Some Additive Inequalities for Heinz Operator Mean

Silvestru Sever Dragomir ${ }^{\text {* }}$
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
*Corresponding author E-mail: sever.dragomir@vu.edu.au

Abstract

In this paper we obtain some new additive inequalities for Heinz operator mean, namely the operator $H_{v}(A, B):=\frac{1}{2}\left(A \not{ }_{v} B+A \not{ }_{1}-v B\right)$ where $A \not{ }_{v} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{v} A^{1 / 2}$ is the weighted geometric mean for the positive invertible operators A and B, and $v \in[0,1]$.

Keywords: Young's Inequality, Real functions, Arithmetic mean-Geometric mean inequality, Heinz means
2010 Mathematics Subject Classification: 47A63, 47A30, 15A60, 26D15, 26D10.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. We use the following notations for operators and $v \in[0,1]$
$A \nabla_{v} B:=(1-v) A+v B$,
the weighted operator arithmetic mean, and
$A \not{ }^{\prime} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{v} A^{1 / 2}$,
the weighted operator geometric mean [14]. When $v=\frac{1}{2}$ we write $A \nabla B$ and $A \sharp B$ for brevity, respectively.
Define the Heinz operator mean by
$H_{v}(A, B):=\frac{1}{2}\left(A \not \sharp_{v} B+A \not \sharp_{1-v} B\right)$.
The following interpolatory inequality is obvious
$A \sharp B \leq H_{v}(A, B) \leq A \nabla B$
for any $v \in[0,1]$.
We recall that Specht's ratio is defined by [16]
$S(h):=\left\{\begin{array}{l}\frac{h^{\frac{1}{n-1}}}{\left.e^{\ln \left(h^{n-1}\right.}\right)} \text { if } h \in(0,1) \cup(1, \infty), \\ 1 \text { if } h=1 .\end{array}\right.$
It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$. The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean $A \sharp B$:
Theorem 1.1 (Dragomir, 2015 [6]). Assume that A and B are positive invertible operators and the constants $M>m>0$ are such that
$m A \leq B \leq M A$.
Then we have
$\omega_{v}(m, M) A \sharp B \leq H_{v}(A, B) \leq \Omega_{v}(m, M) A \sharp B$,
where
$\Omega_{v}(m, M):=\left\{\begin{array}{l}S\left(m^{|2 v-1|}\right) \text { if } M<1, \\ \max \left\{S\left(m^{|2 v-1|}\right), S\left(M^{|2 v-1|}\right)\right\} \text { if } m \leq 1 \leq M, \\ S\left(M^{|2 v-1|}\right) \text { if } 1<m\end{array}\right.$
and
$\omega_{v}(m, M):=\left\{\begin{array}{l}S\left(M^{\left|v-\frac{1}{2}\right|}\right) \text { if } M<1, \\ 1 \text { if } m \leq 1 \leq M, \\ S\left(m^{\left|v-\frac{1}{2}\right|}\right) \text { if } 1<m,\end{array}\right.$
where $v \in[0,1]$.
We consider the Kantorovich's constant defined by
$K(h):=\frac{(h+1)^{2}}{4 h}, h>0$.
The function K is decreasing on $(0,1)$ and increasing on $[1, \infty), K(h) \geq 1$ for any $h>0$ and $K(h)=K\left(\frac{1}{h}\right)$ for any $h>0$.
We have:
Theorem 1.2 (Dragomir, 2015 [7]). Assume that A and B are positive invertible operators and the constants $M>m>0$ are such that the condition (1.3) is valid. Then for any $v \in[0,1]$ we have
$(A \sharp B \leq) H_{v}(A, B) \leq \exp \left[\Theta_{v}(m, M)-1\right] A \sharp B$
where
$\Theta_{v}(m, M):=\left\{\begin{array}{l}K\left(m^{|2 v-1|}\right) \text { if } M<1, \\ \max \left\{K\left(m^{|2 v-1|}\right), K\left(M^{|2 v-1|}\right)\right\} \text { if } m \leq 1 \leq M, \\ K\left(M^{|2 v-1|}\right) \text { if } 1<m\end{array}\right.$
and
$(0 \leq) H_{v}(A, B)-A \sharp B \leq \frac{1}{4 m^{1-v}} \max _{x \in[m, M]} D\left(x^{2 v-1}\right) A$,
where the function $D:(0, \infty) \rightarrow[0, \infty)$ is defined by $D(x)=(x-1) \ln x$.
The following bounds for the Heinz mean $H_{v}(A, B)$ in terms of $A \nabla B$ are also valid:
Theorem 1.3 (Dragomir, 2015 [7]). With the assumptions of Theorem 1.2 we have
$(0 \leq) A \nabla B-H_{v}(A, B) \leq v(1-v) \Upsilon(m, M) A$,
where
$\Upsilon(m, M):=\left\{\begin{array}{l}(m-1) \ln m \text { if } M<1, \\ \max \{(m-1) \ln m,(M-1) \ln M\} \text { if } m \leq 1 \leq M, \\ (M-1) \ln M \text { if } 1<m\end{array}\right.$
and
$A \nabla B \exp [-4 v(1-v)(\digamma(m, M)-1)] \leq H_{v}(A, B)(\leq A \nabla B)$
where
$\digamma(m, M):=\left\{\begin{array}{l}K(m) \text { if } M<1, \\ \max \{K(m), K(M)\} \text { if } m \leq 1 \leq M, \\ K(M) \text { if } 1<m .\end{array}\right.$
For other recent results on operator geometric mean inequalities, see [1]-[13], [15] and [17]-[18].
Motivated by the above results, we establish in this paper some inequalities for the quantities
$H_{v}(A, B)-A \sharp B$ and $A \nabla B-H_{v}(A, B)$
under various assumptions for positive invertible operators A and B.

2. Bounds for $H_{v}(A, B)-A \sharp B$

We first notice the following simple result:
Theorem 2.1. Assume that A and B are positive invertible operators and the constants $M>m>0$ are such that the condition (1.3) holds. If we consider the function $f_{v}:[0, \infty) \rightarrow \mathbb{R}$ for $v \in[0,1]$ defined by
$f_{v}(x)=\frac{1}{2}\left(x^{v}+x^{1-v}\right)$,
then we have
$f_{V}(m) A \leq H_{V}(A, B) \leq f_{V}(M) A$.
Proof. We observe that
$f_{v}^{\prime}(x)=\frac{1}{2}\left(v x^{v-1}+(1-v) x^{-v}\right)$,
which is positive for $x \in(0, \infty)$.
Therefore f_{v} is increasing on $(0, \infty)$ and
$f_{V}(m)=\min _{x \in[m, M]} f_{V}(x) \leq f_{V}(x) \leq \max _{x \in[m, M]} f_{V}(x)=f_{V}(M)$
for any $x \in[m, M]$.
Using the continuous functional calculus, we have for any operator X with $m I \leq X \leq M I$ that
$f_{v}(m) I \leq \frac{1}{2}\left(X^{v}+X^{1-v}\right) \leq f_{V}(M) I$.
From (1.3) we have, by multiplying both sides with $A^{-1 / 2}$ that
$m I \leq A^{-1 / 2} B A^{-1 / 2} \leq M I$.
Now, writing the inequality (2.2) for $X=A^{-1 / 2} B A^{-1 / 2}$, we get
$f_{v}(m) I \leq \frac{1}{2}\left[\left(A^{-1 / 2} B A^{-1 / 2}\right)^{v}+\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-v}\right] \leq f_{v}(M) I$.
Finally, if we multiply both sides of (2.3) by $A^{1 / 2}$ we get the desired result (2.1).
Corollary 2.2. Let A and B be two positive operators. For positive real numbers $m, m^{\prime}, M, M^{\prime}, p u t h:=\frac{M}{m}, h^{\prime}:=\frac{M^{\prime}}{m^{\prime}}$ and let $v \in[0,1]$. (i) If $0<m I \leq A \leq m^{\prime} I<M^{\prime} I \leq B \leq M I$, then
$f_{v}\left(h^{\prime}\right) A \leq H_{V}(A, B) \leq f_{v}(h) A$.
(ii) If $0<m I \leq B \leq m^{\prime} I<M^{\prime} I \leq A \leq M I$, then
$\frac{f_{v}(h)}{h} A \leq H_{v}(A, B) \leq \frac{f_{v}\left(h^{\prime}\right)}{h^{\prime}} A$.
Proof. If the condition (i) is valid, then we have for $X=A^{-1 / 2} B A^{-1 / 2}$
$I<\frac{M^{\prime}}{m^{\prime}} I=h^{\prime} I \leq X \leq h I=\frac{M}{m} I$,
which, by (2.2) gives the desired result (2.4).
If the condition (ii) is valid, then we have
$0<\frac{1}{h} I \leq X \leq \frac{1}{h^{\prime}} I<I$,
which, by (2.2) gives
$f_{v}\left(\frac{1}{h}\right) A \leq H_{v}(A, B) \leq f_{v}\left(\frac{1}{h^{\prime}}\right) A$
that is equivalent to (2.5), since
$f_{v}\left(\frac{1}{h}\right)=\frac{f_{v}(h)}{h}$.

We need the following lemma in order to prove our first main result:

Lemma 2.3. Consider the function $g_{v}:[0, \infty) \rightarrow \mathbb{R}$ for $v \in(0,1)$ defined by
$g_{v}(x)=\frac{1}{2}\left(x^{v}+x^{1-v}\right)-\sqrt{x} \geq 0$.
Then $g_{v}(0)=g_{v}(1)=0, g_{v}$ is increasing on $\left(0, x_{v}\right)$ with a local maximum in
$x_{v}:=\left(\frac{v}{1-v}\right)^{\frac{2}{1-2 v}} \in(0,1)$,
is decreasing on $\left(x_{v}, 1\right)$ with a local minimum in $x=1$ and increasing on $(1, \infty)$ with $\lim _{x \rightarrow \infty} g_{v}(x)=\infty$.
Proof. (i). If $v \in\left(0, \frac{1}{2}\right)$, then
$g_{v}^{\prime}(x)=\frac{1}{2}\left(\frac{v}{x^{1-v}}+\frac{1-v}{x^{v}}-\frac{1}{x^{1 / 2}}\right)$

$$
=\frac{1}{2} \frac{v+(1-v) x^{1-2 v}-x^{\frac{1-2 v}{2}}}{x^{1-v}}
$$

If we denote $u=x^{\frac{1-2 v}{2}}$, then we have

$$
\begin{aligned}
v+(1-v) x^{1-2 v}-x^{\frac{1-2 v}{2}} & =(1-v) u^{2}-u+v \\
& =(1-v)\left(u-\frac{v}{1-v}\right)(u-1) \\
& =(1-v)\left(x^{\frac{1-2 v}{2}}-\frac{v}{1-v}\right)\left(x^{\frac{1-2 v}{2}}-1\right)
\end{aligned}
$$

We observe that $g_{v}^{\prime}(x)=0$ only for $x=1$ and $x_{v}=\left(\frac{v}{1-v}\right)^{\frac{2}{1-2 v}} \in(0,1)$. Also $g_{v}^{\prime}(x)>0$ for $x \in\left(0, x_{v}\right) \cup(1, \infty)$ and $g_{v}^{\prime}(x)<0$ for $x \in\left(x_{v}, 1\right)$. These imply the desired conclusion.
(ii) If $v \in\left(\frac{1}{2}, 1\right)$, then
$g_{v}^{\prime}(x)=\frac{1}{2} \frac{1-v+v x^{2 v-1}-x^{\frac{2 v-1}{2}}}{x^{v}}$.
If we denote $z=x^{\frac{2 v-1}{2}}$, then we have

$$
\begin{aligned}
1-v+v x^{2 v-1}-x^{\frac{2 v-1}{2}} & =v z^{2}-z+1-v \\
& =v\left(z-\frac{1-v}{v}\right)(z-1) \\
& =v\left(x^{\frac{2 v-1}{2}}-\frac{1-v}{v}\right)\left(x^{\frac{2 v-1}{2}}-1\right)
\end{aligned}
$$

We observe that $g_{v}^{\prime}(x)=0$ only for $x=1$ and $x_{v}=\left(\frac{1-v}{v}\right)^{\frac{2}{2 v-1}}=\left(\frac{v}{1-v}\right)^{\frac{2}{1-2 v}} \in(0,1)$. Also $g_{v}^{\prime}(x)>0$ for $x \in\left(0, x_{v}\right) \cup(1, \infty)$ and $g_{v}^{\prime}(x)<0$ for $x \in\left(x_{V}, 1\right)$. These imply the desired conclusion.

The above lemma allows us to obtain various bounds for the nonnegative quantity
$H_{v}(A, B)-A \sharp B$
when some conditions for the involved operators A and B are known.
Theorem 2.4. Assume that A and B are positive invertible operators with $B \leq A$. Then for $v \in(0,1)$ we have
$(0 \leq) H_{v}(A, B)-A \sharp B \leq g_{v}\left(x_{v}\right) A$,
where g_{v} is defined by (2.6) and x_{v} by (2.7).
Proof. From Lemma 2.3 we have for $v \in(0,1)$ that
$0 \leq \frac{1}{2}\left(x^{v}+x^{1-v}\right)-\sqrt{x} \leq g_{v}\left(x_{v}\right)$
for any $x \in[0,1]$.
Using the continuous functional calculus, we have for any operator X with $0 \leq X \leq I$ that
$0 \leq \frac{1}{2}\left(X^{v}+X^{1-v}\right)-X^{1 / 2} \leq g_{v}\left(x_{v}\right)$
for $v \in(0,1)$.
By multiplying both sides of the inequality $0 \leq B \leq A$ with $A^{-1 / 2}$ we get
$0 \leq A^{-1 / 2} B A^{-1 / 2} \leq I$.

If we use the inequality (2.9) for $X=A^{-1 / 2} B A^{-1 / 2}$, then we get
$0 \leq \frac{1}{2}\left[\left(A^{-1 / 2} B A^{-1 / 2}\right)^{v}+\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-v}\right]-\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}$

$$
\begin{equation*}
\leq g_{v}\left(x_{v}\right) I \tag{2.10}
\end{equation*}
$$

for $v \in(0,1)$.
Finally, if we multiply both sides of (2.10) with $A^{1 / 2}$, then we get the desired result (2.8).
Theorem 2.5. Assume that A and B are positive invertible operators and the constants $M>m \geq 0$ are such that the condition (1.3) holds. Let $v \in(0,1)$.
(i) If $0 \leq m<M \leq 1$, then
$\gamma_{v}(m, M) A \leq H_{v}(A, B)-A \sharp B \leq \Gamma_{V}(m, M) A$,
where
$\gamma_{v}(m, M):=\left\{\begin{array}{l}g_{v}(m) \text { if } 0 \leq m<M \leq x_{v}, \\ \min \left\{g_{v}(m), g_{v}(M)\right\} \text { if } 0 \leq m \leq x_{v} \leq M \leq 1, \\ g_{v}(M) \text { if } x_{v} \leq m<M\end{array}\right.$
and
$\Gamma_{v}(m, M):=\left\{\begin{array}{l}g_{v}(M) \text { if } 0 \leq m<M \leq x_{v}, \\ g_{v}\left(x_{v}\right) \text { if } 0 \leq m \leq x_{v} \leq M \leq 1, \\ g_{v}(m) \text { if } x_{v} \leq m \leq M \leq 1,\end{array}\right.$
where g_{v} is defined by (2.6) and x_{v} by (2.7).
(ii) If $1 \leq m<M<\infty$, then
$g_{v}(m) A \leq H_{v}(A, B)-A \sharp B \leq g_{v}(M) A$.
Proof. (i) If $0 \leq m<M \leq 1$ then by Lemma 2.3 we have for $v \in(0,1)$ that
$\left\{\begin{array}{l}g_{v}(m) \text { if } 0 \leq m<M \leq x_{v} \\ \min \left\{g_{v}(m), g_{v}(M)\right\} \text { if } 0 \leq m \leq x_{v} \leq M \leq 1 \\ g_{v}(M) \text { if } x_{v} \leq m<M\end{array}\right.$
$\leq g_{v}(x)$
$\leq\left\{\begin{array}{l}g_{v}(M) \text { if } 0 \leq m<M \leq x_{v} \\ g_{v}\left(x_{v}\right) \text { if } 0 \leq m \leq x_{v} \leq M \leq 1 \\ g_{v}(m) \text { if } x_{v} \leq m<M \leq 1\end{array}\right.$
for any $x \in[m, M]$.
Now, on making use of a similar argument to the one in the proof of Theorem 2.4, we obtain the desired result (2.13).
(ii) Obvious by the properties of function g_{v}.

The interested reader may obtain similar bounds for other locations of $0 \leq m<M<\infty$. The details are omitted.
The following particular case holds:
Corollary 2.6. Let A and B be two positive operators. For positive real numbers $m, m^{\prime}, M, M^{\prime}$, put $h:=\frac{M}{m}, h^{\prime}:=\frac{M^{\prime}}{m^{\prime}}$ and let $v \in(0,1)$. (i) If $0<m I \leq A \leq m^{\prime} I<M^{\prime} I \leq B \leq M I$, then
$g_{v}\left(h^{\prime}\right) A \leq H_{v}(A, B)-A \sharp B \leq g_{v}(h) A$.
(ii) If $0<m I \leq B \leq m^{\prime} I<M^{\prime} I \leq A \leq M I$, then
$\tilde{\gamma}_{v}\left(h, h^{\prime}\right) A \leq H_{v}(A, B)-A \sharp B \leq \tilde{\Gamma}_{v}\left(h, h^{\prime}\right) A$,
where
$\tilde{\gamma}_{v}\left(h, h^{\prime}\right):=\left\{\begin{array}{l}\frac{g_{v}(h)}{h} \text { if } 0 \leq \frac{1}{h}<\frac{1}{h^{\prime}} \leq x_{v}, \\ \min \left\{\frac{g_{v}(h)}{h}, \frac{g_{v}\left(h^{\prime}\right)}{h^{\prime}}\right\} \text { if } 0 \leq \frac{1}{h} \leq x_{v} \leq \frac{1}{h^{\prime}} \leq 1, \\ \frac{g_{v}\left(h^{\prime}\right)}{h^{\prime}} \text { if } x_{v} \leq \frac{1}{h}<\frac{1}{h^{\prime}}\end{array}\right.$
and
$\tilde{\Gamma}_{v}\left(h, h^{\prime}\right):=\left\{\begin{array}{l}\frac{g_{v}\left(h^{\prime}\right)}{h^{\prime}} \text { if } 0 \leq \frac{1}{h}<\frac{1}{h^{\prime}} \leq x_{v}, \\ g_{v}\left(x_{v}\right) \text { if } 0 \leq \frac{1}{h} \leq x_{v} \leq \frac{1}{h^{\prime}} \leq 1, \\ \frac{g_{v}(h)}{h} \text { if } x_{v} \leq \frac{1}{h}<\frac{1}{h^{\prime}} \leq 1 .\end{array}\right.$

3. Bounds for $A \nabla B-H_{V}(A, B)$

In order to provide some upper and lower bounds for the quantity
$A \nabla B-H_{v}(A, B)$
where A and B are positive invertible operators, we need the following lemma.
Lemma 3.1. Consider the function $h_{v}:[0, \infty) \rightarrow \mathbb{R}$ for $v \in(0,1)$ defined by
$h_{v}(x)=\frac{x+1}{2}-\frac{1}{2}\left(x^{v}+x^{1-v}\right) \geq 0$.
Then h_{v} is decreasing on $[0,1)$ and increasing on $(1, \infty)$ with $x=1$ its global minimum. We have $h_{v}(0)=\frac{1}{2}, \lim _{x \rightarrow \infty} h_{v}(x)=\infty$ and h_{v} is convex on $(0, \infty)$.

Proof. We have
$h_{v}^{\prime}(x)=\frac{1}{2}\left(1-\frac{v}{x^{1-v}}-\frac{1-v}{x^{v}}\right)$
and
$h_{v}^{\prime \prime}(x)=\frac{1}{2} v(1-v)\left(x^{v-2}+x^{-v-1}\right)$
for any $x \in(0, \infty)$ and $v \in(0,1)$.
We observe that $h_{v}^{\prime}(1)=0$ and $h_{v}^{\prime \prime}(x)>0$ for any $x \in(0, \infty)$ and $v \in(0,1)$. These imply that the equation $h_{v}^{\prime}(x)=0$ has only one solution on $(0, \infty)$, namely $x=1$. Since $h_{v}^{\prime}(x)<0$ for $x \in(0,1)$ and $h_{v}^{\prime}(x)>0$ for $x \in(1, \infty)$, then we deduce the desired conclusion.

Theorem 3.2. Assume that A and B are positive invertible operators, the constants $M>m \geq 0$ are such that the condition (1.3) holds and $v \in(0,1)$. Then we have
$\delta_{v}(m, M) A \leq A \nabla B-H_{v}(A, B) \leq \Delta_{v}(m, M) A$,
where
$\delta_{v}(m, M):=\left\{\begin{array}{l}h_{v}(M) \text { if } M<1, \\ 0 \text { if } m \leq 1 \leq M, \\ h_{v}(m) \text { if } 1<m\end{array}\right.$
and
$\Delta_{v}(m, M):=\left\{\begin{array}{l}h_{v}(m) \text { if } M<1, \\ \max \left\{h_{v}(m), h_{v}(M)\right\} \text { if } m \leq 1 \leq M, \\ h_{v}(M) \text { if } 1<m,\end{array}\right.$
where h_{v} is defined by (3.1).
Proof. Using Lemma 3.1 we have

$$
\left\{\begin{array}{l}
h_{v}(M) \text { if } M<1, \\
0 \text { if } m \leq 1 \leq M, \quad \leq h_{v}(x) \\
h_{v}(m) \text { if } 1<m,
\end{array}\right.
$$

$$
\leq\left\{\begin{array}{l}
h_{v}(m) \text { if } M<1, \\
\max \left\{h_{v}(m), h_{v}(M)\right\} \text { if } m \leq 1 \leq M, \\
h_{v}(M) \text { if } 1<m
\end{array}\right.
$$

for any $x \in[m, M]$ and $v \in(0,1)$.
Using the continuous functional calculus, we have for any operator X with $m I \leq X \leq M I$ that
$\delta_{v}(m, M) I \leq \frac{X+I}{2}-\frac{1}{2}\left(X^{v}+X^{1-v}\right) \leq \Delta_{v}(m, M) I$.
From (1.3) we have, by multiplying both sides with $A^{-1 / 2}$ that
$m I \leq A^{-1 / 2} B A^{-1 / 2} \leq M I$.
Now, writing the inequality (3.5) for $X=A^{-1 / 2} B A^{-1 / 2}$, we get
$\delta_{v}(m, M) I$
$\leq \frac{A^{-1 / 2} B A^{-1 / 2}+I}{2}-\frac{1}{2}\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{v}+\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-v}\right)$
$\leq \Delta_{v}(m, M) I$.
Finally, if we multiply both sides of (3.6) by $A^{1 / 2}$ we get the desired result (3.2).
Corollary 3.3. Let A and B be two positive operators. For positive real numbers $m, m^{\prime}, M, M^{\prime}$, put $h:=\frac{M}{m}, h^{\prime}:=\frac{M^{\prime}}{m^{\prime}}$ and let $v \in(0,1)$.
(i) If $0<m I \leq A \leq m^{\prime} I<M^{\prime} I \leq B \leq M I$, then
$h_{v}\left(h^{\prime}\right) A \leq A \nabla B-H_{v}(A, B) \leq h_{v}(h) A$.
(ii) If $0<m I \leq B \leq m^{\prime} I<M^{\prime} I \leq A \leq M I$, then
$\frac{h_{v}\left(h^{\prime}\right)}{h^{\prime}} A \leq A \nabla B-H_{v}(A, B) \leq \frac{h_{v}(h)}{h} A$.
Acknowledgement. The author would like to thank the anonymous referees for their suggestions that have been implemented in the final version of the paper.

References

[1] S. S. Dragomir, Some new reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [http://rgmia.org/papers/v18/v18a130.pdf].
[2] S. S. Dragomir, On new refinements and reverses of Young's operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [http://rgmia.org/papers/v18/v18a135.pdf].
[3] S. S. Dragomir, Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. [http://rgmia.org/papers/v18/v18a139.pdf].
[4] S. S. Dragomir, Refinements and reverses of Hölder-McCarthy operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 143. [http://rgmia.org/papers/v18/v18a143.pdf].
[5] S. S. Dragomir, Some reverses and a refinement of Hölder operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. [http://rgmia.org/papers/v18/v18a147.pdf].
[6] S. S. Dragomir, Some inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 163. [Online http://rgmia.org/papers/v18/v18a163.pdf].
[7] S. S. Dragomir, Further inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 167. [Online http://rgmia.org/papers/v18/v18a167.pdf].
[8] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
[9] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46-49.
[10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), $262-269$.
[11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Lin. Multilin. Alg., 59 (2011), 1031-1037.
[12] F. Kittaneh, M. Krnić, N. Lovričević and J. Pečarić, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators, Publ. Math. Debrecen, 2012, 80(3-4), 465-478.
[13] M. Krnić and J. Pečarić, Improved Heinz inequalities via the Jensen functional, Cent. Eur. J. Math. 11 (9) 2013,1698-1710.
[14] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205-224.
[15] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.
[16] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
[17] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
[18] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), $551-556$.

