Common Fixed Point Theorems Satisfying Implicit Relations on 2-cone Banach Space with an Application

D. Dhamodharan*, Nihal Taş and R. Krishnakumar

Abstract

In this paper, we discuss the existence and uniqueness of common fixed-point theorems satisfying implicit relations on 2-cone Banach spaces. Modifying obtained new contractive conditions, we also give an application to the fixed-circle problem.

Keywords: common fixed point; 2-cone Banach space; 2-cone normed space; fixed circle.

AMS Subject Classification (2010): Primary: 47H10 ; Secondary: 54H25.

*Corresponding author

1. Introduction and preliminaries

In 2007, Huang and Zhang [3] introduced the concept of a cone metric space and proved fixed point theorems for contraction mappings such as:

Any mapping *T* of a complete cone metric space *X* into itself that satisfies, for some $0 \le k < 1$, the inequality

$$d(Tx, Ty) \leq kd(x, y)$$
 for all $x, y \in X$

has a unique fixed point.

In [4], Karapınar established some fixed-point theorems in cone Banach space in 2009. Ahmet Şahiner and Tuba Yiğit initiated the concept of a 2-cone Banach space and proved some fixed-point theorems [16]. Krishnakumar and Dhamodharan proved some common fixed-point theorems on contractive modulus in 2-cone Banach space [5].

In this paper, following the idea which was given in [14], we establish some common fixed-point theorems for a self-mapping satisfying implicit relations which are contractive conditions in 2-cone Banach spaces. Now we recall some known definitions and basic facts.

Definition 1.1. [3] Let *E* be the real Banach space. A subset *P* of *E* is called a cone if and only if

- 1. *P* is closed, nonempty and $P \neq 0$
- 2. $ax + by \in P$ for all $x, y \in P$ and nonnegative real numbers a, b
- 3. $P \cap (-P) = \{0\}.$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We will write x < y to indicate that $x \leq y$ but $x \neq y$, while x, y will stand for $y - x \in intP$, where intP denotes the interior of P. The cone P is called normal if there is a number K > 0 such that $0 \leq x \leq y$ implies $||x|| \leq K ||y||$ for all $x, y \in E$. The least positive number satisfying the above is called the normal constant.

From now on we suppose that *E* is a Banach space, *P* is a cone in *E* with $intP = \emptyset$ and \leq is partial ordering with respect to *P*.

Example 1.1. Let K > 1 be given. Consider the real vector space with

$$E = \left\{ ax + b : a, b \in R; x \in \left[1 - \frac{1}{k}, 1\right] \right\}$$

with supremum norm and the cone

$$P = \{ax + b : a \ge 0, b \le 0\}$$

in E. The cone P is regular and so normal.

Definition 1.2. [3] Let *X* be a nonempty set. If the mapping $d : X \times X \to E$ satisfies

- 1. d(x, y) > 0 and d(x, y) = 0 if and only if x = y for all $x, y \in X$,
- 2. d(x, y) = d(y, x) for all $x, y \in X$,
- 3. $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$,

then (X, d) is called a cone metric space (CMS).

Example 1.2. [3] Let $E = \mathbb{R}^2$

$$P = \{(x, y) : x, y \ge 0\}.$$

 $X = \mathbb{R} \text{ and } d: X \times X \to E$ such that

$$d(x,y) = (|x-y|, \alpha |x-y|),$$

where $\alpha \ge 0$ is a constant. Then (X, d) is a cone metric space.

Definition 1.3. [4] Let X be a vector space over \mathbb{R} . If the mapping $\|.\|_c : X \to E$ satisfies

- 1. $||x||_c \ge 0$ for all $x \in X$,
- 2. $||x||_c = 0$ if and only if x = 0,
- 3. $||x + y||_c \le ||x||_c + ||y||_c$ for all $x, y \in X$,
- 4. $||kx||_c = |k|||x||_c$ for all $k \in \mathbb{R}$ and for all $x \in X$,

then $\|.\|_c$ is called a cone norm on *X*, and the pair $(X, \|.\|_c)$ is called a cone normed space (CNS).

Remark 1.1. [1] Each cone normed space is cone metric space with metric defined by

$$d(x,y) = \|x - y\|_c$$

Example 1.3. [15] Let $X = \mathbb{R}^2$, $P = \{(x, y) : x \ge 0, y \ge 0\} \subset \mathbb{R}^2$ and $||(x, y)||_c = (a|x|, b|y|), a > 0, b > 0$. Then $(X, ||.||_c)$ is a cone normed space over \mathbb{R}^2 .

Example 1.4. [2] Let $E = l_1$, $P = \{\{x_n\} \in E : x_n \ge 0, \text{ for all } n\}$ and $(X, \|.\|)$ be a normed space and $\|.\|_c : X \to E$ defined by $\|x\|_c = \left\{\frac{\|x\|}{2^n}\right\}$. Then P is a normal cone with constant normal M = 1 and $(X, \|.\|_c)$ is a cone normed space.

Definition 1.4. [1] Let $(X, \|.\|_c)$ be a CNS, $x \in X$ and $\{x_n\}_{n\geq 0}$ be a sequence in X. Then $\{x_n\}_{n\geq 0}$ converges to x whenever for every $c \in E$ with $0 \ll E$, there is a natural number $N \in \mathbb{N}$ such that $\|x_n - x\|_c \ll c$ for all $n \geq N$. It is denoted by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

Definition 1.5. [1] Let $(X, \|.\|_c)$ be a $CNS, x \in X$ and $\{x_n\}_{n \ge 0}$ be a sequence in X. $\{x_n\}_{n \ge 0}$ is a Cauchy sequence whenever for every $c \in E$ with $0 \ll c$, there is a natural number $N \in \mathbb{N}$, such that $\|x_n - x_m\|_c \ll c$ for all $n, m \ge N$.

Definition 1.6. [1] Let $(X, \|.\|_c)$ be a *CNS*, $x \in X$ and $\{x_n\}_{n\geq 0}$ be a sequence in *X*. $(X, \|.\|_c)$ is a complete cone normed space if every Cauchy sequence is convergent. Complete cone normed spaces will be called cone Banach spaces.

Lemma 1.1. [4] Let $(X, \|.\|_c)$ be a CNS, P be a normal cone with normal constant K, and $\{x_n\}$ be a sequence in X. Then

- *i.* the sequence $\{x_n\}$ converges to x if and only if $||x_n x||_c \to 0$ as $n \to \infty$,
- *ii.* the sequence $\{x_n\}$ is Cauchy if and only if $||x_n x_m||_c \to 0$ as $n, m \to \infty$,
- *iii.* the sequence $\{x_n\}$ converges to x and the sequence $\{y_n\}$ converges to y, then $||x_n y_n||_c \rightarrow ||x y||_c$.

Definition 1.7. [16] Let *X* be a linear space over \mathbb{R} with dimension greater then or equal to 2, *E* be Banach space with the norm $\|.\|$ and $P \subset E$ be a cone. If the function

$$\|.,.\|: X \times X \to (E, P, \|.\|)$$

satisfies the following axioms then $(X, \|., .\|_c)$ is called a 2-cone normed space:

- 1. $||x,y||_c \ge 0$ for all $x, y \in X$, $||x,y||_c = 0$ if and only if x and y are linearly dependent,
- 2. $||x, y||_c = ||y, x||_c$ for all $x, y \in X$,
- 3. $\|\alpha x, y\|_c = |\alpha| \|x, y\|_c$ for all $x, y \in X$ and $\alpha \in \mathbb{R}$,
- 4. $||x, y + z||_c \le ||x, y||_c + ||y, z||_c$ for all $x, y, z \in X$.

If we fix $\{u_1, u_2, ..., u_d\}$ to be a basis for *X*, we can give the following lemma.

Lemma 1.2. [16] Let $(X, \|., .\|_c)$ be a 2-cone normed space. Then a sequence $\{x_n\}$ converges to $x \in X$ if and only if for each $c \in E$ with $c \gg 0$ (0 is zero element of E) there exists an $N = N(c) \in \mathbb{N}$ such that n > N implies $\|x_n - x, u_i\|_c \ll c$ for every i = 1, 2, ..., d.

Lemma 1.3. [16] Let $(X, \|., .\|_c)$ be a 2-cone normed space. Then a sequence $\{x_n\}$ converges to x in X if and only if $\lim_{n \to \infty} \max \|x_n - x, u_i\|_c = 0$.

Definition 1.8. [16] A 2-cone normed space $(X, \|., .\|_c)$ is a 2-cone Banach space if any Cauchy sequence in X is convergent to an x in X.

Theorem 1.1. [17] Any 2-cone normed space X is a cone normed spaces and its topology agrees with the norm generated by $\|.\|_c^{\infty}$, where the function $\|.\|_c^{\infty} : X \to (E, P, \|.\|)$ is defined by

$$\|.\|_{c}^{\infty} := \max\{\|x, u_{i}\|_{c} : i = 1, 2, \dots, d\}.$$

2. Main results

In this section, we prove some common fixed-point theorems on 2-cone Banach spaces. To do this, we define some notions and give some necessary examples.

Definition 2.1. Let *X* be a 2-cone Banach space (with $\dim X \ge 2$) and *T* be a self-mapping of *X*. If *T* satisfies the condition

$$||Tx - Ty, u||_c \le h_1 ||x - y, u||_c$$

for all $x, y, u \in X$ and some $0 < h_1 < 1$ then it is called 2-Banach contraction.

Definition 2.2. Let *X* be a 2-cone Banach space (with dim $X \ge 2$) and *T* be a self mapping of *X*. A mapping *T* is said to be 2-Zamfirescu type contraction if it satisfies at least one of the conditions for all $x, y, u \in X$ and some $h_1 \in (0, 1), h_2, h_3 \in (0, \frac{1}{2})$:

- 1. $||Tx Ty, u||_c \le h_1 ||x y, u||_c$,
- 2. $||Tx Ty, u||_c \le h_2(||x Ty, u||_c + ||y Tx, u||_c),$
- 3. $||Tx Ty, u||_c \le h_3(||x Tx, u||_c + ||y Ty, u||_c).$

Definition 2.3. Let *X* be a 2-cone Banach space and *T* be a self mapping of *X*. *T* is said to be continuous at *x* if for all sequence $\{x_n\}$ in *X* with $||x_n, u||_c \rightarrow ||x, u||_c$ implies that $||Tx_n, u||_c \rightarrow ||Tx, u||_c$.

Lemma 2.1. Let X and Y be two 2-cone Banach spaces and T be a linear map from X into Y. The following properties are equivalent:

- *i* (Continuity at a point) Given $0 \ll c$ there is a $0 \ll s$ such that $||Tx Tx_0, u||_c \ll c$ whenever $||x x_0, u||_c \ll s$ for some $x_0 \in X$.
- *ii* (Continuity at zero) For $0 \ll c$ there is a $0 \ll s$ such that $||Tx, u||_c \ll c$ whenever $||x, u||_c \ll s$.
- iii (Continuity at every point of x) Given $0 \ll c$ there is a $0 \ll s$ such that $||Tx Ty, u||_c \ll c$ whenever $||x y, u||_c \ll s$ for some $x \in X$.

Proof. Assume that (i) is true. For some $x_0 \in X$ and for every $0 \ll c$ there is a $0 \ll s$ such that $||Tx - Tx_0, u||_c \ll c$ whenever $||x - x_0, u||_c \ll s$. Then for every $z \in X$ with $||z, u||_c \ll s$ we have $||T(z + x_0) - Tx_0, u||_c \ll c$ because $||(z + x_0) - x_0, u||_c \ll t$, where T is linear map then $||Tz, u||_c \ll c$ whenever $||z, u||_c \ll s$ and we have shown that (i) implies (ii).

Assume that (ii) is true. For every $x \in X$ and $0 \ll c$, there exits a $0 \ll s$ such that $||Tz, u||_c \ll c$ whenever $||z, u||_c \ll s$ then we have $||T(y-x), u||_c \ll s$. If we take y - x in place of z then we have (ii) implies (iii) since T is linear map. Clearly (iii) implies (i). Thus (i), (ii) and (iii) are equivalent. \square

Definition 2.4. Let Φ be the class of continuous functions $\varphi : P^4 \to P$ non-decreasing in the first argument and if φ satisfies one of the following conditions for $x, y \in P$:

a. $(a_1) x \leq \varphi(y, x, y, \frac{x+y}{2})$ or $(a_2) x \leq \varphi(x, y, y, x)$. b. $(b_1) x \le \varphi(y, \frac{x+y}{2}, 0, x+y)$ or $(b_2) x \le \varphi(x, y, x, x)$.

....

m

then there exists a real number 0 < h < 1 such that $x \leq hy$.

Now we define the following conditions:

...

Condition (I): Let *X* be a 2-cone Banach space (with dim $X \ge 2$) and *S*, *T* be two self-mappings of *X* such that for all $x, y, u \in X$ satisfying the condition:

$$\|Sx - Ty, u\|_{c} \le \varphi\left(\|x - y, u\|_{c}, \|x - Sx, u\|_{c}, \|y - Ty, u\|_{c}, \frac{\|x - Ty, u\|_{c} + \|y - Sx, u\|_{c}}{2}\right)$$

Condition (II): Let *X* be a 2-cone Banach space (with dim $X \ge 2$) and *S*, *T* be two self-mappings of *X* such that for all $x, y, u \in X$ satisfying the condition:

$$\|Sx - Ty, u\|_{c} \leq \varphi \left(\|x - y, u\|_{c}, \frac{\|x - Sx, u\|_{c} + \|y - Ty, u\|_{c}}{2}, 0, \|x - Ty, u\|_{c} + \|y - Sx, u\|_{c} \right).$$

Theorem 2.1. Let X be a 2-cone Banach space (with dim X > 2) and S, T be two continuous self-mappings of X satisfying the condition (I). Then S and T have a unique common fixed point in X.

Proof. For a given $x_0 \in X$ and $n \ge 1$, take $x_1, x_2 \in X$ such that $x_1 = Sx_0$ and $x_2 = Tx_1$. In general we define a sequence of elements of X such that $x_{2n+1} = Sx_{2n}$ and $x_{2n} = Tx_{2n-1}$ for $n = 0, 1, 2, 3, \cdots$. Now for all $u \in X$, by condition (I), we obtain

$$\begin{aligned} \|x_{2n+1} - x_{2n}, u\|_{c} &= \|Sx_{2n} - Tx_{2n-1}, u\|_{c} \\ &\leq \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \|x_{2n} - Sx_{2n}, u\|_{c}, \|x_{2n-1} - Tx_{2n-1}, u\|_{c}, \\ \frac{\|x_{2n} - Tx_{2n-1}, u\|_{c} + \|x_{2n-1} - Sx_{2n}, u\|_{c}}{2} \end{array} \right) \\ &= \left(\begin{array}{c} \varphi \|x_{2n} - x_{2n-1}, u\|_{c}, \|x_{2n} - x_{2n+1}, u\|_{c}, \|x_{2n-1} - x_{2n}, u\|_{c}, \\ \frac{\|x_{2n} - x_{2n}, u\|_{c} + \|x_{2n-1} - x_{2n+1}, u\|_{c}}{2} \end{array} \right) \\ &= \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \|x_{2n} - x_{2n+1}, u\|_{c}, \|x_{2n} - x_{2n-1}, u\|_{c}, \\ \frac{\|x_{2n-1} - x_{2n+1}, u\|_{c}}{2} \end{array} \right) \\ &\leq \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \|x_{2n} - x_{2n+1}, u\|_{c}, \|x_{2n} - x_{2n-1}, u\|_{c}, \\ \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n-1}, u\|_{c}, \\ \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n-1}, u\|_{c}, \\ 2 \end{array} \right). \end{aligned}$$

Hence from Definition 2.4 (a_1) , we have

$$||x_{2n+1} - x_{2n}, u||_c \le h ||x_{2n} - x_{2n-1}, u||_c \text{ where } 0 < h < 1.$$

$$(2.1)$$

Similarly, we have

$$\|x_{2n} - x_{2n-1}, u\|_c \le h \|x_{2n-1} - x_{2n-2}, u\|_c.$$
(2.2)

Hence, by (2.1) and (2.2), we have

 $||x_{2n+1} - x_{2n}, u||_c \le h^2 ||x_{2n-1} - x_{2n-2}, u||_c.$

By continuing this process, we get

$$||x_{2n+1} - x_{2n}, u||_c \le h^{2n} ||x_1 - x_0, u||_c$$

For every n > m, we have

$$\begin{aligned} \|x_n - x_m, u\|_c &\leq \|x_n - x_{n-1}, u\|_c + \|x_{n-1} - x_{n-2}, u\|_c + \dots + \|x_{m+1} - x_m, u\|_c \\ &\leq (h^{n-1} + h^{n-2} + \dots + h^m) \|x_1 - x_0, u\|_c \\ &\leq \left(\frac{h^m}{1 - h}\right) \|x_1 - x_0, u\|_c. \end{aligned}$$

Since 0 < h < 1, by Definition 2.4, $\left(\frac{h^m}{1-h}\right) << 0$ as $m \to \infty$. Hence $||x_n - x_m, u||_c << 0$ as $n, m \to \infty$. This shows that $\{x_n\}$ is a Cauchy sequence in X. Hence there exists a point z in X such that $x_n \to z$ as $n \to \infty$. It follows from the continuity of S and T that Sz = Tz = z. Thus z is a common fixed point of S and T.

Uniqueness Let w be another common fixed point of S and T, that is Sw = Tw = w. Then, we have

$$||z - w, u||_{c} = ||Sz - Tw, u||_{c}$$

$$\leq \varphi \left(\begin{array}{c} ||z - w, u||_{c}, ||z - Sz, u||_{c}, ||w - Tw, u||_{c}, \\ \frac{||z - Tw, u||_{c} + ||w - Sz, u||_{c}}{2} \end{array} \right)$$

$$\leq \varphi (||z - w, u||_{c}, 0, 0, ||z - w, u||_{c}).$$
(2.3)

By Definition 2.4 (a_2) and the inequality (2.3), we get

$$\|z - w, u\|_c \le 0.$$

Hence z = w and for all $u \in X$. Thus z is a unique common fixed point of S and T.

Corollary 2.1. Let X be a 2-cone Banach space (with dim $X \ge 2$) and T be a self-mapping of X satisfying the condition

$$||Tx - Ty, u||_{c} \le \varphi \left(||x - y, u||_{c}, ||x - Tx, u||_{c}, ||y - Ty, u||_{c}, \frac{||x - Ty, u||_{c} + ||y - Tx, u||_{c}}{2} \right),$$

for all $x, y, u \in X$. Then T has a unique fixed point in X.

Proof. The proof of corollary has immediately follows from above Theorem 2.1 by taking S = T. This completes the proof.

From the above theorem, we obtain the following results as special cases.

Theorem 2.2. Let X be a 2-cone Banach space (with dim $X \ge 2$) and T, S be two self-mappings of X satisfying the condition

$$||Sx - Ty, u||_c \le h_1 ||x - y, u||_c$$

for all $x, y, u \in X$, $0 < h_1 < 1$. Then T and S have a unique common fixed point in X.

Theorem 2.3. Let X be a 2-cone Banach space (with dim $X \ge 2$) and T, S be two self-mappings of X satisfying the condition

$$||Sx - Ty, u||_{c} \le h_{2}(||x - Ty, u||_{c} + ||y - Sx, u||_{c}),$$

for all $x, y, u \in X$, $0 < h_2 < \frac{1}{2}$. Then T and S have a unique common fixed point in X.

We prove the following theorem using the condition (*II*).

Theorem 2.4. Let X be a 2-cone Banach space (with dim $X \ge 2$) and S, T be two continuous self-mappings of X satisfying the condition (II). Then S and T have a unique common fixed point in X.

Proof. For a given $x_0 \in X$ and $n \ge 1$, take $x_1, x_2 \in X$ such that $x_1 = Sx_0$ and $x_2 = Tx_1$. In general we define a sequence of elements of X such that $x_{2n+1} = Sx_{2n}$ and $x_{2n} = Tx_{2n-1}$ for $n = 0, 1, 2, 3, \cdots$. Now for all $u \in X$, by condition (*II*), we obtain

$$\begin{aligned} \|x_{2n+1} - x_{2n}, u\|_{c} &= \|Sx_{2n} - Tx_{2n-1}, u\|_{c} \\ &\leq \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - Tx_{2n-1}, u\|_{c} + \|x_{2n} - Sx_{2n}, u\|_{c}}{2}, \\ \|x_{2n} - Tx_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - Tx_{2n-1}, u\|_{c}}{2}, \end{array} \right) \\ &= \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}}{2}, \\ \|x_{2n} - x_{2n}, u\|_{c}, \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}}{2}, \end{array} \right) \\ &= \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}}{2}, \\ 0, \|x_{2n} - x_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}}{2}, \end{array} \right) \\ &\leq \varphi \left(\begin{array}{c} \|x_{2n} - x_{2n-1}, u\|_{c}, \frac{\|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}}{2}, \\ 0, \|x_{2n-1} - x_{2n}, u\|_{c} + \|x_{2n} - x_{2n+1}, u\|_{c}, \end{array} \right). \end{aligned}$$

Hence from Definition 2.4 (b_1) , we have

$$||x_{2n+1} - x_{2n}, u||_c \le h ||x_{2n} - x_{2n-1}, u||_c \text{ where } 0 < h < 1.$$
(2.4)

Similarly, we have

$$\|x_{2n} - x_{2n-1}, u\|_c \le h \|x_{2n-1} - x_{2n-2}, u\|_c.$$
(2.5)

Hence from (2.4) and (2.5), we have

$$|x_{2n+1} - x_{2n}, u||_c \le h^2 ||x_{2n-1} - x_{2n-2}, u||_c$$

on continuing this process, we get

$$||x_{2n+1} - x_{2n}, u||_c \le h^{2n} ||x_1 - x_0, u||_c$$

For every n > m, we have

$$\begin{aligned} \|x_n - x_m, u\|_c &\leq \|x_n - x_{n-1}, u\|_c + \|x_{n-1} - x_{n-2}, u\|_c + \dots + \|x_{m+1} - x_m, u\|_c \\ &\leq (h^{n-1} + h^{n-2} + \dots + h^m) \|x_1 - x_0, u\|_c \\ &\leq \left(\frac{h^m}{1 - h}\right) \|x_1 - x_0, u\|_c. \end{aligned}$$

Since 0 < h < 1, by Definition 2.4, $\left(\frac{h^m}{1-h}\right) << 0$ as $m \to \infty$. Hence $||x_n - x_m, u||_c << 0$ as $n, m \to \infty$. This shows that $\{x_n\}$ is a Cauchy sequence in *X*. Hence there exists a point *z* in *X* such that $x_n \to z$ as $n \to \infty$. It follows from the continuity of *S* and *T* that Sz = Tz = z. Thus *z* is a common fixed point of *S* and *T*.

Uniqueness Let w be another common fixed point of S and T, that is Sw = Tw = w. Then, we have

$$\begin{aligned} \|z - w, u\|_{c} &= \|Sz - Tw, u\|_{c} \\ &\leq \varphi \left(\begin{array}{c} \|z - w, u\|_{c}, \frac{\|w - Tw, u\|_{c} + \|z - Sz, u\|_{c}}{2}, \\ \|z - Tw, u\|_{c}, \|w - Sz, u\|_{c} \end{array} \right) \\ &\leq \varphi (\|z - w, u\|_{c}, 0, \|z - w, u\|_{c}, \|z - w, u\|_{c}). \end{aligned}$$

$$(2.6)$$

By Definition 2.4 (b_2) and the inequality (2.6), we get

$$\|z - w, u\|_c \le 0.$$

Hence z = w and for all $u \in X$. Thus z is a unique common fixed point of S and T.

Corollary 2.2. Let X be a 2-cone Banach space (with $\dim X \ge 2$) and T be a self-mapping of X satisfying the condition

$$||Tx - Ty, u||_{c} \le \varphi \left(||x - y, u||_{c}, \frac{||x - Tx, u||_{c} + ||y - Ty, u||_{c}}{2}, ||x - Ty, u||_{c}, ||y - Tx, u||_{c} \right),$$

for all $x, y, u \in X$. Then T has a unique fixed point in X.

Proof. The proof of corollary has immediately follows from above Theorem 2.4 by taking S = T. This completes the proof.

From the above theorem we obtain the following result as a special case.

Theorem 2.5. Let X be a 2-cone Banach space (with dim $X \ge 2$) and T, S be two self-mappings of X satisfying the condition

$$||Sx - Ty, u||_{c} \le h_{3}(||x - Sx, u||_{c} + ||y - Ty, u||_{c}),$$

for all $x, y, u \in X$, $0 < h_3 < \frac{1}{2}$. Then T and S have a unique common fixed point in X.

From Theorem 2.1 and Theorem 2.4, we obtain the following results as special cases.

Theorem 2.6. Let X be a 2-cone Banach space (with dim $X \ge 2$) and T, S be two self-mappings of X. A mapping T and S are said to be 2-Zamfirescu type contraction satisfying the at least one of the following conditions is true:

- 1. $||Sx Ty, u||_c \le h_1 ||x y, u||_c$
- 2. $||Sx Ty, u||_c \le h_2(||x Ty, u||_c + ||y Sx, u||_c)$
- 3. $||Sx Ty, u||_c \le h_3(||x Sx, u||_c + ||y Ty, u||_c)$

for all $x, y, u \in X, h_1 \in (0, 1)$ and $h_2, h_3 \in (0, \frac{1}{2})$. Then T and S have a unique common fixed point in X.

3. An application to the fixed-circle problem

In this section, we give an application to the fixed-circle problem which is a new geometric approach to fixedpoint theory raised by Özgür and Taş [8]. More recently, some different solutions of the problem have been investigated with various techniques on metric spaces or some generalized metric spaces (see [6], [7], [9], [10], [11], [12], [13], [18], [19], [20] and [21] for more details). In this context, we obtain new fixed-circle theorems on 2-cone normed spaces. At first, we recall the notion of an open ball and define a circle on a 2-cone normed space.

Definition 3.1. [17] Let $\|.\|_c^{\infty} : X \to (E, P, \|.\|)$ and $r \in E$ with $r \gg \theta$. Then the set

$$B_{\{u_1, u_2, \dots, u_d\}}(x_0, r) = \{x : \|x - x_0\|_c^\infty \ll r\}$$

is called an open ball centered at x_0 with radius r.

Definition 3.2. (1) Let $\|.\|_c^{\infty} : X \to (E, P, \|.\|)$ and $r \in E$ with $r \gg \theta$ or $r = \theta$. Then the set

$$C_{x_0,r}^2 = C_{\{u_1, u_2, \dots, u_d\}}(x_0, r) = \{x : \|x - x_0\|_c^\infty = r\}$$

is called a circle centered at x_0 with radius r.

(2) Let $\|.\|_c^\infty : X \to (E, P, \|.\|)$ and $r \in E$ with $r \gg \theta$ or $r = \theta$. Then the set

$$B_{\{u_1, u_2, \dots, u_d\}}[x_0, r] = B_{\{u_1, u_2, \dots, u_d\}}(x_0, r) \cup C^2_{x_0, r}$$

is called a closed ball centered at x_0 with radius r.

(3) The circle $C_{x_0,r}^2$ (or the closed ball $B_{\{u_1,u_2,\ldots,u_d\}}[x_0,r]$) is called as the fixed circle (or fixed disc) of a self-mapping T if Tx = x for all $x \in C_{x_0,r}^2$ (or $x \in B_{\{u_1,u_2,\ldots,u_d\}}[x_0,r]$), respectively.

We give the following fixed-circle (or fixed-disc) results:

Theorem 3.1. Let X be a 2-cone normed space (with dim $X \ge 2$), $T : X \to X$ be a self-mapping, $x_0 \in X$ and

$$r = \inf_{x \in X} \left\{ \|Tx - x, u\|_c : Tx \neq x \right\}.$$
(3.1)

If T satisfies the following conditions, then $C^2_{x_0,r}$ is a fixed circle of T:

(1) If $Tx \neq x$ then

$$\|Tx - x, u\|_{c} \leq \varphi \left(\begin{array}{c} \|x - x_{0}, u\|_{c}, \|Tx - x, u\|_{c}, \|x - Tx_{0}, u\|_{c}, \\ \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2} \end{array} \right),$$

where $\varphi \in \Phi$. (2) $Tx_0 = x_0$.

Proof. Case 1: Let $r = \theta$. Then we have

$$\begin{aligned} \|x - x_0\|_c^\infty &= \theta \Longrightarrow \max\left\{\|x - x_0, u_i\|_c : i = 1, 2, \dots d\right\} = 0\\ &\implies \|x - x_0, u_i\|_c = 0 \text{ for all } i = 1, 2, \dots d\\ &\implies x = x_0\\ &\implies C_{x_0, r}^2 = \{x_0\}. \end{aligned}$$

Using the condition (2), we know $Tx_0 = x_0$ and so $C^2_{x_0,r}$ is a fixed circle of T.

Case 2: Let $r \gg \theta$ and $x \in C^2_{x_0,r}$ with $Tx \neq x$. By the definition of r, we have $r \leq ||Tx - x, u||_c$. Using the conditions (1), (2) and the property of φ , we obtain

$$\begin{aligned} \|Tx - x, u\|_{c} &\leq \varphi \left(\begin{array}{cc} \|x - x_{0}, u\|_{c}, \|Tx - x, u\|_{c}, \|x - Tx_{0}, u\|_{c}, \\ \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2} \end{array} \right) \\ &\leq \varphi \left(r, \|Tx - x, u\|_{c}, r, \frac{r + \|Tx - x, u\|_{c}}{2} \right). \end{aligned}$$

From Definition 2.4 (a_1) , we have

$$||Tx - x, u||_c \le hr, h \in (0, 1),$$

which is a contradiction with the definition of *r*. Therefore, it should be Tx = x. Consequently, $C_{x_0,r}^2$ is a fixed circle of *T*.

Corollary 3.1. Let X be a 2-cone normed space (with dim $X \ge 2$), $T : X \to X$ be a self-mapping, $x_0 \in X$ and r be defined as in (3.1). If T satisfies the following conditions, then T fixes the closed ball $B_{\{u_1,u_2,...,u_d\}}[x_0,\rho]$ with $\rho \le r$ (or $B_{\{u_1,u_2,...,u_d\}}[x_0,r]$ is the fixed disc of T) :

(1) If $Tx \neq x$ then

$$\|Tx - x, u\|_{c} \le \varphi \left(\begin{array}{c} \|x - x_{0}, u\|_{c}, \|Tx - x, u\|_{c}, \|x - Tx_{0}, u\|_{c}, \\ \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2} \end{array} \right),$$

where $\varphi \in \Phi$. (2) $Tx_0 = x_0$.

Proof. The proof can be easily seen by the similar arguments used in the proof of Theorem 3.1.

Theorem 3.2. Let X be a 2-cone normed space (with dim $X \ge 2$), $T : X \to X$ be a self-mapping, $x_0 \in X$ and r be defined as in (3.1). If T satisfies the following conditions, then $C^2_{x_0,r}$ is a fixed circle of T:

(1) If $Tx \neq x$ then

$$\|Tx - x, u\|_{c} \leq \varphi \left(\begin{array}{c} \|x - x_{0}, u\|_{c}, \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2}, 0, \\ \|Tx - x, u\|_{c} + \|x - Tx_{0}, u\|_{c} \end{array} \right)$$

where $\varphi \in \Phi$. (2) $Tx_0 = x_0$. *Proof.* Case 1: Let $r = \theta$. Then we have $C_{x_0,r}^2 = \{x_0\}$. Using the condition (2), we know $Tx_0 = x_0$ and so $C_{x_0,r}^2$ is a fixed circle of *T*.

Case 2: Let $r \gg \theta$ and $x \in C^2_{x_0,r}$ with $Tx \neq x$. By the definition of r, we have $r \leq ||Tx - x, u||_c$. Using the conditions (1), (2) and the property of φ , we obtain

$$\begin{aligned} \|Tx - x, u\|_{c} &\leq \varphi \left(\begin{array}{cc} \|x - x_{0}, u\|_{c}, \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2}, 0, \\ \|Tx - x, u\|_{c} + \|x - Tx_{0}, u\|_{c} \end{array} \right) \\ &\leq \varphi \left(r, \frac{r + \|Tx - x, u\|_{c}}{2}, 0, \|Tx - x, u\|_{c} + r \right). \end{aligned}$$

From Definition 2.4 (b_1) , we have

 $||Tx - x, u||_{c} \le hr, h \in (0, 1),$

which is a contradiction with the definition of *r*. Therefore, it should be Tx = x. Consequently, $C_{x_0,r}^2$ is a fixed circle of *T*.

Corollary 3.2. Let X be a 2-cone normed space (with dim $X \ge 2$), $T : X \to X$ be a self-mapping, $x_0 \in X$ and r be defined as in (3.1). If T satisfies the following conditions, then T fixes the closed ball $B_{\{u_1,u_2,\ldots,u_d\}}[x_0,\rho]$ with $\rho \le r$ (or $B_{\{u_1,u_2,\ldots,u_d\}}[x_0,r]$ is the fixed disc of T) :

(1) If $Tx \neq x$ then

$$\|Tx - x, u\|_{c} \le \varphi \left(\begin{array}{c} \|x - x_{0}, u\|_{c}, \frac{\|x - Tx_{0}, u\|_{c} + \|Tx - x, u\|_{c}}{2}, 0, \\ \|Tx - x, u\|_{c} + \|x - Tx_{0}, u\|_{c} \end{array} \right),$$

where $\varphi \in \Phi$.

 $(2) Tx_0 = x_0.$

Proof. The proof can be easily seen by the similar arguments used in the proof of Theorem 3.2.

References

- [1] Abdeljawad, T., Karapınar, E. and Taş, K., Common fixed point theorem in cone Banach space. *Hacet. J. Math. Stat.* 40 (2011), no. 2, 211-217.
- [2] Gujetiya, R. K., Mali, D. K. and Hakwadiya, M., Common fixed point theorem for compatible mapping on cone Banach space. *Int. J. Math. Anal.* 8 (2014), no. 35, 1697-1706.
- [3] Huang, L. G. and Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings. *J. Math. Anal. Appl.* 332 (2007), 1468-1476.
- [4] Karapınar, E., Fixed point theorems in cone Banach spaces. *Fixed Point Theory Appl.* 2009, Article ID 609281, 9 pages. doi:10.1155/2009/609281.
- [5] Krishnakumar, R. and Dhamodharan, D., Common fixed point of contractive modulus on 2-cone Banach space. *Malaya J. Mat.* 5 (2017), no. 3, 608-618.
- [6] Mlaiki, N., Çelik, U., Taş, N., Özgür, N. Y. and Mukheimer, A., Wardowski type contractions and the fixed-circle problem on *S*-metric spaces. *J. Math.* 2018, Art. ID 9127486, 9 pp.
- [7] Mlaiki, N., Taş, N. and Özgür, N. Y., On the fixed-circle problem and Khan type contractions. Axioms 7 (2018), 80.
- [8] Özgür, N. Y. and Taş, N., Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. (2017). https://doi.org/10.1007/s40840-017-0555-z
- [9] Özgür, N. Y. and Taş, N., Fixed-circle problem on S-metric spaces with a geometric viewpoint. arXiv:1704.08838
- [10] Özgür, N. Y., Taş, N. and Çelik, U., New fixed-circle results on *S*-metric spaces. *Bull. Math. Anal. Appl.* 9 (2017), no. 2, 10-23.
- [11] Özgür, N. Y. and Taş, N., Some fixed-circle theorems and discontinuity at fixed circle. *AIP Conference Proceedings*, 1926, 020048 (2018).

- [12] Özgür, N. Y., Fixed-disc results via simulation functions. arXiv:1901.02623
- [13] Pant, R. P., Özgür, N. Y. and Taş, N., On discontinuity problem at fixed point. Bull. Malays. Math. Sci. Soc. (2018). https://doi.org/10.1007/s40840-018-0698-6.
- [14] Pitchaimani, M. and Ramesh Kumar, D., Some common fixed point theorems using implicit relation in 2-Banach spaces. *Surv. Math. Appl.* 10 (2015), 159-168.
- [15] Rada, E. and Tato, A., An extension of a fixed point result in cone Banach space. *Pure and Applied Mathematics Journal* 4 (2015), no. 3, 70-74.
- [16] Şahiner, A. and Yiğit, T., 2-cone Banach spaces and fixed point theorem. Numerical Analysis and Applied Mathematics ICNAAM 2012 AIP Conf. Proc. 1479 (2012), 975-978. doi: 10.1063/1.4756305
- [17] Şahiner, A., Fixed point theorems in symmetric 2-cone Banach space $(l_p, \|, ., \|_p^c)$. J. Nonlinear Anal. Optim. 3 (2012), no. 2, 115-120.
- [18] Taş, N., Suzuki-Berinde type fixed-point and fixed-circle results on S-metric spaces. J. Linear Topol. Algebra 7 (2018), no. 3, 233-244.
- [19] Taş, N., Various types of fixed-point theorems on *S*-metric spaces. *J. BAUN Inst. Sci. Technol.* 20 (2018), no. 2, 211-223.
- [20] Taş, N., Özgür, N. Y. and Mlaiki, N., New types of F_C-contractions and the fixed-circle problem. *Mathematics* 6 (2018), no. 10, 188.
- [21] Taş, N. and Özgür, N. Y., Some fixed-point results on parametric N_b-metric spaces. Commun. Korean Math. Soc. 33 (2018), no. 3, 943-960.

Affiliations

D. DHAMODHARAN

ADDRESS: Jamal Mohamed College (Autonomous), Dept. of Mathematics, Tiruchirappalli-620020, Tamil Nadu-India.

E-MAIL: dharan_raj28@yahoo.co.in ORCID ID: 0000-0003-4859-4816

NIHAL TAŞ ADDRESS: Balıkesir University, Dept. of Mathematics, 10145, Balıkesir-Turkey. E-MAIL: nihaltas@balikesir.edu.tr ORCID ID: 0000-0002-4535-4019

R. KRISHNAKUMAR **ADDRESS:** Urumu Dhanalakshmi College, Dept. of Mathematics, Tiruchirappalli-620019, Tamil Nadu-India. **E-MAIL:** srksacet@yahoo.co.in **ORCID ID:** 0000-0001-5927-0150