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Abstract

In this work, we prove the existence of a spectral function for one dimensional singular Dirac system on time scales. Further, we establish a
Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.

Keywords: Dirac operator, parseval equality, singular point, spectral function, Time scales
2010 Mathematics Subject Classification: 34L05, 34L10, 34N05

1. Introduction

The theory of time scales attempts to unify continuous and discrete mathematics. It was introduced at first by Stefan Hilger in [12]. This
theory represents an effective tool for applications to insect population models, quantum physics, maximization problems in economics,
epidemic models among others. Hence, it has recently received a lot of attention (see [1], [4]- [7], [9]-[10], [15]).
Eigenfunction expansions theorems are important for solving varies problems in mathematics. We lead to the problem of expanding an
arbitrary function as a series of eigenfunctions whenever we seek a solution of a partial differential equation by the Fourier method. There
are a lot of studies about eigenfunction expanding problems (for instance, see [2]-[3], [10]-[11], [16], [19]).
In this paper, we consider the one dimensional singular Dirac system

−∆yρ

2 + p(t)y1 = λy1, (1.1)

∆y1 + r (t)y2 = λy2,

where p(.) and r (.) are real-valued functions defined on [a,∞)T and p,r ∈ L1
∆,loc ([a,∞)T) , where

L1
∆,loc ([a,∞)T) := { f : [a,∞)T→ R := (−∞,∞) ,

∫
I | f (t)|∆t < ∞,∀I finite subinterval of [a,∞)T} .

If T= R, the system (1.1) describe a relativistic electron in the electrostatic field (see [20]). For these systems, we prove the existence of a
spectral function. A Parseval equality and an expansion formula in eigenfunctions are established.
On the other hand, there is a few research about Dirac system on time scales ([8], [13]). Hence, our study can fill the important gap in this
subject.
Now, we recall some necessary fundamental concepts of time scale calculus. These definitions and properties can be found in [6]-[7].
Let T be a time scale, i.e, a non-empty closed subset of real numbers R. The forward jump operator σ : T→ T is defined by

σ (t) = inf{s ∈ T : s > t} , where t ∈ T

and the backward jump operator ρ : T→ T is defined by

ρ (t) = sup{s ∈ T : s < t} , where t ∈ T.

It is convenient to have graininess operators µσ : T→ [0,∞) and µρ : T→ (−∞,0] defined by

µσ (t) = σ (t)− t

and

µρ (t) = ρ (t)− t,

respectively.
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Definition 1.1. A point t ∈ T is left scattered if µρ (t) 6= 0 and left dense if µρ (t) = 0. A point t ∈ T is right scattered if µσ (t) 6= 0 and right
dense if µσ (t) = 0.

Now, we introduce the sets Tk, Tk, T∗ which are derived form the time scale T as follows. If T has a left scattered maximum t1, then
Tk = T−{t1} , otherwise Tk = T. If T has a right scattered minimum t2, then Tk = T−{t2} , otherwise Tk = T. Finally, T∗ = Tk ∩Tk.

Definition 1.2. A function f on T is said to be ∆- differentiable at some point t ∈ T if there is a number f ∆(t) such that for every ε > 0
there is a neighborhood U ⊂ T of t such that

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| where s ∈U.

Analogously one may define the notion of ∇-differentiability of some function using the backward jump ρ . One can show (see [9])

f ∆(t) = f ∇(σ(t)), f ∇(t) = f ∆(ρ(t))

for continuously differentiable functions.

If T= R, then

f ∆(t) = f ′ (t) .

If T= hZ (h > 0), then

f ∆(t) =
f (t +h)− f (t)

h
.

If T= qN0 (q > 1), then

f ∆(t) =
f (qt)− f (t)
(q−1) t

.

The product and quotient rules on time scales have the following form: If f ,g : T→ R, then

( f g)∆ (t) = f ∆(t)g(t)+ f (σ(t))g∆(t),

( f g)∇ (t) = f ∇(t)g(t)+ f (ρ(t))g∇(t),(
f
g

)∆

(t) =
f ∆(t)g(t)− f (t)g∆(t)

g(t)g(σ(t))
,(

f
g

)∇

(t) =
f ∇(t)g(t)− f (t))g∇(t)

g(t)g(ρ(t))
.

Let f : T→ R be a function, and a,b ∈ T. If there exists a function F : T→ R such that F∆ (t) = f (t) for all t ∈ Tk, then F is a
∆-antiderivative of f . In this case the integral is given by the formula∫ b

a
f (t)∆t = F (b)−F (a) for a,b ∈ T.

Analogously one may define the notion of ∇-antiderivative of some function.
If T= R and f is continuous, then∫ b

a
f (t)∆t =

∫ b

a
f (t)dt.

If T= hZ (h > 0) and a = hx, b = hy, x < y, then

∫ b

a
f (t)∆t = h

y−1

∑
k=x

f (hk) .

If T= qN0 (q > 1) and a = qx,b = qy, x < y, then

∫ b

a
f (t)∆t = (q−1)

y−1

∑
k=x

qk f
(

qk
)
.

Let T be a time scale which is bounded from below and unbounded from above such that infT= a >−∞ and supT= ∞. We will denote T
also as [a,∞)T.
Let L2

∆
[a,∞)T be the space of all functions defined on T such that

‖ f‖ :=
(∫

∞

a
| f (t)|2 ∆t

)1/2
< ∞.

The space L2
∆
[a,∞)T is a Hilbert space with the inner product (see [17])

〈 f ,g〉 :=
∫

∞

a
f (t)g(t)∆t, f ,g ∈ L2

∆[a,∞)T .
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Now, we introduce convenient Hilbert space H := L2
∆
([a,∞)T;E) (E := R2) of vector-valued functions using the inner product

( f ,g) :=
∫

∞

a
( f (t),g(t))E ∆t, f ,g ∈H .

Now let y(.) =
(

y1 (.)
y2 (.)

)
, z(.) =

(
z1 (.)
z2 (.)

)
∈H . Then, we define the Wronskian of y(t) and z(t) by

W (y,z)(t) = y1 (t)zρ

2 (t)− z1 (t)yρ

2 (t) , (1.2)

where f ρ (t) := f (ρ (t)) .

2. Main Results

Let us consider

τ (y) :=
{
−∆yρ

2 + p(t)y1
∆y1 + r (t)y2

,

τ (y) = λy, y =
(

y1
y2

)
, t ∈ [a,∞)T, (2.1)

with the boundary condition

y1 (a,λ )sinβ + yρ

2 (a,λ )cosβ = 0, β ∈ R, (2.2)

where ∆ f (t) := f ∆(t), λ is a complex eigenvalue parameter, p(.) and r (.) are real-valued functions defined on [a,∞)T and p,r ∈
L1

∆,loc ([a,∞)T).

Denote by φ (t,λ ) =
(

φ1 (t,λ )
φ2 (t,λ )

)
, the solution of the system (2.1) subject to the initial conditions

φ1 (a,λ ) = cosβ , φ
ρ

2 (a,λ ) =−sinβ . (2.3)

Further, we adjoin to problem (2.1)-(2.2) the boundary condition

yρ

2 (b,λ )cosα + y1 (b,λ )sinα = 0, b ∈ (a,∞)T ,α ∈ R. (2.4)

It is clear that the problem (2.1), (2.2), (2.4) is a regular problem for a Dirac system.
Let λm,b (m ∈ Z := {0,±1,±2, ...}) denote the eigenvalues of this problem and by

φm,b (t) =

(
φ
(1)
m,b (t)

φ
(2)
m,b (t)

)
= φ

(
t,λm,b

)
=

(
φ1
(
t,λm,b

)
φ2
(
t,λm,b

) )

the corresponding eigenfunction which satisfy the conditions (2.2). If f (t) =
(

f1 (t)
f2 (t)

)
,

∫ b

a

(
f 2
1 (t)+ f 2

2 (t)
)

∆t <+∞,

and

α
2
m,b =

∫ b

a

((
φ
(1)
m,b (t)

)2
+
(

φ
(2)
m,b (t)

)2
)

∆t,

then we have∫ b

a

(
f 2
1 (t)+ f 2

2 (t)
)

∆t

=
∞

∑
m=−∞

1
α2

m,b

{∫ b

a

(
f1 (t)φ

(1)
m,b (t)+ f2 (t)φ

(2)
m,b (t)

)
∆t
}2

. (2.5)

which is called the Parseval equality.
Now, let us define the nondecreasing step function ωb on (−∞,∞) by

ωb (λ ) =

 −∑λ<λm,b<0
1

α2
m,b

, for λ ≤ 0

∑0≤λm,b<λ
1

α2
m,b

for λ ≥ 0.

Then equalities (2.5) can be written as∫ b

a

(
f 2
1 (t)+ f 2

2 (t)
)

∆t =
∫

∞

−∞

F2 (λ )dωb (λ ) , (2.6)
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where

F (λ ) =
∫ b

a
( f1 (t)φ1 (t,λ )+ f2 (t)φ2 (t,λ ))∆t.

We will show that the Parseval equality for the problem (2.1), (2.2) can be obtained from (2.6) by letting b→ ∞. For this purpose, we shall
prove a lemma.

Lemma 2.1. For any positive κ, there is a positive constant ϒ = ϒ(κ) not depending on b such that

κ∨
−κ

{ωb (λ )}= ∑
−κ≤λm,b<κ

1
α2

m,b
= ωb (κ)−ωb (−κ)< ϒ. (2.7)

Proof. Let sinβ 6= 0. Since φ2 (t,λ ) is continuous on the region

{(t,λ ) :−κ ≤ λ ≤ κ,a≤ t ≤ b} ,

by condition φ
ρ

2 (a,λ ) =−sinβ , there is a positive number k and near by a such that(
1
k

∫ k

a
φ2 (t,λ )∆t

)2

>
1
2

sin2
β . (2.8)

Let us define fk (t) =
(

f1k (t)
f2k (t)

)
by

f1k (t) = 0, f2k (t) =
{ 1

k , a≤ t < k
0, t ≥ k.

From (2.6), (2.7) and (2.8), we get∫ k

a

(
f 2
1k (t)+ f 2

2k (t)
)

∆t =
k−a

k2 =
∫

∞

−∞

(
1
k

∫ k

a
φ2 (t,λ )∆t

)2

dωb (λ )

≥
∫

κ

−κ

(
1
k

∫ k

a
φ2 (t,λ )∆t

)2

dωb (λ )

>
1
2

sin2
β {ωb (κ)−ωb (−κ)} ,

which proves the inequality (2.7).

If sinβ = 0, then we define the function fk (t) =
(

f1k (t)
f2k (t)

)
by the formula

f1k (t) =
{ 1

k2 , a≤ t < k
0, t ≥ k

, f2k (t) = 0.

So, we obtain the inequality (2.7) by applying the Parseval equality.

Now, we recall that the following well-known theorems of Helly’s.

Theorem 2.2 ([14]). Let (un)n∈N (N := {1,2,3, ...}) be a uniformly bounded sequence of real nondecreasing function on a finite interval
c≤ λ ≤ d. Then there exists a subsequence (unk )k∈N and a nondecreasing function u such that

lim
k→∞

unk (λ ) = u(λ ) , c≤ λ ≤ d.

Theorem 2.3 ([14]). Assume (un)n∈N is a real, uniformly bounded, sequence of nondecreasing function on a finite interval c≤ λ ≤ d, and
suppose

lim
n→∞

un (λ ) = u(λ ) , c≤ λ ≤ d.

If f is any continuous function on c≤ λ ≤ d, then

lim
n→∞

∫ d

c
f (λ )dun (λ ) =

∫ d

c
f (λ )du(λ ) .

Let ω be any nondecreasing function on −∞ < λ < ∞. Denote by L2
ω (−∞,∞) the Hilbert space of all functions f : (−∞,∞)→ (−∞,∞)

which are measurable with respect to the Lebesque-Stieltjes measure defined by ω and such that∫
∞

−∞

f 2 (λ )dω (λ )< ∞,

with the inner product

( f ,g)
ω

:=
∫

∞

−∞

f (λ )g(λ )dω (λ ) .

The main result of this paper is the following theorem.
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Theorem 2.4. For the Dirac system (2.1)-(2.2), there exists a nondecreasing function ω (λ ) on −∞ < λ < ∞ with the following properties.

(i) If f (.) =
(

f1 (.)
f2 (.)

)
∈H , there exist a function F ∈ L2

ω (−∞,∞) such that

lim
b→∞

∫
∞

−∞

{
F (λ )−

∫ b

a
( f1 (t)φ1 (t,λ )+ f2 (t)φ2 (t,λ ))∆t

}
dω (λ ) = 0, (2.9)

and the Parseval equality∫
∞

a

(
f 2
1 (t)+ f 2

2 (t)
)

∆t =
∫

∞

−∞

F2 (λ )dω (λ ) (2.10)

holds.
(ii) The integrals∫

∞

−∞

F (λ )φ1 (t,λ )dω (λ ) and
∫

∞

−∞

F (λ )φ2 (t,λ )dω (λ )

converge to f1 and f2 in L2
∆
[a,∞)T, respectively. That is,

lim
b→∞

∫ b

a

{
f1 (t)−

∫
∞

−∞

F (λ )φ1 (t,λ )dω (λ )

}2
∆t = 0,

lim
b→∞

∫ b

a

{
f2 (t)−

∫
∞

−∞

F (λ )φ2 (t,λ )dω (λ )

}2
∆t = 0.

We note that the function ω is called a spectral function for the system (2.1)-(2.2).

Proof. Assume that the function fξ (x) =
(

f1ξ (x)
f2ξ (x)

)
satisfies the following conditions.

1) fξ (t) vanishes outside the interval [a,ξ ]T, ξ ∈ T,ξ < b.
2) The function fξ (t) is ∆−differentiable.
3) fξ (t) satisfies the boundary condition (2.2).
If we apply to fξ (t) the Parseval equality (2.6), we obtain∫

ξ

a

(
f 2
1ξ

(t)+ f 2
2ξ

(t)
)

∆t =
∫

∞

−∞

F2
ξ
(λ )dω (λ ) , (2.11)

where

Fξ (λ ) =
∫

ξ

a

(
f1ξ (x)φ1 (t,λ )+ f2ξ (t)φ2 (t,λ )

)
∆t. (2.12)

Since φ (t,λ ) satisfies the system (2.1), we see that

φ1 (t,λ ) =
1
λ

[
−∆φ

ρ

2 (t,λ )+ p(t)φ1 (t,λ )
]
,

φ2 (t,λ ) =
1
λ
[∆φ1 (t,λ )+ r (t)φ2 (t,λ )] .

By (2.12), we get

Fξ (λ ) =
1
λ

∫ b

a
f1ξ (t)

[
−∆φ

ρ

2 (t,λ )+ p(t)φ1 (t,λ )
]

∆t

+
1
λ

∫ b

a
f2ξ (t) [∆φ1 (t,λ )+ r (t)φ2 (t,λ )]∆t.

Since fξ (t) vanishes in a neighborhood of the point b and fξ (t) and φ (t,λ ) satisfy the boundary condition (2.3), we obtain

Fξ (λ ) =
1
λ

∫ b

a
φ1 (t,λ )

[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]
∆t

+
1
λ

∫ b

a
φ2 (t,λ )

[
∆ f1ξ (t)+ r (t) f2ξ (t)

]
∆t,

by integration by parts.
For any finite κ > 0, using (2.6), we have∫
|λ |>κ F2

ξ
(λ )dωb (λ )

≤ 1
κ2

∫
|λ |>κ

∫ b
a

 φ1 (t,λ )
[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]
+φ2 (t,λ )

[
∆ f1ξ (t)+ r (t) f2ξ (t)

] ∆t


2

dωb (λ )

≤ 1
κ2

∫
∞

−∞

∫ b
a

 φ1 (t,λ )
[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]
+φ2 (t,λ )

[
∆ f1ξ (t)+ r (t) f2ξ (t)

] ∆t


2

dωb (λ )
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= 1
κ2

∫
ξ

a

{[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]2
+
[
∆ f1ξ (t)+ r (t) f2ξ (t)

]2
}

∆t.

From (2.11), we see that∣∣∣∣∫ ξ

a

(
f 2
1ξ

(t)+ f 2
2ξ

(t)
)

∆t−
∫

κ

−κ

F2
ξ
(λ )dωb (λ )

∣∣∣∣≤
1

κ2

∫
ξ

a
{
[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]2
+
[
∆ f1ξ (t)+ r (t) f2ξ (t)

]2
}∆t. (2.13)

By Lemma 2.1, the set {ωb (λ )} is bounded. Using Theorems 2.2 and 2.3, we can find a sequence {bk} such that the function ωbk (λ )
(κ → ∞) converge to a monotone function ω (λ ) . Passing to the limit with respect to {bk} in (2.13), we get∣∣∣∣∫ ξ

a

(
f 2
1ξ

(t)+ f 2
2ξ

(t)
)

∆t−
∫

κ

−κ

F2
ξ
(λ )dω (λ )

∣∣∣∣
≤ 1

κ2

∫
ξ

a

{[
−∆ f ρ

2ξ
(t)+ p(t) f1ξ (t)

]2
+
[
∆ f1ξ (t)+ r (t) f2ξ (t)

]2
}

∆t.

Hence, letting κ → ∞, we obtain∫
ξ

a

(
f 2
1ξ

(t)+ f 2
2ξ

(t)
)

∆t =
∫

∞

−∞

F2
ξ
(λ )dω (λ ) .

Now, let f be an arbitrary function on H . It is known that there exists a sequence of function
{

fξ (t)
}

satisfying the condition 1-3 and such
that

lim
ξ→∞

∫
∞

a

∥∥∥ f (t)− fξ (t)
∥∥∥2

∆t = 0.

Let

Fξ (λ ) =
∫

∞

a

∥∥∥ f T
ξ
(t)φ (t,λ )

∥∥∥∆t,

where the norm ‖.‖ is the convenient norm in E. Then, we have∫
∞

a

(
f 2
1ξ

(t)+ f 2
2ξ

(t)
)

∆t =
∫

∞

−∞

F2
ξ
(λ )dω (λ ) .

Since∫
∞

a

∥∥∥ fξ1
(t)− fξ2

(t)
∥∥∥2

∆t→ 0 as ξ1,ξ2→ ∞,

we have∫
∞

−∞

(
Fξ1

(λ )−Fξ2
(λ )
)2

dω (λ ) =
∫

∞

a

∥∥∥ fξ1
(t)− fξ2

(t)
∥∥∥2

∆t→ 0

as ξ1,ξ2→ ∞. Consequently, there is a limit function F which satisfies∫
∞

a

(
f 2
1 (t)+ f 2

2 (t)
)

∆t =
∫

∞

−∞

F2 (λ )dω (λ ) ,

by the completeness of the space L2
ω (−∞,∞) .

Our next goal is to show that the function

Kξ (λ ) =
∫

ξ

a
f1 (t)φ1 (t,λ )+ f2 (t)φ2 (t,λ )∆t

converges as ξ → ∞ to F in the metric of space L2
ω (−∞,∞) . Let g be another function in H . By a similar arguments, G(λ ) be defined by

g. It is clear that∫
∞

a
‖ f (t)−g(t)‖2

∆t =
∫

∞

−∞

{F (λ )−G(λ )}2 dω (λ ) .

Set

g(t) =
{

f (t) , t ∈ [a,ξ ]
0, t ∈ (ξ ,∞) .

Then we have∫
∞

−∞

{
F (λ )−Kξ (λ )

}2
dω (λ ) =

∫
∞

ξ

(
f 2
1 (t)+ f 2

2 (t)
)

∆t→ 0 (ξ → ∞) ,

which proves that Kξ converges to F in L2
ω (−∞,∞) as ξ → ∞. This proves (i).
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Now, we will prove (ii). Suppose that the functions f (.) =
(

f1 (.)
f2 (.)

)
, g(.) =

(
g1 (.)
g2 (.)

)
∈H , and F (λ ) and G(λ ) are their Fourier

transforms. Then F∓G are transforms of f ∓g. Consequently, by (2.10), we have∫
∞

a

(
[ f1 (t)+g1 (t)]

2 +[ f2 (t)+g2 (t)]
2
)

∆t =
∫

∞

−∞

(F (λ )+G(λ ))2 dω (λ ) ,∫
∞

a

(
[ f1 (t)−g1 (t)]

2 +[ f2 (t)−g2 (t)]
2
)

∆t =
∫

∞

−∞

(F (λ )−G(λ ))2 dω (λ ) .

Subtracting the second relation from the first, we get∫
∞

a
[ f1 (t)g1 (t)+ f2 (t)g2 (t)]∆t =

∫
∞

−∞

F (λ )G(λ )dω (λ ) (2.14)

which is called the generalized Parseval equality.
Set

fτ (t) =
( ∫

τ

−τ F (λ )φ1 (t,λ )dω (λ )∫
τ

−τ F (λ )φ2 (t,λ )dω (λ )

)
,τ > 0,

where F is the function defined in (2.9). Let g(.) =
(

g1 (.)
g2 (.)

)
be a vector-function which equals zero outside the finite interval

[a,µ]T , µ > a. Thus, we obtain

( fτ ,g) =
∫

µ

a

{∫
τ

−τ

F (λ )φ1 (t,λ )dω (λ )

}
g1 (t)∆t

+
∫

µ

0

{∫
τ

−τ

F (λ )φ2 (t,λ )dω (λ )

}
g2 (t)∆t

=
∫

τ

−τ

F (λ )

{∫
µ

0
φ1 (t,λ )g1 (t)∆t

}
dω (λ )

+
∫

τ

−τ

F (λ )

{∫
µ

0
φ2 (t,λ )g2 (t)∆t

}
dω (λ )

=
∫

τ

−τ

F (λ )G(λ )dω (λ ) . (2.15)

From (2.14), we get

( f ,g) =
∫

∞

−∞

F (λ )G(λ )dω (λ ) . (2.16)

Subtracting (2.15) and (2.16), we have

( fτ − f ,g) =
∫
|λ |>τ

F (λ )G(λ )dω (λ ) .

Using Cauchy-Schwarz inequality, we obtain

|( fτ − f ,g)|2 ≤
∫
|λ |>τ

F2 (λ )dω (λ )
∫
|λ |>τ

G2 (λ )dω (λ )

≤
∫
|λ |>τ

F2 (λ )dω (λ )
∫

∞

−∞

G2 (λ )dω (λ ) .

Apply this inequality to the function

g(t) =
{

fτ (t)− f (t) , t ∈ [0,µ]T
0, t ∈ (µ,∞)T ,

we get

‖ fτ − f‖2 ≤
∫
|λ |>τ

F2 (λ )dω (λ ) .

Letting τ → ∞ yields the desired result.

3. Conclusion

In this paper, we have considered one dimensional singular Dirac system on time scales. In this context, we prove the existence of a spectral
function for one dimensional singular Dirac system on time scales. Finally, we establish a Parseval equality and expansion formula in
eigenfunctions by terms of the spectral function.
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