotes the interior of *P*; that is $E^+ = \{c \in E : 0 \prec \prec c\}$. The cone *P* is called normal if there is a number K > 0 such that for all $x, y \in E, 0 \leq x \leq y$ implies $||x|| \leq K ||y||$. The least positive number satisfying this inequality is called the normal constant of *P*. In this paper, we always assume that *E* is a Banach space, *P* is a cone in *E* with $E^+ \neq \emptyset$ and " \leq " is a partial ordering with respect to *P*.

Definition 2.2. [13] Let X be a non-empty set. Suppose the mapping $\rho : X \times X \to E$ satisfies following (1) $0 \leq \rho(x, y)$ for all $x, y \in X$ and $\rho(x, y) = 0$ if and only if x = y, (2) $\rho(x, y) = \rho(y, x)$ for $x, y \in X$, (3) $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$ for all $x, y \in X$.

Then ρ is called a cone metric on X, (X, ρ) is called a cone metric space.

Definition 2.3. [14] Let X be a non-empty set. Suppose the mapping $d : X \times X \to E$ satisfies following (1) $0 \leq d(x,y)$ for all $x, y \in X$ and d(x,y) = 0 if and only if x = y, (2) d(x,y) = d(y,x) for $x, y \in X$, (3) $d(x,y) \leq d(x,w) + d(w,z) + d(z,y)$ for all $x, y \in X$ and for all distinct points $w, z \in X - \{x,y\}$ [rectangular property].

Then ρ is called a rectangular cone metric on X, (X,d) is called a rectangular cone metric space. Note that any cone metric space is a rectangular cone metric space but the converse is not true in general, see [15].

Definition 2.4. [15] Let (X,d) be a rectangular cone metric space. Let (x_n) be a sequence in X and $x \in X$. If for every $c \in E$, $c \succ \succ 0$ there is N such that for all n > N, $d(x_n, x) \prec \prec c$, then (x_n) is said to be convergent to x and x is the limit of (x_n) . We denote this by $x_n \to x$ as $n \to +\infty$.

Definition 2.5. [8] A sequence (x_n) in cone metric space (X,d) is said to be statistically convergent to $x \in X$ if for every $c \in E^+$

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d(x_k, x) \prec \prec c \right\} \right| = 1$$

or equivalently

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: c\prec d\left(x_k,x\right)\right\}\right|=0.$$

where |E| denotes the cardinality of *E*. Then it is denoted by $st - \lim_{n \to \infty} x_n = x$.

Definition 2.6. [12] Let $s = (s_n)$ be a sequence of positive real numbers such that

$$\lim_{n \to \infty} s_n = \infty \text{ and } \limsup_{n} \frac{s_n}{n} < \infty.$$
(2.1)

The quasi density of a subset $M \subset \mathbb{N}$ with respect to the sequence $s = (s_n)$ is defined by

$$\delta_{s}(M) = \lim_{n \to \infty} \frac{1}{s_{n}} \left| \left\{ k \leq n : k \in M \right\} \right|.$$

A sequence (x_n) in \mathbb{R} is called quasi-statistical convergent to x provided that for every $\varepsilon > 0$ the set $M_{\varepsilon} = \{k \in \mathbb{N} : |x_k - x| \ge \varepsilon\}$ has quasi-density zero. It is denoted by $st_q - \lim_{n \to \infty} x_n = x$.

Throughout the paper, we assume that $s = (s_n)$ is a sequence of positive real numbers satisfying the conditions (2.1).

Definition 2.7. [12] A sequence (x_n) in \mathbb{R} is said to be strongly quasi-summable to $x \in \mathbb{R}$ if

$$\lim_{n\to\infty}\frac{1}{s_n}\sum_{k=1}^n|x_k-x|=0.$$

Lemma 2.8. [13] Let (X,d) be a cone metric space. Given $c \in E^+$. Then, for $c \in E^+$ with $0 \prec \prec c$, there is $\delta > 0$ such that $||x|| < \delta$ implies $c - x \in E^+$.

3. Main results

Definition 3.1. A sequence (x_n) in the rectangular cone metric space (X,d) is said to be statistical convergent to a point $x \in X$ if for every $c \in E^+$ we have

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d(x_k, x) \prec \prec c \right\} \right| = 1$$

or equivalently

 $\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: c\prec d\left(x_k,x\right)\right\}\right|=0.$

We denote it by $st - \lim_{n \to \infty} x_n = x$.

Definition 3.2. Let (x_n) be a sequence in the rectangular cone metric space (X,d). The sequence (x_n) is said to be Cesaro summable if there is a $L \in X$ such that

$$\lim_{n\to\infty} \left\| \frac{1}{n} \sum_{k=1}^n d(x_k, L) \right\| = 0.$$

Definition 3.3. Let (X,d) be a rectangular cone metric space, (x_n) be a sequence in X and let p be a positive real number. Then, the sequence (x_n) is said to be strongly p-Cesaro summable to L if there is a $L \in X$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \| d(x_k, L) \|^p = 0.$$

Lemma 3.4. Let P be a normal cone with normal constant K. The following statements hold for sequences (x_n) and (y_n) in rectangular cone metric space (X,d).

(1) $st - \lim_{n \to \infty} x_n = x \Leftrightarrow st - \lim_{n \to \infty} d(x_n, x) = 0$ (2) If $st - \lim_{n \to \infty} x_n = x$ and $st - \lim_{n \to \infty} y_n = y$ then $st - \lim_{n \to \infty} d(x_n, y_n) = d(x, y)$.

 $(\gamma) = \prod_{n \neq 0} \prod_{n \neq 0$

Proof. (1) Suppose that $st - \lim_{n \to \infty} x_n = x$. Then, for every $c \in E^+$, we have

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d(x_k, x) \prec \prec c \right\} \right| = 1.$$

Given any for $\varepsilon > 0$, choose $c \in E^+$ such that $K ||c|| < \varepsilon$. Suppose that $k \in \mathbb{N}$ satisfies $d(x_k, x) \prec \prec c$. Since *P* is a normal cone with normal constant *K*, we can write

 $\|d(x_k, x)\| \leq K \|c\| < \varepsilon.$

Consequently, we obtain

$$\frac{1}{n}\left|\left\{k\leq n:d\left(x_{k},x\right)\prec\prec c\right\}\right|\leq \frac{1}{n}\left|\left\{k\leq n:\left\|d\left(x_{k},x\right)\right\|<\varepsilon\right\}\right|.$$

Hence, we conclude that

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: \left\|d\left(x_k,x\right)\right\|<\varepsilon\right\}\right|=1$$

which means that $st - \lim_{n \to \infty} d(x_n, x) = 0$. Conversely, suppose that $st - \lim_{n \to \infty} d(x_n, x) = 0$. Then for every $\varepsilon > 0$, we have

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: \left\|d\left(x_k,x\right)\right\|<\varepsilon\right\}\right|=1.$$

Given any for $c \in E^+$, we can find an $\varepsilon > 0$ such that $c - a \in E^+$ for all $a \in \varepsilon$ with $||a|| < \varepsilon$. Hence if we choose $k \in \mathbb{N}$ such that $||d(x_k, x)|| < \varepsilon$ then we obtain $d(x_k, x) \prec \prec c$ which implies that the inclusion $\{k : ||d(x_k, x)|| < \varepsilon\} \subset \{k : d(x_k, x) \prec \prec c\}$ holds. It follows that

$$\frac{1}{n}\left|\left\{k\leq n: \left\|d\left(x_{k},x\right)\right\|<\varepsilon\right\}\right|\leq \frac{1}{n}\left|\left\{k\leq n:d\left(x_{k},x\right)\prec\prec c\right\}\right|.$$

Thus, we conclude that $\lim_{n\to\infty} \frac{1}{n} |\{k \le n : d(x_k, x) \prec \prec c\}| = 1$ and so $st - \lim_{n\to\infty} x_n = x$. (2) Suppose $st - \lim_{n\to\infty} x_n = x$ and $st - \lim_{n\to\infty} y_n = y$. Given any $\varepsilon > 0$, choose $c \in E^+$ such that $||c|| < \frac{\varepsilon}{4K+2}$. For $k \in \mathbb{N}$ with $d(x_k, x) \prec \prec c$ and $d(y_k, y) \prec \prec c$, we have $||d(x_k, y_k) - d(x, y)|| < \varepsilon$ from the proof of Lemma in [13]. Hence, the inclusion

$$\{k : \varepsilon \le \|d(x_k, y_k) - d(x, y)\|\} \subset \{k : c \prec \prec d(x_k, x)\} \\ \cup \{k : c \prec \prec d(y_k, y)\}$$

holds. It follows that

$$\lim_{n\to\infty}\frac{1}{n}\left\{k:\varepsilon\leq\left\|d\left(x_{k},y_{k}\right)-d\left(x,y\right)\right\|\right\}=0$$

which means that $st - \lim_{n \to \infty} d(x_n, y_n) = d(x, y)$.

Remark 3.5. Note that *P* does not need to be a normal cone to prove the sufficiency in (1) of Lemma. That is; if $st - \lim_{n \to \infty} d(x_n, x) = 0$ in a rectangular cone metric space (X, d) then we have $st - \lim_{n \to \infty} x_n = x$.

Theorem 3.6. Let (x_n) be a sequence in rectangular cone metric space (X,d). (i) If (x_n) is Cesaro summable to L then it is statistically convergent to L.

(ii) Let P be a normal cone with normal constant K. If a bounded sequence is statistically convergent to L then it is Cesaro summable to L.

Proof. (i) Let $\lim_{n\to\infty} \frac{1}{n} \left\| \sum_{k=1}^n d(x_k, L) \right\| = 0$. From the fact that

$$\begin{split} \left\| \sum_{k=1}^{n} d\left(x_{k}, L\right) \right\| &= \left\| \sum_{\substack{k=1 \ d(x_{k}, L) + \sum_{k=1}^{n} d\left(x_{k}, L\right) \\ d(x_{k}, L) \prec \prec c} \sum_{\substack{k=1 \ d(x_{k}, L) \succeq c}}^{n} d\left(x_{k}, L\right) \\ &\geq \sum_{\substack{k=1 \ d(x_{k}, L) \succeq c}}^{n} d\left(x_{k}, L\right) \\ &\geq \| c \| \{k \le n : d\left(x_{k}, L\right) \succeq c\} \| \\ &= \|c\| \| \{k \le n : d\left(x_{k}, L\right) \succeq c\} \|, \end{split}$$

we have the following inequality

$$\frac{1}{\|c\|} \lim_{n \to \infty} \frac{1}{n} \left\| \sum_{k=1}^{n} d\left(x_k, L\right) \right\| \ge \lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d\left(x_k, L\right) \succ \succ c \right\} \right|$$

Consequently, we find that $st - \lim_{n \to \infty} x_n = L$.

(ii) Let $A_n = \{k \le n : \|d(x_k, L)\| \ge \frac{\varepsilon}{2K}\}$. Suppose that (x_n) is bounded and statistically convergent to *L*. Let *M* be a set created by the term of the sequence (x_n) . Then, *M* is bounded and

$$\delta\left(M\right) = \sup_{x,y\in M} \left\|d\left(x,y\right)\right\| < \infty.$$

Now, we suppose that $\sup \|d(x,y)\| = K$ and $st - \lim_{n \to \infty} x_n = L$. From (ii) of Lemma (1), it is $st - \lim_{n \to \infty} d(x_n, x) = 0$ since *P* is a normal cone with normal constant *K*. Then, we can write down the inequality below for every $\|c\| = \frac{\varepsilon}{2K} > 0$

$$\frac{1}{n}\left|\left\{k\leq n: \|d(x_k,L)\|\geq \frac{\varepsilon}{2}\right\}\right|<\frac{\varepsilon}{2K}.$$

Thus, we obtain that

$$\begin{aligned} \left| \sum_{k=1}^{n} d(x_{k}, L) \right| &\leq \sum_{k=1}^{n} \|d(x_{k}, L)\| \\ &= \sum_{\substack{k \in A_{n} \\ k \leq n}} \|d(x_{k}, L)\| + \sum_{\substack{k \notin A_{n} \\ k \leq n}} \|d(x_{k}, L)\| \\ &\leq \sum_{\substack{k \in A_{n} \\ k \leq n}}^{n} \sup \|d(x_{k}, L)\| + (n - |A_{n}|) \frac{\varepsilon}{2} \\ &\leq |A_{n}| . K + (n - |A_{n}|) \frac{\varepsilon}{2} \end{aligned}$$

and

$$\frac{1}{n} \left\| \sum_{k=1}^{n} d\left(x_{k}, L\right) \right\| \leq \frac{1}{n} \left(\left|A_{n}\right| \cdot K + \left(n - \left|A_{n}\right|\right) \frac{\varepsilon}{2} \right).$$

$$(3.1)$$

If we take the limit in (3.1) as $n \to \infty$, we find that (x_n) is Cesaro summable to *L*.

Theorem 3.7. Let (x_n) be a sequence in rectangular cone metric space (X,d) and $1 \le p < \infty$. (i) If (x_n) is strongly p-Cesaro summable to L then it is statistically convergent to L. (ii) Let P be a normal cone with normal constant K. If a bounded sequence is statistically convergent to L then it is strongly p-Cesaro summable to L.

Proof. The proof can be done in the same way as in the proof of the previous theorem.

Definition 3.8. Let (x_n) be a sequence in a rectangular cone metric space (X, d) and $0 < \alpha \le 1$ and let $s = (s_n)$ be the sequence of positive real numbers satisfying the conditions in (2.1). Then (x_n) is said to be quasi statistically convergent to L of order α if for every $c \in E^+$

$$\lim_{n\to\infty}\frac{1}{s_n^{\alpha}}\left|\left\{k\leq n: c\prec d\left(x_k,L\right)\right\}\right|=0$$

or equivalently

$$\lim_{n\to\infty}\frac{1}{s_n^{\alpha}}\left|\left\{k\leq n:d\left(x_k,L\right)\prec\prec c\right\}\right|=1.$$

We denote it by $st_q^{\alpha} - \lim_{n \to \infty} x_n = L$. If we take $\alpha = 1$ then (x_n) is said to be quasi statistically convergent to L and it is denoted by $st_q - \lim_{n \to \infty} x_n = L$.

Theorem 3.9. Let (x_n) be a sequence in a cone rectangular metric space (X,d). If (x_n) is convergent to $L \in X$ then it is quasi statistically convergent to L of order α .

Proof. Let $\lim_{n\to\infty} x_n = L$. Then, for every $c \in E^+$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, L) \prec \prec c$ for every $n > n_0$. It follows that

$$\frac{1}{s_n^{\alpha}} \left| \left\{ k \le n : c \prec d(x_k, L) \right\} \right| \le \frac{n_0}{s_n^{\alpha}}$$

which means that $\lim_{n\to\infty} \frac{1}{s_n^{\alpha}} |\{k \le n : c \prec d(x_k, L)\}| = 0$. Hence, (x_n) is quasi statistically convergent to *L* of order α .

Theorem 3.10. Let (x_n) be a sequence in a rectangular cone metric space (X,d). If (x_n) is quasi statistically convergent to L of order α then it is statistically convergent to L.

Proof. Suppose that $st_q^{\alpha} - \lim_{n \to \infty} x_n = L$ and let $M = \sup_n \frac{s_n^{\alpha}}{n}$. Then, for every $c \in E^+$ we have $\lim_{n \to \infty} \frac{1}{s_n^{\alpha}} |\{k \le n : c \le d(x_k, L)\}| = 0$. The statistical convergence of the sequence (x_n) follows from the following inequality

$$\frac{1}{n}\left|\left\{k \leq n : c \prec d(x_k, L)\right\}\right| \leq \frac{M}{s_n^{\alpha}} \left|\left\{k \leq n : c \prec d(x_k, L)\right\}\right|$$

Consequently, we have the following diagram:

convergent \implies quasi statistical convergent of order $\alpha \implies$ statistical convergent.

Theorem 3.11. Let (x_n) be a sequence in a rectangular cone metric space (X,d). Assume that

$$h = \inf_{n} \frac{s_n}{n} > 0. \tag{3.2}$$

If a sequence (x_n) in a rectangular cone metric space (X,d) is statistical convergent to $L \in X$ then it is quasi-statistical convergent to L of order α .

Proof. Let $st - \lim_{n \to \infty} x_n = L$. The proof follows from the inequality

$$\frac{1}{n}\left|\left\{k \leq n : c \leq d\left(x_{k}, L\right)\right\}\right| \geq \frac{h}{s_{n}^{\alpha}}\left|\left\{k \leq n : c \leq d\left(x_{k}, L\right)\right\}\right|.$$

We can give the following.

Corollary 3.12. Suppose that the sequence (s_n) satisfies the condition in (3.2). Then (x_n) is statistical convergent to L if and only if (x_n) is quasi statistical convergent to L of order α .

Theorem 3.13. Let (x_n) be a sequence in a rectangular cone metric space (X,d). If $st_q^{\alpha} - \lim_{n \to \infty} x_n = L$ then $st_q - \lim_{n \to \infty} x_n = L$.

Proof. Suppose that $st_q^{\alpha} - \lim_{n \to \infty} x_n = L$. Then, the result follows from the following inequality

$$\frac{1}{s_n} \left| \left\{ k \le n : c \preceq d\left(x_k, L\right) \right\} \right| \le \frac{1}{s_n^{\alpha}} \left| \left\{ k \le n : c \preceq d\left(x_k, L\right) \right\} \right|$$

References

- [1] Steinhaus, H.: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. (2), 73-74 (1951)

- Steinhaus, H.: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. (2), 73-74 (1951)
 Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
 Schoenberg, I., J.: The integrability of certain functions and related summability methods. Amer. Math. Montly 86, 361-375 (1959)
 Schoenberg, J.: The statistical and strong p-Cesaro convergence of sequences. Analysis 8, 47-63 (1988)
 Connor, J.: The statistical and strong p-Cesaro convergence of sequences. Analysis 8, 47-63 (1988)
 Connor, J.: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32, 194-198 (1989)
 Fridy, J. A.: On statistical convergence. Analysis 5, 301-313, (1985)
 Maio, G. D., Kočinac, L. D. R.: Statistical convergence in topology. Topol. Appl. 156, 28-45 (2008)
 Li, K., Lin, S., Ge, Y.: On statistical convergence in convergence in a converging space. Topol. Appl. 196, 641-651 (2015)
 The space and the functional convergence of sequences. Faste Ultip. San Math. Inform 22(4), 612 626 (2015)

- [9] Turan, N., Kara, E. E., İlkhan, M.: Quasi statistical convergence in cone metric spaces. Facta Univ. Ser. Math. Inform. 33(4), 613-626 (2018)
- [10] İlkhan, M., Kara, E. E.: A new type of statistical Cauchy sequence and its relation to Bourbaki completeness. Cogent Math. Stat. 5(1), 1-9 (2018)
 [11] Ganichev, M., Kadets, V.: "Filter convergence in Banach spaces and generalized bases," in General Topology in Banach Spaces. USA: Nova Science 61-69 (2001)
- [12] Sakaoğlu Özgüç, İ., Yurdakadim, T.: On quasi-statistcal convergence. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 61(1), 11-17 (2012)
- [13] Long-Guang, H., Xian, Z.: Cone metric space and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1467-1475 (2007)
 [14] Azam, A., Arshad, M., Beg, I.: Banach contraction principle on cone rectangular metric space. Appl. Anal. Discrete Math. 3, 236-241 (2009)
 [15] Jleli, M., Samet, B.: The Kannas's fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2(3), 161-167 (2009)