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Abstract

In this paper, we give three area formulas for a triangle in the m-generalized taxicab plane in terms of the m-generalized taxicab distance.
The two of them are m-generalized taxicab versions of the standard area formula for a triangle, and the other one is an m-generalized taxicab
version of the well-known Heron’s formula.
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1. Introduction

Taxicab geometry was introduced by Menger [11], and developed by Krause [10], using the taxicab metric which is the special case of the
well-known lp-metric (also known as Minkowski distance) for p = 1. In this geometry, circles are squares with each diagonal is parallel to a
coordinate axis. Afterwards, in [15] Lawrance J. Wallen defined the (slightly) generalized taxicab metric, in which circles are rhombuses
with each diagonal is also parallel to a coordinate axis. Finally, m-generalized taxicab metric is defined in [3], for any rhombus (so, any
square) to be a circle instead of rhombuses having each diagonal parallel to a coordinate axis. In the last case, for any real number m and
positive real numbers u and v, the m-generalized taxicab distance between points P1 = (x1,y1) and P2 = (x2,y2) in R2 is defined by

dTg(m)(P1,P2) = (u |(x1− x2)+m(y1− y2)|+ v |m(x1− x2)− (y1− y2)|)/(1+m2)1/2. (1.1)

In addition, as a special case of dTg(m) for u = v = 1,

dT (m)(P1,P2) = (|(x1− x2)+m(y1− y2)|+ |m(x1− x2)− (y1− y2)|)/(1+m2)1/2 (1.2)

is called the m-taxicab distance between points P1 and P2, while the well-known Euclidean distance between P1 and P2 is

dE(P1,P2) = [(x1− x2)
2 +(y1− y2)

2]1/2. (1.3)

The m-generalized taxicab unit circle is a rhombus with diagonals having slopes of m and −1/m, and with vertices A1 =
( 1

uk ,
m
uk
)
,

A2 =
(−m

vk , 1
vk
)
, A3 =

(−1
uk ,
−m
uk
)

and A4 =
( m

vk ,
−1
vk
)
, where k = (1+m2)1/2; if u = v, then m-generalized taxicab unit circle is a square with

vertices A1,A2,A3 and A4. The m-generalized taxicab distance between two points is invariant under all translations. In addition, if u 6= v,
then the m-generalized taxicab distance between two points is invariant under rotations of π radian around a point and reflections in lines
parallel to the lines with slope m and −1

m ; if u = v, then rotations of π/2, π and 3π/2 radians around a point, and reflections in lines parallel
to the lines with slope m, −1

m , 1+m
1−m or m−1

1+m (see [3], [4] and [6]).

Since the distance function is different from that of Euclidean geometry, it is interesting to study the m-generalized taxicab analogues of
topics that include the distance concept in Euclidean geometry. In this paper, we give area formulas for a triangle in the m-generalized
taxicab plane in terms of the m-generalized taxicab distance. One can see from Figure 1 that there are triangles whose m-generalized taxicab
lengths of corresponding sides are the same, while areas of these triangles are different, in the m-generalized taxicab plane. So, how can one
compute the area of a triangle in the m-generalized taxicab plane? In this study, we present three formulas to compute the area of a triangle
in the m-generalized taxicab plane. Henceforth, we use u′ = u/(1+m2)1/2 and v′ = v/(1+m2)1/2 to shorten phrases.

Email address: hbcolakoglu@akdeniz.edu.tr (Harun Barış Çolakoğlu)
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Figure 1. Let A and B be two distinct points on a line parallel to mx− y = 0. Let C1 and C2 be m-generalized taxicab circles with center A
and B, radius b and b+c, respectively. As point C ∈ C1∩C2 changes, the area of triangle ABC also changes, while dTg(m)(B,C), dTg(m)(A,C)

and dTg(m)(A,B) are invariant.

2. The m-generalized taxicab version of standard area formula

It is well-known that the standard area formula for triangle ABC is A = ah/2, where a = dE(B,C) and h = dE(A,BC) or h = dE(A,H)
where H is the orthogonal projection of the point A on the line BC. Here, we give two m-generalized taxicab versions of this formula in
terms of the m-generalized taxicab distance, depending on choice of h = dTg(m)(A,H) or h′ = dTg(m)(A,BC). The following equation given
in [3], which relates the Euclidean distance to the m-generalized taxicab distance between two points in the Cartesian coordinate plane, plays
an important role in the first m-generalized taxicab version of the area formula.

Proposition 2.1. For any two points A and B in R2 that do not lie on a vertical line, if n is the slope of the line through A and B, then

dE(A,B) = µ(n)dTg(m)(A,B) (2.1)

where µ(n) = (1+n2)1/2/(u′ |1+mn|+ v′ |m−n|). If A and B lie on a vertical line, then

dE(A,B) = [1/(u′ |m|+ v′)]dTg(m)(A,B). (2.2)

Notice that µ(m) = 1
u and if m 6= 0, then µ(−1/m) = 1

v . Therefore, if lA is the line through A with slope m, and lB is the line through B and
perpendicular to the line lA, then

dTg(m)(A,B) = udE(A, lB)+ vdE(B, lA).

In addition, for any non-zero real number n, if u = v then µ(n) = µ(−1/n).

The following theorem gives the first m-generalized taxicab version of the standard area formula of a triangle.

Theorem 2.1. Let ABC be a triangle with area A in the m-generalized taxicab plane, let H be orthogonal projection of the point A on the
line BC, let n be the slope of the line BC, and let a = dTg(m)(B,C) and h = dTg(m)(A,H).

(i) If BC is parallel to a coordinate axis, then

A = ah/2(u′ |m|+ v′)(u′+ v′ |m|). (2.3)

(ii) If BC is not parallel to any coordinate axis, then

A = [µ(n)µ(−1/n)]ah/2. (2.4)

Proof. Let a = dE(B,C) and h = dE(A,H). Then, A = ah/2.
(i) If BC is parallel to x-axis, then AH is parallel to y-axis and

a = [1/(u′+ v′ |m|)]a and h = [1/(u′ |m|+ v′)]h.

If BC is parallel to y-axis, then AH is parallel to x-axis and

a = [1/(u′ |m|+ v′)]a and h = [1/(u′+ v′ |m|)]h.

Hence, we get

A = ah/2(u′ |m|+ v′)(u′+ v′ |m|).

(ii) Let BC not be parallel to any coordinate axis, and let n be the slope of the line BC. Then, the slope of the line AH is (−1/n). Therefore
a = µ(n)a and h = µ(−1/n)h, hence

A = [µ(n)µ(−1/n)]ah/2.

In the m-generalized taxicab plane, m-generalized taxicab distance from a point P to a line l is naturally defined by

dTg(m)(P, l) = min
Q∈l
{dTg(m)(P,Q)}. (2.5)

In the following proposition, we give a formula for dTg(m)(P, l), similar to the Euclidean geometry.
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Proposition 2.2. Given a point P = (x0,y0) and a line l : ax+by+ c = 0 in the m-generalized taxicab plane. The m-generalized taxicab
distance from the point P to the line l can be calculated by the following formula:

dTg(m)(P, l) = (1+m2)1/2 |ax0 +by0 + c|/max
{
|a+bm|

u ,
|am−b|

v

}
. (2.6)

Proof. It is clear that if P is on line l, then equation holds. Let P not be on line l. To find the minimum m-generalized taxicab distance
from the point P which is off the line l, let us define tangent line to an m-generalized taxicab circle with center P and radius r, as a
line whose m-generalized taxicab distance from P is equal to r, being natural analogue to the Euclidean geometry. Then, we expand
an m-generalized taxicab circle with center P until the line l becomes a tangent to the m-generalized taxicab circle (see Figure 2). It is
clear to see that a line can only be a tangent to an m-generalized taxicab circle at one vertex or two vertices (that is, at one edge). Since
corresponding vertices of expanding m-generalized taxicab circle are on line through P and parallel to line mx− y = 0 or x+my = 0, if l is
a tangent to the m-generalized taxicab circle with center P, then P1 =

(
bmx0−by0−c

a+bm , −amx0+ay0−cm
a+bm

)
or P2 =

(
bx0+bmy0+cm

b−am , −ax0−amy0−c
b−am

)
is a tangent point, which are intersection points of the line l and mx− y = 0 or x+my = 0, respectively (see Figure 2). Therefore,
dTg(m)(P, l) = min{dTg(m)(P,P1),dTg(m)(P,P2)}.

Figure 2

Since dTg(m)(P,P1) =
(1+m2)1/2|ax0+by0+c|

|a+bm|/u and dTg(m)(P,P2) =
(1+m2)1/2|ax0+by0+c|

|am−b|/v , one gets

dTg(m)(P, l) = (1+m2)1/2 |ax0 +by0 + c|/max
{
|a+bm|

u ,
|am−b|

v

}
.

The following equation, which relates the Euclidean distance to the m-generalized taxicab distance from a point to a line in the Cartesian
coordinate plane, plays an important role in the second m-generalized taxicab version of the area formula.

Proposition 2.3. Given a point P and a line l which is not vertical in the Cartesian plane, if n is the slope of the line l, then

dE(P, l) = τ(n)dTg(m)(P, l) (2.7)

where τ(n) = max
{
|m−n|

u ,
|mn+1|

v

}
/
[
(1+n2)(1+m2)

]1/2. If l is vertical, then dE(P, l) =
[
max

{
1
u ,
|m|
v

}
/(1+m2)1/2

]
dTg(m)(P, l).

Proof. Let P = (x0,y0) be a point, and l : ax+by+ c = 0 be a line with slope of n, in the Cartesian plane. If l is not a vertical line, then
b 6= 0 and n =− a

b . Then, one gets

dE(P, l) = |ax0 +by0 + c|/ |b|(1+n2)1/2 and dTg(m)(P, l) = (1+m2)1/2 |ax0 +by0 + c|/ |b|max
{
|m−n|

u ,
|mn+1|

v

}
.

Therefore, dE(P, l) = τ(n)dTg(m)(P, l) where τ(n) = max
{
|m−n|

u ,
|mn+1|

v

}
/
[
(1+n2)(1+m2)

]1/2. If l is a vertical line, then b = 0 and a 6= 0.
Therefore, one gets that

dE(P, l) = |ax0 + c|/ |a| and dTg(m)(P, l) = (1+m2)1/2 |ax0 + c|/ |a|max
{

1
u ,
|m|
v

}
.

Hence one has

dE(P, l) =
[
max

{
1
u ,
|m|
v

}
/(1+m2)1/2

]
dTg(m)(P, l).

Notice that τ(m) = 1
v , and if m 6= 0, then τ(− 1

m ) = 1
u . The following theorem gives another m-generalized taxicab version of the standard

area formula of a triangle:
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Theorem 2.2. Let ABC be a triangle with area A in the m-generalized taxicab plane, n be the slope of the line BC, and let a = dTg(m)(B,C)

and h′ = dTg(m)(A,BC). Then

A =
max

{
|m−n|

u ,
|mn+1|

v

}
ah′

2(u |mn+1|+ v |m−n|)
. (2.8)

If BC is vertical, then

A =
max

{
1
u ,
|m|
v

}
ah′

2(u |m|+ v)
. (2.9)

Proof. Let a = dE(B,C) and h = dE(A,BC). Then, A = ah/2. Let BC not be vertical, and n be the slope of the line BC. By Proposition 2.1
and Proposition 2.3, a = µ(n)a and h = τ(n)h′, hence one has

A = [µ(n)τ(n)]ah′/2 = max
{
|m−n|

u ,
|mn+1|

v

}
ah′/2(u |mn+1|+ v |m−n|).

If BC is vertical, then a = [1/(u′ |m|+ v′)]a and h = [max
{

1
u ,
|m|
v

}
/(1+m2)1/2]h′. Hence, one has

A = max
{

1
u ,
|m|
v

}
ah′/2(u |m|+ v).

The following corollary follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.1. Let ABC be a triangle with area A in the m-generalized taxicab plane, and let a = dTg(m)(B,C), h = dTg(m)(A,H), and
h′ = dTg(m)(A,BC). If BC is parallel to mx− y = 0 or x+my = 0 , then h = h′ and A = ah/2uv.

Proof. If BC is parallel to mx− y = 0 or x+my = 0, then n = m and n =−1/m, respectively, and Equation (2.4) and Equation (2.8) gives
A = ah/2uv = ah′/2uv, so h = h′.

3. The m-generalized taxicab version of Heron’s formula

It is well-known that if ABC is a triangle with the area A in the Euclidean plane, and a = dE(B,C), b = dE(A,C), c = dE(A,B), and
p = (a+b+ c)/2, then

A = [p(p−a)(p−b)(p− c)]1/2,

which is known as Heron’s formula. In this section, we give an m-generalized taxicab version of this formula in terms of m-generalized
taxicab distance, similar to the one given in [14]. We need following modified definitions given in [14] to give an m-generalized taxicab
version of Heron’s formula:

Definition 3.1. Let ABC be any triangle in the m-generalized taxicab plane. Clearly, there exists a pair of lines passing through every vertex
of the triangle, each of which is parallel to lines mx− y = 0 or x+my = 0. A line l is called m-base line of ABC if and only if
(1) l passes through a vertex,
(2) l is parallel to lines mx− y = 0 or x+my = 0,
(3) l intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two m-base lines. Such a vertex of the triangle is called an m-basic vertex.
An m-base segment is a line segment on an m-base line, which is bounded by an m-basic vertex and its opposite side.

Now, we give the m-generalized taxicab version of Heron’s formula:

Theorem 3.2. Let ABC be a triangle, and a = dTg(m)(B,C), b = dTg(m)(A,C), c = dTg(m)(A,B), p = (a+ b+ c)/2, and let α denote the
m-generalized taxicab length of a m-base segment of the triangle. Then the area A of the triangle is

A =


1

2uv α(p− (α +α ′))
, if there exists only one m-base line
passing through the m-basic vertex

1
2uv α(p− (α +α ′+α ′′))

, if there exist two m-base lines
passing through the m-basic vertex

(3.1)

where α ′ = dTg(m)(D,H), α ′′ = dTg(m)(basic vertex,H ′),
D is intersection point of the m-base line and the opposite side,
H is point of orthogonal projection of one of the remaining two vertices on the m-base line which is an endpoint of the m-base segment or
not on the m-base segment,
H ′ is point of orthogonal projection of the third vertex on the same m-base line which is an endpoint of the m-base segment or not on the
m-base segment.
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Proof. Let ABC be a triangle with m-basic vertex C, without loss of generality. Let H ′′ be the point of orthogonal projection of one of the
remaining two vertices which is on the m-base segment. Two cases are:

(i) Let ABC has only one m-base line passing through C. Figure 3 and Figure 4 represent all such triangles. Let h = dTg(m)(A,H),
h′ = dTg(m)(B,H

′′), cA = dTg(m)(A,D), and cB = dTg(m)(B,D). Since cA +α = b and cB +a = α +2h′, one gets h′ = p−b. We also have
h = b− (α +α ′). Therefore, h+h′ = p− (α +α ′). Besides, A = 1

2uv α(h+h′) by Corollary 2.1. Hence, A = 1
2uv α(p− (α +α ′)).

Figure 3 Figure 4

(ii) Let ABC has two m-base lines passing through C. Figure 5 represents all such triangles. Choose an m-base line to determine the point D.
Let h = dTg(m)(B,H) and h′ = dTg(m)(A,H

′). Since a = h+α +α ′, b = h′+α ′′, and a+b = c one gets h+h′ = a+b− (α +α ′+α ′′) =

p− (α +α ′+α ′′). Besides, A = 1
2uv α(h+h′) by Corollary 2.1. Hence, A = 1

2uv α(p− (α +α ′+α ′′)).

Figure 5

The following two corollaries give the m-generalized taxicab versions of Heron’s formula for some special cases:

Corollary 3.1. If one side of a triangle ABC, say BC, is parallel to one of lines mx− y = 0 or x+my = 0 and none of the angles B and C is
an obtuse angle, then for the area A of ABC,

A =
1

2uv
a(p−a). (3.2)

Proof. Let ABC be a triangle with BC is parallel to one of lines mx− y = 0 or x+my = 0 and none of the angles B and C is an obtuse
angle. Then, there is only one m-base line passing through B or C, so B and C are m-basic vertices and BC is the m-base segment. Then,
α = a, α ′ = 0, hence we have A = 1

2uv a(p−a).

Corollary 3.2. If one side of a triangle ABC, say BC, is parallel to one of lines mx− y = 0 or x+my = 0 and one of the angles B and C is
not an acute angle, then for the area A of ABC,

A =
1

2uv
a(p− (a+α

′′)) (3.3)

where α ′′ = dTg(m)(basic vertex,H ′) and H ′ is the point of orthogonal projection of A on the same m-base line which is an endpoint of the
m-base segment or not on the m -base segment.

Proof. Let ABC be a triangle with BC is parallel to one of lines mx−y = 0 or x+my = 0 and one of the angles B and C, let us say C, is not an
acute angle. Then, there are two m-base lines passing through C, so C is m-basic vertex and BC is an m-base segment. Then, α = a, α ′ = 0,
hence we have A = 1

2uv a(p− (a+α ′′)).

Note that since the generalized taxicab and so the taxicab distances are special cases of the m-generalized taxicab distance, conclusions given
here are also true for the generalized taxicab and so the taxicab geometry.
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