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Abstract

In this work, we prove the existence of a spectral function for one dimensional singular Dirac system on time scales. Further, we establish a
Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
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1. Introduction

The theory of time scales attempts to unify continuous and discrete mathematics. It was introduced at first by Stefan Hilger in [12]. This
theory represents an effective tool for applications to insect population models, quantum physics, maximization problems in economics,
epidemic models among others. Hence, it has recently received a lot of attention (see [1], [4]- [7], [9]-[10], [15]).

Eigenfunction expansions theorems are important for solving varies problems in mathematics. We lead to the problem of expanding an
arbitrary function as a series of eigenfunctions whenever we seek a solution of a partial differential equation by the Fourier method. There
are a lot of studies about eigenfunction expanding problems (for instance, see [2]-[3], [10]-[11], [16], [19]).

In this paper, we consider the one dimensional singular Dirac system

—AYS +p(t)y1 = Ay, (1.1)
Ay +r(t)y2 = Ay2,

where p(.) and r(.) are real-valued functions defined on [a, )T and p,r € Li 10c ([@,%0)T) , where

Li,loc ([a,e0)) :={f : [a,00)T = R :=(—o0,00), [;|f (t)| At < oo, VI finite subinterval of [a,eo)}.

If T =R, the system (1.1) describe a relativistic electron in the electrostatic field (see [20]). For these systems, we prove the existence of a
spectral function. A Parseval equality and an expansion formula in eigenfunctions are established.

On the other hand, there is a few research about Dirac system on time scales ([8], [13]). Hence, our study can fill the important gap in this
subject.

Now, we recall some necessary fundamental concepts of time scale calculus. These definitions and properties can be found in [6]-[7].

Let T be a time scale, i.e, a non-empty closed subset of real numbers R. The forward jump operator 6 : T — T is defined by

o(t)=inf{s€T:s>r}, wheret € T
and the backward jump operator p : T — T is defined by
p(t)=sup{seT:s<t}, wherer € T.

It is convenient to have graininess operators g : T — [0,00) and pp : T — (—oo,0] defined by

bo (1) =0 (1) —1

and
respectively.
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Definition 1.1. A point t € T is left scattered if Uy (t) # 0 and left dense if i, (t) = 0. A point t € T is right scattered if g (t) # 0 and right
dense if Us (t) = 0.

Now, we introduce the sets T, T, T* which are derived form the time scale T as follows. If T has a left scattered maximum ¢#;, then
T* =T — {1}, otherwise T¥ = T. If T has a right scattered minimum #,, then T; = T — {£,}, otherwise Tj = T. Finally, T* = T* 0T

Definition 1.2. A function f on T is said to be A- differentiable at some point t € T if there is a number f2 (¢) such that for every € > 0
there is a neighborhood U C T of t such that

£(6(1) = f(5) = fA(1)(0(t) —5)| < e[o(t) —s| wheres € U.

Analogously one may define the notion of V-differentiability of some function using the backward jump p. One can show (see [9])
PO =), ) =r~4e0)

for continuously differentiable functions.

If T =R, then

FAo=ro.

If T =hZ (h > 0), then

fa+h)—f()
. .

If T =g (¢ > 1), then
flat) = f(1)

(g—1)1
The product and quotient rules on time scales have the following form: If f,g: T — R, then
(f8) () = 1
(f9)" () =17
(5) o=~

A=

A=

(1)

v
f)A
8
f)v
8

Let f: T — R be a function, and a,b € T. If there exists a function F : T — R such that F2(t) = f(t) for all t € T, then F is a
A-antiderivative of f. In this case the integral is given by the formula

t) =
1) =

(
(

/bf(t)At — F(b)—F(a) fora,b e T.

Analogously one may define the notion of V-antiderivative of some function.
If T=R and f is continuous, then

./abf(t)At:(/abf(t)dt.

If T=hZ (h>0)and a = hx, b = hy, x <y, then
b y—1

/ FO)A=hY f(hk).

Ja k=x

IfT=g"% (¢g>1)anda=q",b=¢", x <y, then

b y—1
/a f(0)at=(q— l)kgq"f (qk) :

Let T be a time scale which is bounded from below and unbounded from above such that inf T = a > —eo and sup T = . We will denote T
also as [a, o).
Let Li [a,o=)T be the space of all functions defined on T such that

11l = (/:|f(z)|2m) o

The space Li [a,°0)T is a Hilbert space with the inner product (see [17])

()= | Tr030An, figea)y.
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Now, we introduce convenient Hilbert space 77 := Li ([a,°)T;E) (E := Rz) of vector-valued functions using the inner product

(r.8):= | (@80, fger.

Now lety(.) = ( i; 8 ) ,z() = < 2 8 > € . Then, we define the Wronskian of y(¢) and z(¢) by

W (3,2) (1) = y1 (1) 25 (1) =21 (1))5 (1), (1.2)
where fP (t) := f (p (1))

2. Main Results

Let us consider

(y) = { 7Ay12) +p(t))’1

T b
Ay +r(t)y2

T(y)=Ay, y= ( i; >,r€ [a,%)T, @.1

with the boundary condition
y1 (a,A)sinf +y’2) (a,A)cos =0, B R, 2.2)

where Af(t) := f2(t), A is a complex eigenvalue parameter, p(.) and r(.) are real-valued functions defined on [a,) and p,r €
Ly joc ([a,0))-
'Aloc ’

Denote by ¢ (,A) = ( g; 8’;3 ) , the solution of the system (2.1) subject to the initial conditions

91 (a,A) =cosf, ¢ (a,A) = —sin. 2.3)
Further, we adjoin to problem (2.1)-(2.2) the boundary condition
y5 (b,A)cosa +y; (b,A)sina =0, b € (a,%)7 ,0 €R. 2.4

It is clear that the problem (2.1), (2.2), (2.4) is a regular problem for a Dirac system.
Let Ay, 5, (m € Z:={0,%1,%2,...}) denote the eigenvalues of this problem and by

YR (610 2m)

the corresponding eigenfunction which satisfy the conditions (2.2). If f (¢) = < ? g% > ,
2

[ (R0+A0)8 < 1=

and

o= (o3 0) + (020)") .

then we have

[ (R0+A0)
—m_im()%b { [ (rwelhw+rwe (r))Az}z. 25)

which is called the Parseval equality.
Now, let us define the nondecreasing step function @, on (—eo, ) by

I
“La<h<0 g2y for A<0

W, (A) =
»(A) Y0<h,<A O%b for A > 0.

Then equalities (2.5) can be written as

[ (Ro+p)s= [ Poe,n), 06
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where

PO = [ (A0 60+ 500 0,2) &

We will show that the Parseval equality for the problem (2.1), (2.2) can be obtained from (2.6) by letting b — oo. For this purpose, we shall
prove a lemma.

Lemma 2.1. For any positive K, there is a positive constant Y = Y () not depending on b such that
K
1
Vi)=Y —S—=o-o(-Kx<T. @7
—K — kA< Kb
Proof. Let sinf # 0. Since ¢, (¢, 1) is continuous on the region
{t,A): —x <A <K,a<t<b},

by condition (i)f (a,A) = —sin, there is a positive number k and near by a such that

2
(%/kq)z(r,z)m) > %sinzﬁ. (2.8)

Let us define f; () = ( gz Eg ) by

1 a<t<k

fie(t) =0, ka(t):{ 57 t>k

From (2.6), (2.7) and (2.8), we get

/ak (A pw)a="50= " (i/‘;k%(l,l)m)zda)b ()

z/_i(,i/f@(z,x)m)zdwbm

L
>3 sin’ B {@y (k) — @, (=)},
which proves the inequality (2.7).

If sin B = 0, then we define the function fi (1) = ( ﬁz 8

—

) by the formula

~—

i
_ 2 a§t<k _
S (2) { 0. P>k S (t) = 0.

So, we obtain the inequality (2.7) by applying the Parseval equality. O

Now, we recall that the following well-known theorems of Helly’s.

Theorem 2.2 ([14]). Let (uy),cy (N:={1,2,3,...}) be a uniformly bounded sequence of real nondecreasing function on a finite interval
¢ <A <d. Then there exists a subsequence (uy, ), cn and a nondecreasing function u such that

lim up, (A) =u(d), c <A <d.

k—yoo

Theorem 2.3 ([14]). Assume (uy),c is a real, uniformly bounded, sequence of nondecreasing function on a finite interval ¢ < A < d, and
suppose

limu, (A)=u(d), c <A <d.

n—yoo

If f is any continuous function on ¢ < A < d, then

lim /Ldf(l)dun()u):/Cdf(l)du(k).

n—oo Jo

Let @ be any nondecreasing function on —co < A < oo, Denote by L2 (—eo,0) the Hilbert space of all functions f : (—eo,o0) — (—oo, o)
which are measurable with respect to the Lebesque-Stieltjes measure defined by  and such that

[ FRder) <=,
with the inner product

(F.8)oi= [ _F(R)z@)d).

The main result of this paper is the following theorem.
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Theorem 2.4. For the Dirac system (2.1)-(2.2), there exists a nondecreasing function ® (1) on —eo < A < oo with the following properties.

A)

) € J, there exist a function F € L2 (—oo,00) such that

b—o ) oo

o0 b
iin [ {F@- [ (00 00+ 000 o) <0,
and the Parseval equality
[ (Ro+go)a= [ Padon)

holds.
(ii) The integrals

/:QF(A)(pl (t,4)d (1) and /:F(A)%(r,z)dw(x)

converge to f1 and f> in Li [a,o°), respectively. That is,

b—oo

oo 2
lim b{f] 0~ [ @ cadom)]| a0,

b—roo

lim {fz( )— /wF(A)@(z,x)dw(x)}zm—o.

We note that the function @ is called a spectral function for the system (2.1)-(2.2).

Proof. Assume that the function fg (x) = ( hie (x) ) satisfies the following conditions.

fre (x)
1) f¢ (¢) vanishes outside the interval [a,&]r, § € T,§ <b.
2) The function f¢ (¢) is A—differentiable.
3) fe (¢) satisfies the boundary condition (2.2).
If we apply to f¢ (¢) the Parseval equality (2.6), we obtain

[ 0+ 20 a= [ Radom),

where
¢
Fe )= [ (fig@or.2)+ g (002.1.2)) &1
Since ¢ (z, /l) satisfies the system (2.1), we see that
o1 (1,4) = [ AQY (1,2) +p (1) 91 (1,4)]
(0)) (t7;l’) = x [A¢1 (t7;‘")+r(l)¢2(t7/l)]‘
By (2.12), we get
= [ R [-808 @)+ p )0y 1. 0]

[ g (0101 0,2) 4 ()02, 2))

(2.9)

(2.10)

@2.11)

2.12)

Since f¢ (t) vanishes in a neighborhood of the point b and f¢ (¢) and ¢ (#,1) satisfy the boundary condition (2.3), we obtain

F )= [ 0162) [ (0400 g )]
1 b
5 [ 0202 [Mhe 0 +r) fg 0] a1

by integration by parts.
For any finite ¥ > 0, using (2.6), we have

I FZ (M) day (1)

_y 01 (0,2) [<Af5 1)+ p(1) fig (1)
TR 00 ) [Afig (040 £z ()

oo [ p] oD AL 00 A0
S| A0 0R) [ 0+ £z (1)

2
Az} day (1)

2
]At} day (1)

~
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— LB A 0+ p0 5 0] + A 0+ 01 0] fv.
From (2.11), we see that
[ (o 0)s- [ B adan) <

¢
5 A 0400 fig 0] + [ 0+ 1052 0] o, e.13)

K2

By Lemma 2.1, the set {@}, (1)} is bounded. Using Theorems 2.2 and 2.3, we can find a sequence {b;} such that the function aj, (1)
(K — o0) converge to a monotone function @ (A ). Passing to the limit with respect to {b;} in (2.13), we get

| (R ew)a [ R () (4

< 5 [ Fag 0+r0As 0] + (310405 0] o
Hence, letting k¥ — oo, we obtain

/a: (£ 0+ 7 (r))Az:/:Fg(x)dw(;L).

Now, let f be an arbitrary function on .77 It is known that there exists a sequence of function { fe (t)} satisfying the condition 1-3 and such
that

sim [0 =0 o -
Let
Fe)= [ | een]a,

where the norm ||.|| is the convenient norm in E. Then, we have
/am (£ )+ 3 () e = /:Fg (A)do ().

Since

[ 0-r 0| s o0aé6 e

we have

/_Z (B (1) -, ()L)) do (A

as &,&y — 0. Consequently, there is a limit function F which satisfies

/w (ff(z)+f22(z))m:LZF2(A)dw(A)7

a

2
—fe (t)” At —0

by the completeness of the space L2 (—oo, o).
Our next goal is to show that the function

¢
= (A0 +L 0601 A

converges as & — oo to F in the metric of space L2, (—oo,0) . Let g be another function in .7#. By a similar arguments, G (1) be defined by
g. Itis clear that

[ lro-swiPar= [~ (F 1) -6 do),
Set

), refad]
g(t):{ 0, r€(& o).

Then we have
[ Arw-xe@} dom) = [ (RO+A0) 80 E =),

which proves that K converges to F in L2 (—oo,00) as & — oo, This proves (i).
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Now, we will prove (ii). Suppose that the functions f (.) = ? 8 ,g()= ( ? 8 ) € A, and F (1) and G (1) are their Fourier
2\ 2\

transforms. Then F F G are transforms of f & g. Consequently, by (2.10), we have

roo

[ (no+a@P+1n0+e@?)a= [ F@)+62) do@).

—oo

0o

[ (h0-a0r+0-a0P)a= [ (F@)-62) o),

—oo

Subtracting the second relation from the first, we get

Lo+ pOa0a= [ FO)6RHd0@) @.14)

—oo

which is called the generalized Parseval equality.
Set

([ FA (6 A)do(A)
ff(”*( FoF (W) on (1.4) do (1) )’”0’

where F is the function defined in (2.9). Let g(.) = ( ? E
2

NN

) be a vector-function which equals zero outside the finite interval

[a, 1]y, 1 > a. Thus, we obtain

o= [ [ F W0 nd0m) 0

L rweendom)ens

= [ra{ [ eenaoation)

[ o] [ eebansfaon

- [ racmden). 2.15)
From (2.14), we get
(r.9)= [ FMGRId®). .16)
Subtracting (2.15) and (2.16), we have

(fe=f8)= [ F(AGH)do®).

A|>7

Using Cauchy-Schwarz inequality, we obtain

(fe—rf < [ PRdo@) [ 6*R)do)

g/ F (/l)dw(/l)/ G do ().
A>T —oo
Apply this inequality to the function

¢(t) :{ fe@)—f(t), te0pulp

07 re (N7°°)T7

we get

=122 [ FPRyde).

IA|>7
Letting T — oo yields the desired result. O
3. Conclusion
In this paper, we have considered one dimensional singular Dirac system on time scales. In this context, we prove the existence of a spectral

function for one dimensional singular Dirac system on time scales. Finally, we establish a Parseval equality and expansion formula in
eigenfunctions by terms of the spectral function.
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