Close-to-Convex Functions By Means Of Bounded Boundary Rotation

Yaşar Polatog̃lu ${ }^{1}$, Asena Çetinkaya ${ }^{1}$ and Oya Mert ${ }^{2 *}$
${ }^{1}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey
${ }^{2}$ Department of Basic Sciences, Altunbaş University, İstanbul, Turkey
*Corresponding author E-mail: oya.mert@altinbas.edu.tr

Abstract

In the present paper, we study on the class $\mathscr{C} \mathscr{C}_{k}(A, B)$ of the close-to-convex functions with bounded boundary rotation. We investigate distortion theorem, growth theorem and coefficient inequality for the class $\mathscr{C} \mathscr{C}_{k}(A, B)$.

Keywords: Bounded boundary rotation, Coefficient inequality, Distortion theorem, Growth theorem
2010 Mathematics Subject Classification: 30C45.

1. Introduction

Let \mathscr{A} be the class of all analytic functions of the form
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ and let g be an element of \mathscr{A}. If g satisfies the condition

$$
\operatorname{Re}\left(1+z \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right)>0
$$

then g is called convex function. The class of such functions is denoted by \mathscr{C}. For more details of convex functions one may refer to [1]. Let Ω be the family of functions ϕ regular in \mathbb{D} and satisfying the condition $\phi(0)=0$ and $|\phi(z)|<1$ for all $z \in \mathbb{D}$. For arbitrary fixed number $A, B,-1 \leq B<A \leq 1$ denote by $\mathscr{P}(A, B)$ the family of functions $p(z)=1+p_{1} z+p_{2} z^{2} \ldots$, analytic in \mathbb{D} such that p in $\mathscr{P}(A, B)$ if and only if

$$
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}
$$

for some function $\phi \in \Omega$ and every $z \in \mathbb{D}$. A function p of the form $p(z)=1+p_{1} z+p_{2} z^{2} \ldots$, analytic in \mathbb{D} with $p(0)=1$ is said to be in the class of $\mathscr{P}_{k}(A, B), k \geq 2,-1 \leq B<A \leq 1$ if and only if there exists $p_{1}^{(1)}, p_{2}^{(2)} \in \mathscr{P}(A, B)$ such that

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(2)}(z)
$$

We now give the following definition.
Definition 1.1. Let f of the form (1.1) be an element of \mathscr{A}. Then $f \in \mathscr{C} \mathscr{C}_{k}(A, B)$, if there exists a function $g \in \mathscr{C}$ such that
$\frac{f^{\prime}(z)}{g^{\prime}(z)}=p(z), \quad p \in \mathscr{P}_{k}(A, B)$,
with $k \geq 2,-1 \leq B<A \leq 1$, then f is called close-to-convex function with bounded boundary rotation denoted by $\mathscr{C} \mathscr{C}_{k}(A, B)$.
We investigate distortion theorem, growth theorem and coefficient inequality for the class $\mathscr{C} \mathscr{C}_{k}(A, B)$. Details of bounded boundary rotation can be found in [3],[4].

2. Main Results

Let p be an element of $\mathscr{P}(A, B)$ and $|z|=r<1$, then we have

$$
\begin{align*}
& \frac{1-A r}{1-B r} \leq \operatorname{Rep}(z) \leq|p(z)| \leq \frac{1+A r}{1+B r}, \quad B \neq 0 \tag{2.1}\\
& 1-A r \leq \operatorname{Rep}(z) \leq|p(z)| \leq 1+A r, \quad B=0
\end{align*}
$$

After simple calculations in (2.1), we get

$$
\begin{array}{cl}
\frac{1-\frac{k}{2}(A-B) r-A B r^{2}}{1-B^{2} r^{2}} \leq \operatorname{Rep}(z) \leq \frac{1+\frac{k}{2}(A-B) r-A B r^{2}}{1-B^{2} r^{2}}, & B \neq 0 \tag{2.2}\\
1-\frac{k}{2} A r \leq \operatorname{Rep}(z) \leq 1+\frac{k}{2} A r, & B=0
\end{array}
$$

(2.2) shows that the set of variability of $p \in \mathscr{P}_{k}(A, B)$ is the closed disc

$$
\begin{aligned}
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| & \leq \frac{\frac{k}{2}(A-B) r}{1-B^{2} r^{2}}, \\
|p(z)-1| & \leq \frac{k}{2} A r, \\
\mid & B=0
\end{aligned}
$$

On the other hand from definition of $\mathscr{C} \mathscr{C}_{k}(A, B)$, we can write

$$
\begin{align*}
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(A-B) r}{1-B^{2} r^{2}}, & B \neq 0 \\
& \left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-1\right| \leq \frac{k}{2} A r, \quad B=0 \tag{2.4}
\end{align*}
$$

Since g is convex, using distortion bound of convex functions and above inequalities, we obtain

$$
\begin{array}{cc}
\frac{1-\frac{k}{2}(A-B) r-A B r^{2}}{(1+r)^{2}\left(1-B^{2} r^{2}\right)} \leq\left|f^{\prime}(z)\right| \leq \frac{1+\frac{k}{2}(A-B) r-A B r^{2}}{(1-r)^{2}\left(1-B^{2} r^{2}\right)}, & B \neq 0 \tag{2.5}\\
\frac{1-\frac{k}{2} A r}{(1+r)^{2}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+\frac{k}{2} A r}{(1-r)^{2}}, & B=0
\end{array}
$$

Sharpness follows from the function f and g (convex) where

$$
\begin{align*}
& \frac{f^{\prime}(z)}{g^{\prime}(z)}=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1-A z}{1-B z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1+A z}{1+B z}, \quad B \neq 0 \tag{2.6}\\
& \frac{f^{\prime}(z)}{g^{\prime}(z)}=\left(\frac{k}{4}+\frac{1}{2}\right)(1-A z)-\left(\frac{k}{4}-\frac{1}{2}\right)(1+A z), \quad B=0
\end{align*}
$$

Since $p(z)=\frac{f^{\prime}(z)}{g^{\prime}(z)}, g \in \mathscr{C}$,

$$
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(A-B) r}{1-B^{2} r^{2}}
$$

then the set of variability of $\frac{f^{\prime}}{g^{\prime}}$ is the closed disc

$$
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(A-B) r}{1-B^{2} r^{2}}
$$

Therefore this set could be written in the following form

$$
\begin{equation*}
w\left(\mathbb{D}_{r}\right)=\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}:\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(A-B) r}{1-B^{2} r^{2}}, \quad 0<r<1\right\} \tag{2.7}
\end{equation*}
$$

On the other hand, we define the function ϕ by

$$
\begin{array}{ll}
\frac{f(z)}{g(z)}=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1-A \phi(z)}{1-B \phi(z)}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1+A \phi(z)}{1+B \phi(z)}=\frac{1-\frac{k}{2}(A-B) \phi(z)-A B(\phi(z))^{2}}{1-B^{2}(\phi(z))^{2}}, & B \neq 0 \tag{2.8}\\
\frac{f(z)}{g(z)}=\left(\frac{k}{4}+\frac{1}{2}\right)(1-A \phi(z))-\left(\frac{k}{4}-\frac{1}{2}\right)(1+A \phi(z))=1-\frac{k}{2} A \phi(z), & B=0 .
\end{array}
$$

Note that ϕ is well-defined analytic function and $\phi(0)=0$. Now, we want to show that $|\phi(z)|<1$ for every $z \in \mathbb{D}$. Taking derivative and simplifying both sides of (2.8), we get

$$
\begin{aligned}
\frac{f^{\prime}(z)}{g^{\prime}(z)} & =\frac{1-\frac{k}{2}(A-B) \phi(z)-A B(\phi(z))^{2}}{1-B^{2}(\phi(z))^{2}} \\
& +\frac{z \phi^{\prime}(z)\left(-\frac{k}{2}(A-B)\left(1+B^{2}(\phi(z))^{2}\right)-2 B(A-B) \phi(z)\right)}{\left(1-B^{2}(\phi(z))^{2}\right)^{2}} \frac{g(z)}{z g^{\prime}(z)}, \quad B \neq 0,
\end{aligned}
$$

$\frac{f^{\prime}(z)}{g^{\prime}(z)}=1-\frac{k}{2} A \phi(z)-\frac{k}{2} A z \phi^{\prime}(z) \frac{g(z)}{z g^{\prime}(z)}, \quad B=0$.
Suppose that there exists a $z_{0} \in \mathbb{D}_{r}$ such that $\left|\phi\left(z_{0}\right)\right|=1$, then by Jack's Lemma [2], we obtain

$$
\begin{aligned}
\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)} & =\frac{1-\frac{k}{2}(A-B) \phi\left(z_{0}\right)-A B\left(\phi\left(z_{0}\right)\right)^{2}}{1-B^{2}\left(\phi\left(z_{0}\right)\right)^{2}} \\
& +\frac{m \phi\left(z_{0}\right)\left(-\frac{k}{2}(A-B)\left(1+B^{2}\left(\phi\left(z_{0}\right)\right)^{2}\right)-2 B(A-B) \phi\left(z_{0}\right)\right)}{\left(1-B^{2}\left(\phi\left(z_{0}\right)\right)^{2}\right)^{2}} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)} \notin w\left(\mathbb{D}_{r}\right), B \neq 0,
\end{aligned}
$$

$\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}=1-\frac{k}{2} A \phi\left(z_{0}\right)-\frac{k}{2} A m \phi\left(z_{0}\right) \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)} \notin w\left(\mathbb{D}_{r}\right), \quad B=0$,
where $m \geq 1$ is a real number and $\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}=\left(1+\phi\left(z_{0}\right)\right)$. But this contradicts with (2.7), therefore we have $|\phi(z)|<1$ for all $z \in \mathbb{D}$, and obtain the following subordination

$$
\begin{aligned}
& \frac{f(z)}{g(z)} \prec\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1-A z}{1-B z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1+A z}{1+B z}, \quad B \neq 0, \\
& \frac{f(z)}{g(z)} \prec\left(\frac{k}{4}+\frac{1}{2}\right)(1-A z)-\left(\frac{k}{4}-\frac{1}{2}\right)(1+A z), \quad B=0 .
\end{aligned}
$$

Using the subordination principle, we obtain

$$
\begin{gather*}
|g(z)| \frac{1-\frac{k}{2}(A-B) r-A B r^{2}}{1-B^{2} r^{2}} \leq|f(z)| \leq|g(z)| \frac{1+\frac{k}{2}(A-B) r-A B r^{2}}{1-B^{2} r^{2}}, \quad B \neq 0, \tag{2.9}\\
|g(z)|\left(1-\frac{k}{2} A r\right) \leq|f(z)| \leq|g(z)|\left(1+\frac{k}{2} A r\right), \quad B=0 .
\end{gather*}
$$

Using the growth theorem for convex functions, the inequalities in (2.9) can be written in the following form

$$
\begin{align*}
r F(A, B, k,-r) & \leq|f(z)| \leq r F(A, B, k, r), \tag{2.10}\\
r F(A, k,-r) & \leq|f(z)| \leq r F(A, k, r),
\end{align*}
$$

where

$$
\begin{gathered}
F(A, B, k, r)=\frac{1+\frac{k}{2}(A-B) r-A B r^{2}}{(1-r)\left(1-B^{2} r^{2}\right)} \\
F(A, k, r)=\frac{1+\frac{k}{2} A r}{(1-r)}
\end{gathered}
$$

These inequalities are sharp because the extremal function is given in (2.6).
The following lemma helps us to prove the next theorem.
Lemma 2.1. Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be an element of $\mathscr{P}_{k}(A, B)$, then

$$
\left|p_{n}\right| \leq \frac{k}{2}(A-B)
$$

for all $n \geq 1, k \geq 2,-1 \leq B<A \leq 1$.This result is sharp for the functions

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(1)}(z),
$$

where $p_{1}^{(1)}, p_{2}^{(2)} \in \mathscr{P}(A, B)$.

Proof. Let $p_{1}^{(1)}=1+a_{1} z+a_{2} z^{2}+\ldots$ and $p_{2}^{(2)}=1+b_{1} z+b_{2} z^{2}+\ldots \quad$. Since $p \in \mathscr{P}_{k}(A, B)$, then we have

$$
\begin{aligned}
p(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(2)}(z) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(1+a_{1} z+a_{2} z^{2}+\ldots\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(1+b_{1} z+b_{2} z^{2}+\ldots\right) .
\end{aligned}
$$

Then, for nth term, we have

$$
p_{n}=\left(\frac{k}{4}+\frac{1}{2}\right) a_{n}-\left(\frac{k}{4}-\frac{1}{2}\right) b_{n} .
$$

Since $p_{1}^{(1)}, p_{2}^{(2)} \in \mathscr{P}(A, B)$, then $\left|a_{n}\right| \leq(A-B),\left|b_{n}\right| \leq(A-B)$ for all $n \geq 1$, and

$$
\begin{aligned}
\left|p_{n}\right| & =\left|\left(\frac{k}{4}+\frac{1}{2}\right) a_{n}-\left(\frac{k}{4}-\frac{1}{2}\right) b_{n}\right| \\
& \leq\left(\frac{k}{4}+\frac{1}{2}\right)\left|a_{n}\right|+\left(\frac{k}{4}-\frac{1}{2}\right)\left|b_{n}\right| \\
& \leq\left(\frac{k}{4}+\frac{1}{2}\right)(A-B)+\left(\frac{k}{4}-\frac{1}{2}\right)(A-B) .
\end{aligned}
$$

This shows that, $\quad\left|p_{n}\right| \leq \frac{k}{2}(A-B)$.
Theorem 2.2. If f of the form (1.1) is an element of $\mathscr{C} \mathscr{C}_{k}(A, B)$, then
$\left|a_{n}\right| \leq 1+\frac{k(A-B)(n-1)}{4}$.
This result is sharp for each $n \geq 2$.
Proof. Using Definition 1.1 and subordination principle, we write

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)}=p(z)
$$

for some $g \in \mathscr{C}$, where $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, z \in \mathbb{D}$. Since $p(0)=1$, it shows that $p \in \mathscr{P}_{k}(A, B)$, where $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$. Therefore, above equality is equivalent to

$$
\left(1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right)=\left(1+\sum_{n=2}^{\infty} n b_{n} z^{n-1}\right)\left(1+\sum_{n=1}^{\infty} p_{n} z^{n}\right)
$$

This equation yields,

$$
\begin{equation*}
1+2 a_{2} z+3 a_{3} z^{2}+\ldots=1+\left(2 b_{2}+p_{1}\right) z+\left(3 b_{3}+2 b_{2} p_{1}+p_{2}\right) z^{2}+\ldots \tag{2.12}
\end{equation*}
$$

Comparing the coefficients of z^{n-1} on both sides, we obtain

$$
n a_{n}=n b_{n}+(n-1) b_{n-1} p_{1}+(n-2) b_{n-2} p_{2}+\ldots+2 b_{2} p_{n-2}+p_{n-1} .
$$

Using Lemma 2.1, we get

$$
n\left|a_{n}\right| \leq n\left|b_{n}\right|+\frac{k}{2}(A-B)\left[(n-1)\left|b_{n-1}\right|+\ldots+2\left|b_{2}\right|+1\right] .
$$

Since g is convex, then $\left|b_{n}\right| \leq 1$, it follows from that

$$
\left|a_{n}\right| \leq 1+\frac{k(A-B)(n-1)}{4} .
$$

This completes our proof.
Remark 2.3. Letting $k=2, A=1, B=-1$, Theorem 2.2 gives the well-known coefficient inequality for close-to-convex functions.
We can conclude that an analytic functions $p \in \mathscr{P}_{k}(A, B), k \geq 2$ if and only if there exists $p_{1}, p_{2} \in \mathscr{P}(A, B)$ such that

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z)
$$

then new results are obtained for the class $\mathscr{C} \mathscr{C}_{k}(A, B)$ by means of classes of bounded boundary rotation and bounded radius rotation. Giving the special values to A, B and k we obtain the growth theorem, distortion theorem and coefficient inequality for the other subclasses.

References

[1] A. W. Goodman, Univalent functions vol. I and II, Polygonal Pub. House, 1983.
[2] I. S. Jack, Functions starlike and convex of order alpha, J. London Math. Soc. (2)(3)(1971), 469-474.
[3] K. I. Noor, B. Malik, S. Mustafa, A Survey on Functions Bounded Boundary and Bounded Radius Rotation, Appl. Math. E-Notes. 12 (2012), 136-152.
[4] B. Pinchuk, Functions of bounded boundary rotation, Isr. J. Math. 10 (1971), 7-19.

