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Abstract-A theoretical model comprising advection-dispersion equation with temporal seepage velocity, dispersion coefficient 

and time dependent pulse type input of uniform nature applied against the flow is studied in a finite porous domain. Input 

concentration is any continuous smooth function of time acts up to some finite time and then eliminated. Concentration gradient 

at other boundary is proportional to concentration. Dispersion is proportional to seepage velocity. Interpolation method is applied 

to reduce the input function into a polynomial. Certain transformations are utilized to reduce the variable coefficient advection-

dispersion equation into constant coefficient. The Laplace Transform Technique is applied to get the solution of advection 

dispersion equation. Two different functions of input are discussed to understand the utility of the present study. Obtained result 

is demonstrated graphically with the help of numerical example. 
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1. Introduction 

The advection-dispersion equation (ADE) commonly 

used for transport of solute in porous media comprises 

advection and hydrodynamic dispersion where former is 

controlled by the Darcy’s law and later by the combination of 

mechanical and molecular diffusion which accounts for 

contaminant arising/spreading stimulated by velocity 

variations. Advection-dispersion equation may be defined for 

scale or time or both dependent dispersion/seepage velocity, 

homogeneous/heterogeneous medium including presence of 

decay and production of solute depending upon geological 

formation. Solutions of the ADEs can be obtained analytically 

or numerically using various methods. Analytical solutions 

are usually applicable for ideal geometrical conditions while 

numerical solutions are more flexible comparison to analytical 

solution to deal with real life problems consisting of non- ideal 

geometric conditions. On the other hand, analytical solutions 

is far accurate and dependable comparison to numerical 

solutions those hardly free from errors. A plenty of analytical 

solutions comprising various initial boundary and geometrical 

conditions through one/two/three-dimensional transport 

problem in porous formation which may be finite /infinite are 

published in literature up to the date. In the study of solute 

transport phenomena [1] explained that conductivity is not 

only responsible for spatial variation in groundwater velocity. 

An analytical solution was proposed for a   solute transport 

problem with scale dependent dispersion in a heterogeneous 

porous media [2]. An aspect of solute transport phenomena 

was established with the fact that hydrodynamic dispersion 

coefficients are non-linear function of the seepage velocity 

[3]. Analytical solutions may be obtained by using several 

techniques according to the nature of the problem. A two 

dimensional analytical solution was evaluated considering the 

solute transport for a bounded aquifer by adopting Fourier 

analysis and Laplace Transform [4]. [5] conceptualized an 

overlapping control volume method for transient solute 

transport problems in groundwater to obtain the numerical 

solution of transport problems. Streamline method was 

applied in solving  the solute transport problem in a single 

mailto:yadav_rr2@yahoo.co.in
mailto:joyroy2904@gmail.com
mailto:dilip3jais@gmail.com
mailto:Tel:%20+91


INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET 
Yadav et al.,Vol.5, No.2, 2019 

70 
 

fracture and the method was validated with experimental data 

[6]. Some analytical solutions were derived for the ADE in 

cylindrical coordinates by using a Bessel function expansion 

[7]. Laplace Transformation Technique (LTT) was explored 

to evaluate analytical solutions of transport problems [8] [9] 

[10]. First two obtained solutions for pulse type input in one-

dimensional transport while last one addressed the problem 

consisting of space dependent dispersion, velocity and 

retardation. An analytical result for solute transport problem 

in a heterogeneous porous medium was proposed to analyze 

scale dependent dispersion with linear isotherm [11]. By using 

generalized integral transform technique (GITT) [12] obtained 

solution for finite one-dimensional domain for dispersion 

coefficient and velocity which are proportional to non-

homogeneous linear expression in position variable while in 

another study an analytical solution of ADE was evaluated in 

multi-layer porous media [13]. Two–dimensional solution is 

obtained for a finite domain porous medium with pulse type 

input by considering it at the top layer of the outer boundary 

and at the intermediate portion in the aquifer [14]. Using 

Green’s function an analytical solution of one dimensional 

porous medium for instantaneous and continuous point source 

taking dispersion and velocity mutually proportional was 

developed in groundwater and riverine flow [15]. In numerical 

solutions, a two-dimensional model based on numerical 

simulations, equi-concentration lines presented approximate 

description of time-dependent transport [16]. Finite-volume 

method has been used for solving the advection and dispersion 

processes of the virus transport equation describing the 

movement of virus in one-dimensional unsaturated porous 

media [17]. The aquifers are always of finite length and 

therefore the study of solute transport phenomena in finite 

domain has been much valuable to deal with real world 

problem. Solute transport phenomena for  finite domain was 

studied to understand the effect of periodic dispersion, 

velocity along with periodic input [18] [19].  

In present paper, interpolation method is used for 

reducing generalize input into a polynomial for a finite domain 

study. Laplace transformation Technique is used to get 

solution of solute transport phenomena with temporal 

dispersion and for the input which is poised against the flow. 

2. Mathematical Formulation and Solution of the 

Problem 

In the present study, solute transport is assumed as one-

dimensional on a horizontal plane in a saturated finite length 

porous medium domain. The governing equation of solute 

transport in porous media which is a parabolic type partial 

differential equation is derived on basis of mass conservation 

and Fick’s law of diffusion may be written as follows [20], 
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where   3−MLc  ,  1−LTu ,  12 −TLD and R  are representing  

solute concentration, seepage velocity, dispersion coefficient 

and retardation factor respectively at position ][Lx  and at time 

][Tt . The dispersion coefficient, combined effect of molecular 

diffusion and mixing in the axial direction, is assumed to be  

proportional to seepage velocity u  (Yim and Mohsen,1992). 

The dispersion coefficient and seepage velocity both are time 

dependent and defined as ( ) ( ) 1
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dependency of the dispersion and seepage velocity on time 
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The geological formation which is assumed to be of finite 

length along horizontal direction is initially polluted and its 

dependency may be defined as sine hyperbolic function of 

space. Input at one end is considered against the flow and may 

be defined as any continuous smooth function of time while 

concentration gradient at other end of finite domain is 

supposed proportional to concentration. In order to formulate 

the proposed problem mathematically, the initial and 

boundary condition may be written as; 

( )=txc , )sinh( xci  ; ,1 LxL  0=t    (3)                                   
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where, 
0c and 

ic are the reference and resident  

concentrations respectively. ][' 1−Tm  is an unsteady 

parameter and ][ 1−L  is a constant on which initial 

concentration depends. Dimensionless  ( )( )0' tmF is 

continuous , smooth (differentiable)  and bounded function in 

a time domain  0,0 t . Weirstrass approximation theorem says 

that any continuous function on a bounded interval can be 

uniformly approximated by polynomial function. Since 

( )tmF '   is continuous and bounded in domain  0,0 t , 

following Weirstrass approximation theorem, ( )tmF ' may be 

written as interpolation polynomial in t  of degree n .Hence 

Eqs. (3-5) may be written as; 
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where, dimensionless quantity ( )tGn  which is interpolation 

polynomial may be defined as;
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 (9)                                                                  

and sai ' are constants. For reducing the Eq.(2) into a constant 

coefficient, a new time variable T  is introduced with 

following transformation  [21] 
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With transformation Eq. (10), Eq. (2) and Eqs. (6-8) are 

reduced into following form:   
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A new transformation is introduced so as to convective term 

in advection-dispersion equation Eq. (11) may be removed. 

The transformation follows as [19]: 
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Applying Laplace transformation on  Eqs. (16–19) to reduce 

Eq. (16) into ordinary differential equation.              
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The general solution of Eq. (20) may be written as; 
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Solution of the present problem may be obtained by using 

Eq.(21) and Eq.(22)in Eq.(23). So coefficient may be written 

as; 
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Therefore putting the value of c1 and c2from  Eq. (24&25) , 

Eq.(23)may be written as: 
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Taking inverse Laplace transform of equation (27), the 

solution of advection-dispersion equation may be obtained as; 
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rmr += 2   and ( )

0

2

0

R

D
q




−
=  

3. Result and Discussion  

The obtained solution Eqs. (28a, b)  is  discussed for two form 

of input functions, namely ( ) ( ) tmlctmF 'sin' 0 +=    and 

( ) ( )tmctmF 'exp' 0=  in a finite domain ( ) 40  mx along 

longitudinal direction for a chosen set of data taken from the 

experimental and theoretical published literatures are 

illustrated graphically. For both cases, the concentration 

values 
0/ cc are evaluated assuming reference concentrations 

as 0.10 =c , 01.0=ic .Source is applied up to time 

9)(0 =dayt . Other values of common parameters seepage 

velocity, dispersion coefficient are taken as 

( )1

0 32.1 −= daymu , ( )12

0 66.1 −= daymD ,  and 45.10 =R

respectively. The range of groundwater velocity is taken from 

daym2  to yearm2  depending upon geometrical 

conditions of porous medium [22]. 

3.1. Case I-When input is of the form ( ) ( ) tmlctmF 'sin' 0 +=  

For the present case, the value of frequency ( )1' −daym  , 

( )1−daym  and parameter l  are taken 8.0  , 8.0 and 2

respectively. Concentration value in the time domain  

( ) 90  dayt are computed at times ( )=dayt 5,2 and8  

while for ( ) ( )09 tdayt = the same is computed at times 

( )=dayt 12,10 and14  .  

Figure 1(a) and 1(b) demonstrate the concentration pattern of 

solute transport for line graph at times 8,5,2)( =dayt  and 

surface plot (c-x-t) respectively. As time elapses, 

concentration at ( ) 4=mx  fluctuates due to sinusoidal 

nature of  input. Input concentration is shown fluctuating 

nearly between 1 and 3 value of 0/ cc which is in good 

agreement with periodic nature input. Surface plot helps us 

gauge the concentration pattern for any combination time and 

space. It may be observed that concentration reduces to its 

lowest on proceeding from ( ) 4=mx  to ( ) 0=mx  for each 

time in the time domain ( )9)(0  dayt . 

 

Fig.1(a). Distribution of dimensionless concentration for 

various time ( )00 tt   

 

Fig.1(b). Surface plot of Distribution of dimensionless  

concentration for time ( )00 tt  . 

Figure 2(a) and 2(b) are drawn to study  the concentration 

pattern in absence of solute at times 14,12,10)( =dayt  and 

surface plot (c-x-t) respectively. On elimination of the source 

acting against the flow at far end boundary of the domain i.e., 

( ) 4=mx the concentration at this end is measured zero. From 

Fig. 2(a) it is depicted that maximum concentration is lower is 

for higher time and higher for lower.  Since there is no source 

of contaminant for time 9)( dayt , from the Fig. 2(b) it may 

be observed that concentration gradually attenuates with time 

throughout the domain.  
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Fig. 2(a). Distribution of dimensionless concentration for 

various time ( )tt 0
 

 

Fig. 2(b). Surface plot of Distribution of dimensionless 

concentration for time ( )tt 0
 

3.2. Case II-When input is of the form ( ) ( )tmctmF 'exp' 0=  

For the present case, the value of  unsteady parameters is 

2.0)(' 1 =−daym  and 1.0)( 1 =−daym . Concentration 

values in the time domain  ( ) 90  dayt are computed at 

times ( )=dayt 5,2 and 8 while for ( )09 tt = the same is 

computed at times ( )=dayt 12,10 and14 . 

Figure 3(a) and 3(b) explore the concentration pattern of 

solute transport with line graph at times ( )=dayt 8,5,2 and 

surface plot (c-x-t) respectively in presence of input source. 

With increase of time, concentration at ( ) 4=mx increases 

because input is  increasing exponentially with time. Figure 

3(a)   exhibits that rate of concentration increment is rapid 

from time ( )day5 to ( )day8 throughout the domain  in 

comparison to same duration from time ( )day2  to ( )day5 . 

From Fig. 3(b) concentration pattern for any combination time 

and space can be analyzed when the source is present. It is 

recorded that concentration 0/ cc  is nearly 1 at time 

( ) 0=dayt  at far end i.e., ( ) 4=mx which is in accordance 

of our input for this case.  

 

Fig. 3(a). Distribution of dimensionless concentration for 

various time ( )00 tt   

 

Fig. 3(b). Surface plot ofDistribution of dimensionless 

concentration for time ( )00 tt  . 

Figure 4(a) and 4(b) are plotted to examine  concentration 

pattern in absence of source  with concentration-space graph 

at times ( ) 14,12,10=dayt  and c-x-t graph respectively. 

Like Fig. 2(b) the solute concentration at the far end reduce to 

zero as the source eliminated. From the Fig. 4(a) it recorded 

concentration peak drops sharp with increase of time. It is 

revealed fromFig. 4(b) that concentration attenuated very fast 

as the source is eliminated. 
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Fig. 4(a). Distribution of dimensionless concentration for 

various time ( )tt 0
 

 

Fig. 4(b). Surface plot of distribution of dimensionless 

concentration for ( )0tt   

4. Verification of Solution 

Consider the case where input for ( ) )'1(1' tmtmF += and

mm ='  the solution (A7&A8) is obtained the way given in 

appendix. For a chosen set of data taken from the experimental 

and theoretical published literatures  described as 0.10 =c ,

01.0=ic ( )1

0 32.1 −= daymu  and ( )12

0 66.1 −= daymD  ,  

45.1=R , 032.0= and 2.0'==mm respectively and with  

time of elimination of source 9)(0 =dayt ,concentration- space 

graphs Figs. 5(a)and 5(b) are plotted from  solution Eqs. 

(24&24b) and Eqs. (A7andA8) in appendix in domain

( ) 40  mx times ( ) 95,1 anddayt =  in presence of source, 

while at times ( )=dayt 12,10 and14  in absence of source.   

The Figs. 5(a) and 5(b) are drawn to compare the solution Eqs. 

(28a&28b) and solution Eqs. (A7andA8) in presence and 

absence of source respectively. The Figs. 5(a) and 5(b) show 

good agreement in  the both  of the solutions. In further above 

result verifies the solution Eqs.(28aand28b) at some extent. 

 

Fig. 5(a). Distribution of dimensionless concentration for 

various times ( )00 tt   

 

Fig. 5(b). Distribution of dimensionless concentration 

for various time ( )tt 0  

5. Conclusion 

Solution of finite domain theoretical model comprising 

temporal dispersion and seepage velocity with any time 

dependent smoothly varying input of pulse type applied 

against the flow has been obtained. Such solution is well 

applicable for real world finite domain aquifers for predicting 

contaminant variations in presence and in absence i.e. in other 

word during rehabilitation process when source is eliminated. 

The generalization of the input source added the worth of 

solution. Laplace Transformation Technique and interpolation 

method are applied to obtained the solution. The Accuracy of 

solution enhances with optimum selection of interpolation 

polynomial method.  
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Appendix: 

The input boundary conditions with ( ) )'1(1' tmtmF +=

may be described as;  

Assuming mm =' in particular, we have following initial and 

boundary condition: 

( )=txc , )sinh( xci  ; ,1 LxL  0=t (A1)                                                               

                    
)1(0 mtc + ;

00 tt   (A2a)                                                 

( )=txc ,                      ;
Lx =  

                   0 ;
0tt  ,                                                       (A2b) 

( )
c

D

u

x

txc
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0

2

,
=




at

1Lx = ,
0t    (A3) 

With transformation Eq. (10) may written as: 

( ) =Txc , )sinh( xci  ; ,1 LxL  0=T  (A4)  

                      
)exp(0 mTc −  ; 

00 TT  (A5a)                                                                  
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( )=Txc ,                            
Lx =  

                    0  ;  
0TT                    (A5b)      

( )
c

D

u

x

Txc

0

0

2

,
=




at

1Lx = , 0T (A6) 

Now, performing same steps as  Eq.(15) to Eq.(27) then taking 

inverse laplace transform , solution may be written as: 
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where, 
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