Area of a Triangle in Terms of the m-Generalized Taxicab Distance

Harun Barış Çolakoğlu
Akdeniz University, Vocational School of Technical Sciences, Department of Computer Technologies, 07070, Antalya, Türkiye. Corresponding author E-mail: hbcolakoglu@akdeniz.edu.tr

Abstract

In this paper, we give three area formulas for a triangle in the m-generalized taxicab plane in terms of the m-generalized taxicab distance. The two of them are m-generalized taxicab versions of the standard area formula for a triangle, and the other one is an m-generalized taxicab version of the well-known Heron's formula.

Keywords: Taxicab distance, m-generalized taxicab distance, area, Heron's formula.
2010 Mathematics Subject Classification: 51K05, 51K99, 51N20.

1. Introduction

Taxicab geometry was introduced by Menger [11], and developed by Krause [10], using the taxicab metric which is the special case of the well-known l_{p}-metric (also known as Minkowski distance) for $p=1$. In this geometry, circles are squares with each diagonal is parallel to a coordinate axis. Afterwards, in [15] Lawrance J. Wallen defined the (slightly) generalized taxicab metric, in which circles are rhombuses with each diagonal is also parallel to a coordinate axis. Finally, m-generalized taxicab metric is defined in [3], for any rhombus (so, any square) to be a circle instead of rhombuses having each diagonal parallel to a coordinate axis. In the last case, for any real number m and positive real numbers u and v, the m-generalized taxicab distance between points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} is defined by
$d_{T_{g}(m)}\left(P_{1}, P_{2}\right)=\left(u\left|\left(x_{1}-x_{2}\right)+m\left(y_{1}-y_{2}\right)\right|+v\left|m\left(x_{1}-x_{2}\right)-\left(y_{1}-y_{2}\right)\right|\right) /\left(1+m^{2}\right)^{1 / 2}$.
In addition, as a special case of $d_{T_{g}(m)}$ for $u=v=1$,
$d_{T(m)}\left(P_{1}, P_{2}\right)=\left(\left|\left(x_{1}-x_{2}\right)+m\left(y_{1}-y_{2}\right)\right|+\left|m\left(x_{1}-x_{2}\right)-\left(y_{1}-y_{2}\right)\right|\right) /\left(1+m^{2}\right)^{1 / 2}$
is called the m-taxicab distance between points P_{1} and P_{2}, while the well-known Euclidean distance between P_{1} and P_{2} is
$d_{E}\left(P_{1}, P_{2}\right)=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]^{1 / 2}$.
The m-generalized taxicab unit circle is a rhombus with diagonals having slopes of m and $-1 / m$, and with vertices $A_{1}=\left(\frac{1}{u k}, \frac{m}{u k}\right)$, $A_{2}=\left(\frac{-m}{v k}, \frac{1}{v k}\right), A_{3}=\left(\frac{-1}{u k}, \frac{-m}{u k}\right)$ and $A_{4}=\left(\frac{m}{v k}, \frac{-1}{v k}\right)$, where $k=\left(1+m^{2}\right)^{1 / 2}$; if $u=v$, then m-generalized taxicab unit circle is a square with vertices A_{1}, A_{2}, A_{3} and A_{4}. The m-generalized taxicab distance between two points is invariant under all translations. In addition, if $u \neq v$, then the m-generalized taxicab distance between two points is invariant under rotations of π radian around a point and reflections in lines parallel to the lines with slope m and $\frac{-1}{m}$; if $u=v$, then rotations of $\pi / 2, \pi$ and $3 \pi / 2$ radians around a point, and reflections in lines parallel to the lines with slope $m, \frac{-1}{m}, \frac{1+m}{1-m}$ or $\frac{m-1}{1+m}$ (see [3], [4] and [6]).

Since the distance function is different from that of Euclidean geometry, it is interesting to study the m-generalized taxicab analogues of topics that include the distance concept in Euclidean geometry. In this paper, we give area formulas for a triangle in the m-generalized taxicab plane in terms of the m-generalized taxicab distance. One can see from Figure 1 that there are triangles whose m-generalized taxicab lengths of corresponding sides are the same, while areas of these triangles are different, in the m-generalized taxicab plane. So, how can one compute the area of a triangle in the m-generalized taxicab plane? In this study, we present three formulas to compute the area of a triangle in the m-generalized taxicab plane. Henceforth, we use $u^{\prime}=u /\left(1+m^{2}\right)^{1 / 2}$ and $v^{\prime}=v /\left(1+m^{2}\right)^{1 / 2}$ to shorten phrases.

Figure 1. Let A and B be two distinct points on a line parallel to $m x-y=0$. Let \mathscr{C}_{1} and \mathscr{C}_{2} be m-generalized taxicab circles with center A and B, radius b and $b+c$, respectively. As point $C \in \mathscr{C}_{1} \cap \mathscr{C}_{2}$ changes, the area of triangle $A B C$ also changes, while $d_{T_{g}(m)}(B, C), d_{T_{g}(m)}(A, C)$ and $d_{T_{g}(m)}(A, B)$ are invariant.

2. The m-generalized taxicab version of standard area formula

It is well-known that the standard area formula for triangle $A B C$ is $\mathscr{A}=\mathbf{a h} / 2$, where $\mathbf{a}=d_{E}(B, C)$ and $\mathbf{h}=d_{E}(A, B C)$ or $\mathbf{h}=d_{E}(A, H)$ where H is the orthogonal projection of the point A on the line $B C$. Here, we give two m-generalized taxicab versions of this formula in terms of the m-generalized taxicab distance, depending on choice of $h=d_{T_{g}(m)}(A, H)$ or $h^{\prime}=d_{T_{g}(m)}(A, B C)$. The following equation given in [3], which relates the Euclidean distance to the m-generalized taxicab distance between two points in the Cartesian coordinate plane, plays an important role in the first m-generalized taxicab version of the area formula.
Proposition 2.1. For any two points A and B in \mathbb{R}^{2} that do not lie on a vertical line, if n is the slope of the line through A and B, then
$d_{E}(A, B)=\mu(n) d_{T_{g}(m)}(A, B)$
where $\mu(n)=\left(1+n^{2}\right)^{1 / 2} /\left(u^{\prime}|1+m n|+v^{\prime}|m-n|\right)$. If A and B lie on a vertical line, then
$d_{E}(A, B)=\left[1 /\left(u^{\prime}|m|+v^{\prime}\right)\right] d_{T_{g}(m)}(A, B)$.
Notice that $\mu(m)=\frac{1}{u}$ and if $m \neq 0$, then $\mu(-1 / m)=\frac{1}{v}$. Therefore, if l_{A} is the line through A with slope m, and l_{B} is the line through B and perpendicular to the line l_{A}, then

$$
d_{T_{g}(m)}(A, B)=u d_{E}\left(A, l_{B}\right)+v d_{E}\left(B, l_{A}\right)
$$

In addition, for any non-zero real number n, if $u=v$ then $\mu(n)=\mu(-1 / n)$.
The following theorem gives the first m-generalized taxicab version of the standard area formula of a triangle.
Theorem 2.1. Let $A B C$ be a triangle with area \mathscr{A} in the m-generalized taxicab plane, let H be orthogonal projection of the point A on the line $B C$, let n be the slope of the line $B C$, and let $a=d_{T_{g}(m)}(B, C)$ and $h=d_{T_{g}(m)}(A, H)$.
(i) If $B C$ is parallel to a coordinate axis, then
$\mathscr{A}=a h / 2\left(u^{\prime}|m|+v^{\prime}\right)\left(u^{\prime}+v^{\prime}|m|\right)$.
(ii) If BC is not parallel to any coordinate axis, then

$$
\begin{equation*}
\mathscr{A}=[\mu(n) \mu(-1 / n)] a h / 2 . \tag{2.4}
\end{equation*}
$$

Proof. Let $\mathbf{a}=d_{E}(B, C)$ and $\mathbf{h}=d_{E}(A, H)$. Then, $\mathscr{A}=\mathbf{a h} / 2$.
(i) If $B C$ is parallel to x-axis, then $A H$ is parallel to y-axis and

$$
\mathbf{a}=\left[1 /\left(u^{\prime}+v^{\prime}|m|\right)\right] a \text { and } \mathbf{h}=\left[1 /\left(u^{\prime}|m|+v^{\prime}\right)\right] h .
$$

If $B C$ is parallel to y-axis, then $A H$ is parallel to x-axis and

$$
\mathbf{a}=\left[1 /\left(u^{\prime}|m|+v^{\prime}\right)\right] a \text { and } \mathbf{h}=\left[1 /\left(u^{\prime}+v^{\prime}|m|\right)\right] h
$$

Hence, we get

$$
\mathscr{A}=a h / 2\left(u^{\prime}|m|+v^{\prime}\right)\left(u^{\prime}+v^{\prime}|m|\right) .
$$

(ii) Let $B C$ not be parallel to any coordinate axis, and let n be the slope of the line $B C$. Then, the slope of the line $A H$ is $(-1 / n)$. Therefore $\mathbf{a}=\mu(n) a$ and $\mathbf{h}=\mu(-1 / n) h$, hence

$$
\mathscr{A}=[\mu(n) \mu(-1 / n)] a h / 2 .
$$

In the m-generalized taxicab plane, m-generalized taxicab distance from a point P to a line l is naturally defined by
$d_{T_{g}(m)}(P, l)=\min _{Q \in l}\left\{d_{T_{g}(m)}(P, Q)\right\}$.
In the following proposition, we give a formula for $d_{T_{g}(m)}(P, l)$, similar to the Euclidean geometry.

Proposition 2.2. Given a point $P=\left(x_{0}, y_{0}\right)$ and a line $l: a x+b y+c=0$ in the m-generalized taxicab plane. The m-generalized taxicab distance from the point P to the line l can be calculated by the following formula:
$d_{T_{g}(m)}(P, l)=\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+b y_{0}+c\right| / \max \left\{\frac{|a+b m|}{u}, \frac{|a m-b|}{v}\right\}$.
Proof. It is clear that if P is on line l, then equation holds. Let P not be on line l. To find the minimum m-generalized taxicab distance from the point P which is off the line l, let us define tangent line to an m-generalized taxicab circle with center P and radius r, as a line whose m-generalized taxicab distance from P is equal to r, being natural analogue to the Euclidean geometry. Then, we expand an m-generalized taxicab circle with center P until the line l becomes a tangent to the m-generalized taxicab circle (see Figure 2). It is clear to see that a line can only be a tangent to an m-generalized taxicab circle at one vertex or two vertices (that is, at one edge). Since corresponding vertices of expanding m-generalized taxicab circle are on line through P and parallel to line $m x-y=0$ or $x+m y=0$, if l is a tangent to the m-generalized taxicab circle with center P, then $P_{1}=\left(\frac{b m x_{0}-b y_{0}-c}{a+b m}, \frac{-a m x_{0}+a y_{0}-c m}{a+b m}\right)$ or $P_{2}=\left(\frac{b x_{0}+b m y_{0}+c m}{b-a m}, \frac{-a x_{0}-a m y_{0}-c}{b-a m}\right)$ is a tangent point, which are intersection points of the line l and $m x-y=0$ or $x+m y=0$, respectively (see Figure 2). Therefore, $d_{T_{g}(m)}(P, l)=\min \left\{d_{T_{g}(m)}\left(P, P_{1}\right), d_{T_{g}(m)}\left(P, P_{2}\right)\right\}$.

Figure 2

Since $d_{T_{g}(m)}\left(P, P_{1}\right)=\frac{\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+b y_{0}+c\right|}{|a+b m| / u}$ and $d_{T_{g}(m)}\left(P, P_{2}\right)=\frac{\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+b y_{0}+c\right|}{|a m-b| / v}$, one gets

$$
d_{T_{g}(m)}(P, l)=\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+b y_{0}+c\right| / \max \left\{\frac{|a+b m|}{u}, \frac{|a m-b|}{v}\right\} .
$$

The following equation, which relates the Euclidean distance to the m-generalized taxicab distance from a point to a line in the Cartesian coordinate plane, plays an important role in the second m-generalized taxicab version of the area formula.

Proposition 2.3. Given a point P and a line l which is not vertical in the Cartesian plane, if n is the slope of the line l, then
$d_{E}(P, l)=\tau(n) d_{T_{g}(m)}(P, l)$
where $\tau(n)=\max \left\{\frac{|m-n|}{u}, \frac{|m n+1|}{v}\right\} /\left[\left(1+n^{2}\right)\left(1+m^{2}\right)\right]^{1 / 2}$. If l is vertical, then $d_{E}(P, l)=\left[\max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} /\left(1+m^{2}\right)^{1 / 2}\right] d_{T_{g}(m)}(P, l)$.
Proof. Let $P=\left(x_{0}, y_{0}\right)$ be a point, and $l: a x+b y+c=0$ be a line with slope of n, in the Cartesian plane. If l is not a vertical line, then $b \neq 0$ and $n=-\frac{a}{b}$. Then, one gets

$$
d_{E}(P, l)=\left|a x_{0}+b y_{0}+c\right| /|b|\left(1+n^{2}\right)^{1 / 2} \text { and } d_{T_{g}(m)}(P, l)=\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+b y_{0}+c\right| /|b| \max \left\{\frac{|m-n|}{u}, \frac{|m n+1|}{v}\right\} .
$$

Therefore, $d_{E}(P, l)=\tau(n) d_{T_{g}(m)}(P, l)$ where $\tau(n)=\max \left\{\frac{|m-n|}{u}, \frac{|m n+1|}{v}\right\} /\left[\left(1+n^{2}\right)\left(1+m^{2}\right)\right]^{1 / 2}$. If l is a vertical line, then $b=0$ and $a \neq 0$. Therefore, one gets that

$$
d_{E}(P, l)=\left|a x_{0}+c\right| /|a| \text { and } d_{T_{g}(m)}(P, l)=\left(1+m^{2}\right)^{1 / 2}\left|a x_{0}+c\right| /|a| \max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} .
$$

Hence one has

$$
d_{E}(P, l)=\left[\max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} /\left(1+m^{2}\right)^{1 / 2}\right] d_{T_{g}(m)}(P, l)
$$

Notice that $\tau(m)=\frac{1}{v}$, and if $m \neq 0$, then $\tau\left(-\frac{1}{m}\right)=\frac{1}{u}$. The following theorem gives another m-generalized taxicab version of the standard area formula of a triangle:

Theorem 2.2. Let $A B C$ be a triangle with area \mathscr{A} in the m-generalized taxicab plane, n be the slope of the line $B C$, and let $a=d_{T_{g}(m)}(B, C)$ and $h^{\prime}=d_{T_{g}(m)}(A, B C)$. Then
$\mathscr{A}=\frac{\max \left\{\frac{|m-n|}{u}, \frac{|m n+1|}{v}\right\} a h^{\prime}}{2(u|m n+1|+v|m-n|)}$.
If $B C$ is vertical, then
$\mathscr{A}=\frac{\max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} a h^{\prime}}{2(u|m|+v)}$.
Proof. Let $\mathbf{a}=d_{E}(B, C)$ and $\mathbf{h}=d_{E}(A, B C)$. Then, $\mathscr{A}=\mathbf{a h} / 2$. Let $B C$ not be vertical, and n be the slope of the line $B C$. By Proposition 2.1 and Proposition 2.3, $\mathbf{a}=\mu(n) a$ and $\mathbf{h}=\tau(n) h^{\prime}$, hence one has

$$
\mathscr{A}=[\mu(n) \tau(n)] a h^{\prime} / 2=\max \left\{\frac{|m-n|}{u}, \frac{|m n+1|}{v}\right\} a h^{\prime} / 2(u|m n+1|+v|m-n|) .
$$

If $B C$ is vertical, then $\mathbf{a}=\left[1 /\left(u^{\prime}|m|+v^{\prime}\right)\right] a$ and $\mathbf{h}=\left[\max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} /\left(1+m^{2}\right)^{1 / 2}\right] h^{\prime}$. Hence, one has

$$
\mathscr{A}=\max \left\{\frac{1}{u}, \frac{|m|}{v}\right\} a h^{\prime} / 2(u|m|+v)
$$

The following corollary follows from Theorem 2.1 and Theorem 2.2.
Corollary 2.1. Let $A B C$ be a triangle with area \mathscr{A} in the m-generalized taxicab plane, and let $a=d_{T_{g}(m)}(B, C), h=d_{T_{g}(m)}(A, H)$, and $h^{\prime}=d_{T_{g}(m)}(A, B C)$. If $B C$ is parallel to $m x-y=0$ or $x+m y=0$, then $h=h^{\prime}$ and $\mathscr{A}=a h / 2 u v$.

Proof. If $B C$ is parallel to $m x-y=0$ or $x+m y=0$, then $n=m$ and $n=-1 / m$, respectively, and Equation (2.4) and Equation (2.8) gives $\mathscr{A}=a h / 2 u v=a h^{\prime} / 2 u v$, so $h=h^{\prime}$.

3. The m-generalized taxicab version of Heron's formula

It is well-known that if $A B C$ is a triangle with the area \mathscr{A} in the Euclidean plane, and $\mathbf{a}=d_{E}(B, C), \mathbf{b}=d_{E}(A, C), \mathbf{c}=d_{E}(A, B)$, and $\mathbf{p}=(\mathbf{a}+\mathbf{b}+\mathbf{c}) / 2$, then

$$
\mathscr{A}=[\mathbf{p}(\mathbf{p}-\mathbf{a})(\mathbf{p}-\mathbf{b})(\mathbf{p}-\mathbf{c})]^{1 / 2}
$$

which is known as Heron's formula. In this section, we give an m-generalized taxicab version of this formula in terms of m-generalized taxicab distance, similar to the one given in [14]. We need following modified definitions given in [14] to give an m-generalized taxicab version of Heron's formula:

Definition 3.1. Let $A B C$ be any triangle in the m-generalized taxicab plane. Clearly, there exists a pair of lines passing through every vertex of the triangle, each of which is parallel to lines $m x-y=0$ or $x+m y=0$. A line l is called m-base line of $A B C$ if and only if
(1) l passes through a vertex,
(2) l is parallel to lines $m x-y=0$ or $x+m y=0$,
(3) l intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two m-base lines. Such a vertex of the triangle is called an m-basic vertex. An m-base segment is a line segment on an m-base line, which is bounded by an m-basic vertex and its opposite side.

Now, we give the m-generalized taxicab version of Heron's formula:
Theorem 3.2. Let $A B C$ be a triangle, and $a=d_{T_{g}(m)}(B, C), b=d_{T_{g}(m)}(A, C), c=d_{T_{g}(m)}(A, B), p=(a+b+c) / 2$, and let α denote the m-generalized taxicab length of a m-base segment of the triangle. Then the area \mathscr{A} of the triangle is
$\mathscr{A}=\left\{\begin{array}{l}\frac{1}{2 u v} \alpha\left(p-\left(\alpha+\alpha^{\prime}\right)\right) \\ \frac{1}{2 u v} \alpha\left(p-\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right)\right)\end{array}\right.$
, if there exists only one m-base line
passing through the m-basic vertex
, if there exist two m-base lines
passing through the m-basic vertex
where $\alpha^{\prime}=d_{T_{g}(m)}(D, H), \alpha^{\prime \prime}=d_{T_{g}(m)}\left(\right.$ basic vertex, $\left.H^{\prime}\right)$,
D is intersection point of the m-base line and the opposite side,
H is point of orthogonal projection of one of the remaining two vertices on the m-base line which is an endpoint of the m-base segment or not on the m-base segment,
H^{\prime} is point of orthogonal projection of the third vertex on the same m-base line which is an endpoint of the m-base segment or not on the m-base segment.

Proof. Let $A B C$ be a triangle with m-basic vertex C, without loss of generality. Let $H^{\prime \prime}$ be the point of orthogonal projection of one of the remaining two vertices which is on the m-base segment. Two cases are:
(i) Let $A B C$ has only one m-base line passing through C. Figure 3 and Figure 4 represent all such triangles. Let $h=d_{T_{g}(m)}(A, H)$, $h^{\prime}=d_{T_{g}(m)}\left(B, H^{\prime \prime}\right), c_{A}=d_{T_{g}(m)}(A, D)$, and $c_{B}=d_{T_{g}(m)}(B, D)$. Since $c_{A}+\alpha=b$ and $c_{B}+a=\alpha+2 h^{\prime}$, one gets $h^{\prime}=p-b$. We also have $h=b-\left(\alpha+\alpha^{\prime}\right)$. Therefore, $h+h^{\prime}=p-\left(\alpha+\alpha^{\prime}\right)$. Besides, $\mathscr{A}=\frac{1}{2 u v} \alpha\left(h+h^{\prime}\right)$ by Corollary 2.1. Hence, $\mathscr{A}=\frac{1}{2 u v} \alpha\left(p-\left(\alpha+\alpha^{\prime}\right)\right)$.

Figure 3

Figure 4
(ii) Let $A B C$ has two m-base lines passing through C. Figure 5 represents all such triangles. Choose an m-base line to determine the point D. Let $h=d_{T_{g}(m)}(B, H)$ and $h^{\prime}=d_{T_{g}(m)}\left(A, H^{\prime}\right)$. Since $a=h+\alpha+\alpha^{\prime}, b=h^{\prime}+\alpha^{\prime \prime}$, and $a+b=c$ one gets $h+h^{\prime}=a+b-\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right)=$ $p-\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right)$. Besides, $\mathscr{A}=\frac{1}{2 u v} \alpha\left(h+h^{\prime}\right)$ by Corollary 2.1. Hence, $\mathscr{A}=\frac{1}{2 u v} \alpha\left(p-\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}\right)\right)$.

Figure 5

The following two corollaries give the m-generalized taxicab versions of Heron's formula for some special cases:
Corollary 3.1. If one side of a triangle $A B C$, say $B C$, is parallel to one of lines $m x-y=0$ or $x+m y=0$ and none of the angles B and C is an obtuse angle, then for the area \mathscr{A} of $A B C$,
$\mathscr{A}=\frac{1}{2 u v} a(p-a)$.
Proof. Let $A B C$ be a triangle with $B C$ is parallel to one of lines $m x-y=0$ or $x+m y=0$ and none of the angles B and C is an obtuse angle. Then, there is only one m-base line passing through B or C, so B and C are m-basic vertices and $B C$ is the m-base segment. Then, $\alpha=a, \alpha^{\prime}=0$, hence we have $\mathscr{A}=\frac{1}{2 u v} a(p-a)$.

Corollary 3.2. If one side of a triangle $A B C$, say $B C$, is parallel to one of lines $m x-y=0$ or $x+m y=0$ and one of the angles B and C is not an acute angle, then for the area \mathscr{A} of $A B C$,
$\mathscr{A}=\frac{1}{2 u v} a\left(p-\left(a+\alpha^{\prime \prime}\right)\right)$
where $\alpha^{\prime \prime}=d_{T_{g}(m)}$ (basic vertex, $\left.H^{\prime}\right)$ and H^{\prime} is the point of orthogonal projection of A on the same m-base line which is an endpoint of the m-base segment or not on the m-base segment.

Proof. Let $A B C$ be a triangle with $B C$ is parallel to one of lines $m x-y=0$ or $x+m y=0$ and one of the angles B and C, let us say C, is not an acute angle. Then, there are two m-base lines passing through C, so C is m-basic vertex and $B C$ is an m-base segment. Then, $\alpha=a, \alpha^{\prime}=0$, hence we have $\mathscr{A}=\frac{1}{2 u v} a\left(p-\left(a+\alpha^{\prime \prime}\right)\right)$.

Note that since the generalized taxicab and so the taxicab distances are special cases of the m-generalized taxicab distance, conclusions given here are also true for the generalized taxicab and so the taxicab geometry.

References

[1] C.H. Oh, I.S. Ko and B.H. Kim, Area of a triangle in the plane with alpha distance function, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 19 (4) (2012), 337-347.
[2] H.B. Çolakoğlu, Ö. Gelişgen and R. Kaya, Area formulas for a triangle in the alpha plane, Math. Commun., 18 (1) (2013), 123-132.
[3] H.B. Çolakoğlu, A generalization of the taxicab metric and related isometries, Konuralp Journal of Mathematics, 6 (1) (2018), 158-162.
[4] H.B. Çolakoğlu, The generalized taxicab group, Int. Electron. J. Geom., 11 (2) (2018), 83-89.
[5] H.B. Çolakoğlu, On generalized taxicab metric in three dimensional space, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2) (2019), $1359-1369$.
[6] S. Ekmekçi, A. Bayar and A.K. Altıntaş, On the group of isometries of the generalized taxicab plane, International Journal of Contemporary Mathematical Sciences, 10 (4) (2015), 159-166.
[7] Ö. Gelişgen and T. Ermiş, Area formulas for a triangle in the m-plane, Konuralp Journal of Mathematics, 2 (2) (2014), 85-95.
[8] R. Kaya, Area formula for taxicab triangles, Pi Mu Epsilon Journal, 12 (4) (2006), 219-220.
[9] R. Kaya and H.B. Çolakoğlu, Taxicab versions of some Euclidean theorems, International Journal of Pure And Applied Mathematics, 26 (1) (2006), 69-81.
[10] E.F. Krause, Taxicab Geometry, Addison-Wesley, Menlo Park, California, 1975.
[11] K. Menger, You will like geometry, Guidebook of Illinois Institute of Technology Geometry Exhibit, Museum of Science and Industry, Chicago, Illinois,
[12] S.M. Richard and D.P. George, Geometry, A Metric Approach with Models, Springer-Verlag, New York, 1981.
[13] K.P. Thompson, The nature of length, area, and volume in taxicab geometry, International Electronic Journal of Geometry, 4 (2) (2011), 193-207.
[14] M. Özcan and R. Kaya, Area of a triangle in terms of the taxicab distance, Missouri J. of Math. Sci., 15 (3) (2003), 178-185.
[15] L.J. Wallen, Kepler, the taxicab metric, and beyond: An isoperimetric primer, The College Mathematics Journal, 26 (3) (1995), 78-190.

