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Abstract: Let ( ), ,X   be a  -finite measure space, f  be a complex-valued 

measurable function defined on X  and :u X →  be a measurable function such 

that ( ),Xu f M    whenever ( ),Xf M   where ( ),XM   is the set of all 

measurable functions defined on X . This gives rise to a linear transformation 
( ) ( ), ,:

u
X XM M M →   defined by ( ) = u

u
M f f , where the product of 

functions is pointwise. In case if ( ),XM  is a topological vector space and 
uM  is 

a continuous (bounded) operator, then it is called a multiplication operator induced 
by u . In this paper, multiplication operators on grand Lorentz spaces are defined 

and the fundamental properties such as boundedness, closed range, invertibility, 
compactness and closedness of these are characterized. 

  
  

Büyük Lorentz Uzaylarında Çarpım Operatörleri 
 
 

Anahtar Kelimeler 
Büyük Lorentz uzayları, 
Çarpım Operatörü, 
Kompakt(tıkız) operator 

 

Öz: ( ), ,X    -sonlu bir ölçüm uzayı, ( ),XM  , X  üzerinde tanımlı tüm 

ölçülebilir fonksiyonlar ve :u X →  ölçülebilir bir fonksiyon olsun. X  üzerinde 
tanımlı kompleks değerli ölçülebilir herhangi bir f  fonksiyonu için 

( ),Xu f M    olduğundan u  fonksiyonu ( ),XM   üzerinde ( ) = uuM f f , 

( ) ( ), ,:u X XM M M →   şeklinde bir lineer operator tanımlar. Eğer ( ),XM   bir 

topolojik vektör uzayı ve 
uM  operatörüde sürekli(sınırlı) bir operatör ise 

uM ’ya 

u  tarafından indirgenen bir çarpım operatörü denir.  Bu çalışmada büyük Lorentz 

uzaylarında çarpım operatörleri tanımlandı ve sınırlılık, kapalı görüntü, 
terslenebilirlik, kompaktlık ve kapalılık gibi temel özellikleri karakterize edildi. 

  
 
1. Introduction
 

Let ( ), ,X  be a  -finite measure space and f  be a complex-valued measurable function defined on X . The 

distribution function of f  is defined by 

( ) ( ) ( )fD x X f x  =  : for all 0  .
 

By f  , we mean the non-increasing rearrangement of given function f  as 

( ) ( )  ( ) inf sup ,0: 0: 0f f=f t D t D t t    =     .
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Also, the average function of f   is defined by 

( ) ( )
0

t
1

f t f s ds
t

 =   , 0.t   

Note  that ( ) ( )*,fD f   and ( )**f    are  non-increasing  and right continuous  functions on ( )0,  [2]. For 

( ), 0,p q  , we define   

1

1

( ) ,

0*
,

1

sup ( ) ,

0

q q

q dtpt f t q
p t

f
p q

pt f t q

t


 

         
      =  




 = 







 and     

1

1

**( ) ,

0

,
1

**sup ( ) ,

0

q q

q dtpt f t q
p t

f
p q

pt f t q

t


 

        
      =  



 = 







. 

For 0 ,p q    , the Lorentz spaces are denoted by ( )( ), ,L p q X   (or in short, ( )( ),L p q X ) is defined to be the 

vector space of all (equivalence classes of) measurable  functions f  on X   such  that *
,

f
p q

  [2] .  We know 

that *
,

f f
p q p

=  and so ( ) ( )( ), ,pL X L p p X =  where ( )pL X  is the usual Lebesgue space. Also, 

( )( ) ( )( )1 2, , , ,L p q X L p q X   for 1 2q q  . In particular, 

( )( ) ( )( ) ( ) ( )( )1 2, , ,pL p q X L p p X L X L p q X =   

for 1 20 q p q      ([2, 6]). It is also known that if 1 p    and 1 q  , then 

* *
, , ,1

p
f f f

p q p q p qp
 

−
 

for each ( )( ),f L p q X  and ( )( )( ), ,
,

L p q X
p q

  is a Banach space [2].  

The construction of the Lorentz space ( )( ),L p q X  seems to be inspired by the Lebesgue space ( )pL X  , where f   

is replaced by its non-increasing rearrangement and a suitable weight is multiplied. In [3], Iwaniec and Sbordone 

generalized the notion of Lebesgue space and introduced the so-called grand Lebesgue space denoted by )pL , 

which for 1 p   consists of all measurable functions f  defined on ( )0,1  for which 

( )

1
1

sup
)

0 1 0

pp
f f x dx

p
p






  −− =  
 

  −  

 . 

The space )pL  is a rearrangement invariant Banach function space for 0 1p  −  and )p p pL L L −   holds [4] 

. For a measurable function f on ( )0, 1X = , 
, )p q

f is defined as  
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( )( )

( )

1

0 1 0
, )

0 1

1

-1

1

p

;

sup ;

sup ε dt 1

.

q q
q

p

q

p q

t

q
t t

p

t t q

f q
f

f






−
−



  −



 


 
   
 = 





 

=


 

The grand Lorentz spaces
, )p qL consists of those complex-valued measurable functions defined on ( )0, 1X = such 

that  
p,q)

.f   Cleary, if p q= , then 
, )p qL is equal to grand Lebesgue space 

)pL .To see this if one takes ( )p 1,  , 

then 

( )( )
( )

( )( )

( )

1

, )
0 1 0 10

1

)
0 1 0

1 1

-1

1

.

sup dt sup dt

sup d

p p p
p p

p

p p
p p X

p
p

p
p

p
t t t

p
f f f

X

f x x f

 
 

 













− −
− −

 

  −   −

−
−

  −

   
= =     

  

 
= = 

 

 



 

Now, let’s compare the norms of the classical Lorentz space with grand Lorentz spaces. 

For 1 ,p q  , let’s take a function , )p qLf  . Then we get  

( )( ) ( )
1 1 1

, )
0 1 0 10 0

11
1

-1

sup dt sup t dt

q qq q
q

p p p

p q
q q

q q
t t t t

p p
f f f

 




 



 

− −
− −−

 

  −   −

   
 =    

    
    

   

and using ( )

1
1

q
p

pq

q
t t

p
f f  

  
 

, it can be obtained that 

( )
1 1

, )
0 1 0

1 1
1 1

0 1 0

1

1

1

p
.

sup t dt

sup t dt

q q

p p

p q
q

q q

q q

pq pq
q

q
t t

p

q q q

p p p

f f

f f

 



 











− −
−



  −

− −

−

  −

  
   

  
  

  
                  





 

In case of q =  , we get  ( ) ( )
, )

0 1 0 1

1 1

sup supp p

p p
t t

t t t tf f f f 

 
   

=  = . 

Example1.1. If E  is a finite measurable set in   with characteristic function E , then ( ) ( )) ( )0, EE t t


 


=  and  

( )( ) ( ) ( )( )
1 1

, )
0 1 0

1

1 Esup ε dt
q q q

q
p p

E Ep q
q

q
t t q

p






  
−− −



  −

 
= = − 

 
 

  

for 1 ,p q  . On the other hand, if q =  , then ( ) ( )( )
, )

0 1

1 1

sup p p
E Ep

t

t t E  


 

= = . Therefore 

( ) ( )( )

( )( )
, ) 1

1 ,1

, .

q

p

E p q

p

q E q

E q







− 

= 





=
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Let :u X →  be a measurable function such that ( ),Xu f M    whenever ( ),Xf M  . This gives rise to a 

linear transformation ( ) ( ), ,:u X XM M M →  defined by ( ) = uuM f f , where the product of functions is 

pointwise. In case if ( ),XM  is a topological vector space and 
uM  is a continuous (bounded) operator, then it is 

called a multiplication operator induced by u . 

 Multiplication operators have been studied on various function spaces by various authors such as [1, 5-

8]. Along the line of their arguments we will study the multiplication operators on the grand Lorentz spaces 
, )p qL

. For this purpose, we will characterize the invertibility of 
uM on

, )p qL  and find necessary and sufficient conditions 

for Compact multiplication operators.  

 
2.  Bounded and Invertible Multiplication Operators 
 

In this section boundedness and invertibility of multiplication operator 
uM will be characterized in the 

terms of the boundedness and invertibility of the measurable function u respectively. 

Example 2.1. Consider the complex-valued square integrable functions on the interval  -3,1 . For each 3k  , 

define a sequence ( )k k
f


 by   ( )

1

: -3,1 , k
k k x xf f

−

→ = . Since ( )
2

2
1- -3

2

k

k
k

k

k
f

− 
=   −  

 for all 3k  , we can 

say that  ( )2
-3,1k Lf   for all 3k  . Let  -3,1:u →  be a measurable function and define 

 ( )  ( )2 2
-3,1 -3,1:u L LM →  as ( )u = uM f f  for all  ( )2

-3,1f L . If we examine the example, then we have 

that u  must be invertible for uM  is invertible. It can also be observed that uM  is one to one (injective) on the set  

( ) ( ) = : 0supp u x X u x  . 

Remark 2.2. In general, the multiplication operators on measurable spaces is not injective. Indeed, for a 

measurable space ( ), ,X  , let ( )G = X - supp u  with ( ) 0G  . Then we have ( )( ) ( ) ( ) 0G G
u x x u x  =  =  for all 

x X . This implies that ( ) 0u GM  = and   u 0KerM  . Hence 
uM  is not injective. 

 

On the contrary, if 
uM  is injective, then ( )( )X - supp u  must be zero. On the other hand, if 

( )( ) 0X - supp u =  and   is a complete measure, then ( )u = 0M f  implies that ( ) ( ) 0f x u x = for all x X  and 

so ( )  ( ): 0x X f x X - supp u    and 0f =  (a.e.) on X . 

 

Proposition 2.3. uM  is injective on ( )( ) ( ) ( ) , ) , ):p q p qusuppL supp u L XK = f f=  . 

Proof. To show that the operator uM  is injective, it is enough to show that  u 0KerM = . Indeed, if ( )u = 0M f

with f K , then ( ) ( ) ( ) ( ) ( ) ( ) 0
usuppf x u x f x x u x =   =  for all x X . From this, we get ( ) ( ) 0f x u x = for all

( )x supp u and so ( ) 0f x = . Therefore 0f =  and  0uKerM = . 

 

Theorem 2.4.  The linear transformation u : uM f f→   on grand Lorentz spaces 
, )p qL  is bounded for 

1 ,p q   if and only if u  is essentially bounded. Moreover .u uM


=  

Proof. Suppose that u  is essentially bounded i.e. ( )u L  and 
, )p qf L . Since  ( )u x u


  for all x X , it can 

be written that ( )( ) ( )x u xu f f


  and ( )( )  ( ) : :x X x x X u xu f f 


     . Therefore 
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( ) ( ) ( )
u

u Mf ff u
D D D


 





 
  

 
 

=  

and 

( ) ( ) : 0 :0 0
u

f M f
t t , t

u
D D


  



   
        

   

.  

By using the definition of rearrangement, we have  ( )( ) ( )u u tM f f





 and 

 

( ) ( )( ) ( )( )

( )( )

( )( )

1 1

, )
0 1 0

1 1

0 1 0

1 1

, )

0

1

1

1

0<ε<q-1

sup ε

sup ε

sup ε t

q qq
p

u u
p q

q

q q
q

p

q

q q
q

p

p q

q
t t dt

p

q
t u t dt

p

q
u t dt f u

p

M f M f

f

f













−−− 

  −

−− −



  −

−− −


 

 
=  

 
 

 
  

 
 

 
= = 

 
 







 

Consequently ( )
, ), )

.u p qp q
uM f f


 Also for q =  , we have  

( ) ( )( ) ( ) ( )
, ), )

0 1 0 1

1 1

sup supp p

u u p qp q
t t

t t t u t uM f M f f f




 
   

=  = . 

Thus, for any
, )p qf L , for all 1 ,p q we obtain  

( )
, ), )

u p qp q
uM f f


                                                                                   (2.1) 

Conversely, suppose that uM is a bounded operator on grand Lorentz spaces for 1 .q  If u is not an 

essentially bounded function, then we can write a set ( ) :k x X u x kG =   which has a positive measure for all 

k . Since the non-increasing rearrangement of the characteristic function
kG

 is ( ) ( ) ( ))
( )

0,
,

k GkG
t t


 




= we 

can get 

( )  ( )( ) : : u
k kG G

x X k x x X x           

 

and ( ) ( )
uk

k

k MG G

D D
  

 
 
 


 . Therefore 

 

( ) ( )
u

0 : 0 :
k

k

kM GG

t tD D
   

 
 
 



    
       

   

 

 for all 0t  and ( ) ( )
u

0 : 0 :
k

k

k MG G

inf t inf tD D
  

 
 
 



   
       

    

.  
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As a result, ( )( ) ( ) ( ) ( )
k k

u G G
t k tM  

 

   and so 

( ) ( )( ) ( )

( ) ( )

1 1

, )
0

1 1

, )
0

1

0< <q-1

1

0< <q-1

u

.

sup t dt

sup t dt

k k

k k

q q q
p

u
p q

q q q
p

p q

G G

G G

q
t

p

q
k t k

p

M M
 

 





  

  

− −−

− −− 

  
=      

  
  =     





 

Besides these, for q =   we have 

( ) ( )( ) ( )

( ) ( )

, ) t

, )t

1

0< <1

1

0< <1

.

sup t

sup t

k k

k k

p

u u
p q

p

p q

G G

G G

t

k t k

M M 

 





=

 = 

 

 

This contradicts the boundedness of 
uM . Hence u must be essentially bounded. Now for any 0  , let 

( ) :S = x X u x u 


  − .Then 

( ) ( )  ( )( ) : - :u u
S S

x X x x X x    


       

 

and 
( ) ( ) ( )uu - SS

D D
 

 


 . Therefore 

 

( )  ( ) ( ) u u -S S
t tD D

 
  


   >0: >0: . 

 

By using the infimum property, we get 
 

( )  ( ) ( ) u u -
0: 0 :

S S
inf t inf tD D

 
  


   > >  

and ( )( ) ( ) ( )( ) ( )u u
S S

M t t  
 


 −  so ( )uM u 


 − . As a result, uM u


  and uM u


=  with 2.1. 

We already know that if X and Y  are Banach spaces and ( )F B X,Y , then F is bounded below if and only if  

F is 1-1 and has closed range. According to this knowledge, we can give the following corollary. 

Corollary 2.5. ( )( ) ( )( ), ) , )u : u up q p qL LM supp supp→  has closed range if and only if 
uM is bounded below on 

( )( ), ) up qL supp . 

This result is clear. Since uM  is 1-1 on ( )( ), ) up qL supp  by Proposition 2.3. Moreover, if  is a complete measure 

and 0u   a.e. on X , then we have the following result. 

Corollary 2.6.  If  is a complete measure and 0u  a.e. on X , then ( ) ( ), ) , ): , , , ,u p q p qM L X L X  →  has closed 

range if and only if uM is bounded below on ( ), ) , ,p qL X  . 

Theorem 2.7. The set of all multiplication operators on the grand Lorentz spaces 
, )p qL for1 ,p q  is a maximal 

abelian subalgebra of ( ), ) , ),p q p qB L L , Banach algebra of all bounded linear operators on 
, )p qL .  



 Multiplication Operators on Grand Lorentz Spaces 

7 
 

Proof. Let  :u uH = M L . Then H is a vector space under operations 
( )u v u+v,

: x
MM M

+ H H H→ , 
( ),

: x
kuu

Mk M
F H H → and 

a subalgebra of ( ), ) , ),p q p qB L L . Consider the composition of operators such as 
u v uvM M M= , where 

u v, M M H.  

Let ,u v L . Then ( )u x u


 and ( )v x v


  implies that uv u v
  
  and so the product is an inner 

operation, moreover the composition is associative, commutative and distributive respect to the sum and the 

scaler product, thus we can conclude that H is a subalgebra of ( ), ) , ),p q p qB L L . Let T  be any operator on 
, )p qL such 

that u uT M M T= for every ( )u L  .Consider the unit function :e X →  defined by ( ) 1e x =  for all 

x X and v =Te . Then ( ) ( ) ( )( ) EE EE v M
v E

T =T M e = M T e =    = for all measurable set E . 

Consequently = vT M . Now, let us check that ( )v L   or not. If possible, the set ( ) :k x X v x kG =   has a 

positive measure for each k . Then  

( ) ( )
, ), ) , )

.
k k k

v
p qp q p q

G G G
kT M  =  

 

Therefore T is an unbounded operator that is a contradiction to the fact that T is bounded.  Therefore ( )v L 

and
vM is bounded by Theorem 2.4.Now, let 

, )p qf L  and ( )n n
s


 be a nondecreasing sequence of measurable 

simple functions such that n
n
lim s f.
→

=  Then ( ) ( ) ( ) ( ) ( ) ( )
n n n n
lim lim lim limn n v n v n vT f T s T s s s fM M M
→ → → →

== = = = . 

Therefore, we can conclude that  :u uT H = M L  . 

Corollary 2.8. The multiplication operator uM on 
, )p qL for 1 ,p q  is invertible if and only if u  is invertible in 

L .  

Proof. Let 
uM be invertible. Then there exists a ( ), ) , ),p q p qT B L L such that 

u uT M M T = I= . Let 
vM H . 

Then 
u v v uM M M M=  and 

 

( ) ( )T M M T T M M T T M M Tv u u v v v=  = . 

 

Therefore, we can conclude that T  commute with H and so T H  by Theorem 2.7. Then there exists a w L  

such that 
wT = M  and

u w w uM M M M I= = . This implies that 1uw wu= =  a.e, which means that u is invertible 

on .L On the other hand, assume that u is invertible on L , that is 
1
u

L  . Then 
1 1

M M = M M = Iu uu u

which means that 
uM is invertible on ( ), ) , ),p q p qB L L . 

3. Compact Multiplication Operators 

In this section we will characterize the compact multiplication operators. A compact operator is a linear operator 

L  from a Banach space X  to another Banach space Y , such that the image under L  of any bounded subset of  

X  is a relatively compact subset (has compact closure) of Y . Such an operator is necessarily a bounded operator, 
and so continuous 
 

Definition 3.1. Let T be an operator. A subspace K of a normed space X is said to be invariant under T  (or 

simply T -invariant) whenever ( )T K K . 

Lemma 3.2. Let :T A A→  be an operator. If T is compact and N is a closed T -invariant subspace of A , then 

N
T  is also compact. 
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Proof.  Let ( )k k
g


be a bounded sequence in N A . Then compactness property of T  implies that there exists a 

subsequence ( )
nk

n
g


of ( )k k

g


such that ( )( )
nk

n
T g


converges in. .A .Since ( )

nk
n

g N


  and ( )( ) ( )
nk

n
T g T N




, then ( )( )
nk

n
T g


converges on N . Hence 

N
T  is compact. 

Theorem3.3. Let uM  be a compact operator. Let ( ) ( ) :u x X u xG =    and 

( )( ) ( ) , ) , )u
:p q p qG

L u f LG f
 =   for any 0  . Then ( )( ), )p qL uG  is closed invariant subspace of 

, )p qL  under 

uM .  Moreover uM  is a compact operator on ( )( ), )p qL uG .  

Proof. We first show that ( )( ), )p qL uG is a subspace of
, )p qL . Let ( )( ), )p qL uf,g G  and ,a b . Since 

( )G u
f = f


  and ( )G u

=g g


  for any 
, )p qLf,g , we have 

( ) ( ) ( ) ( )G u G u G u
+b +baf g = af g af bg

  
  = + . By the 

definition of ( )( ) ( ), ) , ): , ,u p q p qM L u L XG →  , we have ( ) ( )
u uu G u

M f f f


= =  . Therefore ( )( ), )p qL uG is an 

invariant subspace of 
, )p qL  under 

uM . Now, let us show that ( )( ) ( )( ), ) , )p q p qL u L uG G  . Let g  be in 

( )( ), )p qL uG . Then there exists a sequence 
kg  in ( )( ), )p qL uG  such that  

kg g→  where 
, )k p qLg   and 

( )k k G u
=g g


  for each .k

 

Since 
kg  is a Cauchy sequence in ( )( ), )p qL uG , it can be written that for all 0  , there exists a 0k   such that 

, )k r p q
g g −   for all 0,k r k . Hence for all 0,k r k , we can find a 0   such that 

( ) ( ) ( )k r k r G u
g g g g


 − −  and ( ) ( )

( )( ) )0,k r k r G u
g g g g




 




− −  

Then 
, ) , )k r k rp q p q

g g g g−  −  for any constant  . Therefore  k k
g


 is also a Cauchy sequence in 

, )p qL . Since 

, )p qL is a Banach space, we can write that kg g→  for an element
, )p qLg . Thus 

( ) ( ) , ), )
k kG u G u p qp q

g g g g
 

 −  −
 

and 
kg g→ . Consequently ( )( ), )p qL ug G  and 

( )( ), )
u

p qL G u
M



 is a compact operator by Lemma 3.2. 

 

Theorem 3.4.  A multiplication operator
uM on

, )p qL is compact if and only if ( )( ), )p qL uG is finite dimensional for 

each 0  , where  

( ) ( ) :u uG x X x =  and ( )( ) ( ) , ) , ):p q p qG u
L u LG f f

 =  .
 

Proof. If 
uM  is a compact operator, then ( )( ), )p qL uG is a closed invariant subspace of 

, )p qL under 
uM and 

( )( ), )p q
u L G u

M


is a compact operator by Theorem 3.3. Let’s take any x X. If ( )ux G then for each , )p qLf  , we 

can obtain 
( )

( )
( )

0
, )

M f u fu L G u G up q


 
 
 
 

 
   

=  =    
  

.  Therefore
( )( ), )

0.
p q

u L G u
M



= If ( )ux G , then ( )u x   

and note that 
( )( )( ) ( )( )( )G u G u

u f x f x
 

  , 
( ) ( )( ) ( )

G u
G u

f u f
D D




 






 
 

 
. Therefore 

( )( ) ( )  ( )
t t

G u
G u

fu f
D D





 








  
    

  
>0 : > 0 :  for all 0.t  By using this inclusion, we have  

( )( ) ( ) ( )( ) ( )G u G u
t tf u f

 
  

 

    

and 
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( )( ) ( )( )( ) ( )

( )( ) ( )

( )

1 1

, ) 1 0

1 1

1 0

, )

1

0<ε<

1

0<ε<

.

sup dt

sup dt

q q q
p

u uG u G u
p q q

q q q
p

G u
q

G u
p q

q
t t

p

q
t t

p

M f M f

f

f

 





 

 



 



 





− −−

−

− −− 

−

  
=      

        

 



  

Thus, in either case 
( )( ), )

u
p qL G u

M


 has a closed range in ( )( ), )p qL uG and invertible. Being compact implies that 

( )( ), )p qL uG is finite dimensional. 

 

 Conversely, suppose that ( )( ), )p qL uG is finite dimensional for each 0  . In particular, ( )( ), ) 1p q n
L uG  

is finite dimensional for each n . Define a sequence :nu X →   as 

 

( )
( ) ( )

( )

, 1

10,
n

u x u x n
u

u x n
x

 
= 



 

 

for all n . Since u L , it’s easy to see that 
nu L for each n .Moreover for any , )p qLf  , 

 

( ) ( ) ( )( )( ) ( )
n

nu u f
u uD x X f x 

− 
= −  :  

and 

( )( ) ( ) ( ) ( ) inf 0
n

n u u f
u u t tf D 



− 
− =  : . 

 

For any 0  , if ( )1 n
x uG  then ( )( ) ( )n 0u u tf



− =  and ( ) 0nu u f− = . If ( )1 n
x uG , then we get

( )( ) ( ) ( )
1

nu u t t
n

f f
 −   and ( ) ( )

, ), )

1
nu u p qp q n

M f f
−

 . This implies that 
nuM  converges to 

uM uniformly. Since 

( )( ), ) 1p q n
L uG is finite dimensional so

nuM is finite rank operator. Therefore, 
nuM is a compact operator and so 

uM  is.  
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