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Abstract 

The aim of this work is to obtain some monotonicity properties for the functions 

involving the logarithms of the 𝑘-gamma function for 𝑘 0. 
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𝒌‐Gama Fonksiyonu Üzerine Bazı Monotonluk Özellikleri 

Özet 

Bu çalışmanın amacı, 𝑘 0 olmak üzere 𝑘-gama fonksiyonunun logaritmasını 

içeren bazı fonksiyonların monotonluk özelliklerini elde etmektir. 

Anahtar Kelimeler: 𝑘-Gama fonksiyonu, Monotonluk, 𝑘-Poligama fonksiyonu. 
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1. Introduction and Preliminaries 

The gamma function, which is one of the most important special functions and has 

many applications in many areas such as physics, engineering etc., is defined by 

Γ 𝑥 𝑡 𝑒 𝑑𝑡 

for positive real values of 𝑥 [1]. The psi or digamma function 𝜓 is defined by logarithm 

derivative of the gamma function as 𝜓 𝑥 ln Γ 𝑥  for 𝑥 0.  Its series 

representation is given by 

𝜓 𝑥 𝛾
𝑥 1

𝑛 1 𝑥 𝑛
 

for 𝑥 0 [8]. The asymptotic representations of the first and second derivative of the 

function are given by 

𝜓 𝑧  ∼  ⋯,     𝑧 → ∞, |𝑎𝑟𝑔𝑧| 𝜋  (1) 

and 

𝜓 𝑧 ∼ ⋯,      𝑧 → ∞, |𝑎𝑟𝑔𝑧| 𝜋  (2) 

respectively [1]. 

In [11], author shows that for 𝑥 → ∞ 

ln Γ 𝑥 𝑥  ln 𝑥 𝑥 ln 2𝜋 𝑂  ,  (3) 

𝜓 𝑥 ln 𝑥  𝑂 .    (4) 

These functions are interested by many researchers. Many authors have established some 

monotonicity results of the gamma function and obtained related inequalities such as in 

[2-4,7,10] and references therein. For example, in [4], authors used the monotonicity 

property of the function 
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𝑓 𝑥
ln Γ 𝑥 1  

𝑥 ln 𝑥
, 𝑥 1 

in order to establish the double-sided inequalities 

𝑥 Γ 𝑥 𝑥 , 𝑥 1 

where 𝛾 denotes the Euler-Mascheroni constant and in [6], they proved that the function 

𝑓 is concave on the interval 1, ∞ . 

Pochhammer symbol is widely used in combinatorics. Diaz and Pariguan in [5] 

defined Pochhammer 𝑘-symbol and 𝑘-generalized gamma function as the following: 

Definition 1.2 Let 𝑥 ∈ ℂ, 𝑘 ∈ ℝ, and 𝑛 ∈ ℤ , the Pochhammer 𝑘-symbol is given 

by 

𝑥 , 𝑥 𝑥 𝑘 𝑥 2𝑘 … 𝑥 𝑛 1 𝑘  

and 𝑘-analogue of gamma function is defined by 

Γ 𝑥 lim
→

𝑛! 𝑘 𝑛𝑘
𝑥 ,  

  

for 𝑥 ∈ ℂ  \𝑘ℤ  and 𝑘 0. Its integral representation is given by 

Γ 𝑥 𝑡  𝑒 𝑑𝑡 

for 𝑥 ∈ ℂ, 𝑅𝑒 𝑥 0. 

 

They also proved Bohr-Moller theorem and Stirling formula for 𝑘-gamma function and 

obtained several results that are generalizations of the classical gamma function: 

Proposition 1.3 The 𝑘-gamma function Γ 𝑥  satisfies the following properties: 

Γ 𝑥 𝑘 𝑥Γ 𝑥 ,    (5) 

Γ 𝑘 1,     (6) 
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Γ 𝑥  is logarithmically convex for 𝑥 ∈ ℝ,   (7) 

𝑥𝑘 𝑒 ∏ 1 𝑒  where 𝛾 lim
→

1 ⋯ log 𝑛 , (8) 

Γ 𝑥 𝑘 Γ .    (9) 

This new generalization of the classical gamma function has attracted many researchers. 

For example, Krasniqi in [9] used the equation (8) in order to obtain the following series 

representations of 𝑘-digamma function and 𝑘-polygamma function respectively by 

Ψ 𝑥 ∑    (10) 

and 

Ψ 𝑥 1 𝑟! ∑   (11) 

for 𝑟 1,2, … where 𝜓 𝑥 ln Γ 𝑥 . 

 

2. Main Results 

The objective of this paper is to develop some new monotonicity results involving 

the logarithms of 𝑘-gamma function for some real values of 𝑥, which are generalizations 

of inequalities in [4]. 

Lemma 2.1 The inequality 

2𝑘
𝑢

1
𝑢

1
𝑢 𝑘

 

holds true for 𝑘 0 and 𝑢 0. 

Proof. Since 𝑢, 𝑘 0, we have 

2𝑢 4𝑢𝑘 2𝑘 2𝑢 𝑢𝑘. 

Then 



  

70 
 

2 𝑢 𝑘 2𝑢 𝑘 𝑢. 

Hence we get 

2𝑘
𝑢

2𝑢 𝑘 𝑘
𝑢 𝑢 𝑘

 

and the result follows. 

Theorem 2.2 For 𝑥 𝑘 and 𝑘 0, the function 

𝑓 𝑥 ψ 𝑥 𝑘 𝑥ψ 𝑥 𝑘    (12) 

is positive. 

Proof. By taking logarithms of the equation (9), we get 

𝑙𝑛Γ 𝑥  1 𝑙𝑛 𝑘 𝑙𝑛Γ    (13) 

and differentiating the equation (13) with respect to 𝑥 leads us that 

𝜓 𝑥   𝜓 , 𝜓 𝑥 𝜓  and 𝜓 𝑥 𝜓 . 

Then from the equations (1) and (2), we have 

lim
→

𝑓 𝑥 0. 

For positivity of the function 𝑓, we need to show that the function 𝑓 is decreasing. So by 

using the equation (11), we obtain 

𝑓 𝑥
𝑛𝑘 𝑥

𝑥 𝑛𝑘
. 

Then we get 

𝑓 𝑥 𝑓 𝑥 𝑘
𝑘 𝑥

𝑥 𝑘
𝑛𝑘 𝑥

𝑥 𝑛𝑘
𝑛𝑘 𝑥 𝑘

𝑥 𝑘 𝑛𝑘

𝑘 𝑥
𝑥 𝑘

2𝑘
𝑥 𝑛 1 𝑘

1
𝑥 𝑘

2𝑘
𝑥 𝑛𝑘

. 
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Lemma 2.1 leads us that 

𝑓 𝑥 𝑓 𝑥 𝑘
1

𝑥 𝑘
2𝑘

𝑥 𝑛𝑘

1
𝑥 𝑘

1
𝑥 𝑛𝑘

1
𝑥 𝑛𝑘 𝑘

0 

as desired. 

Corollary 2.3 The function 

𝑔 𝑥 𝑥 𝜓 𝑥 𝑘 𝑥𝜓 𝑥 𝑘 ln Γ 𝑥 𝑘  (14) 

is a decreasing function on 𝑘, 0  and an increasing function on 0, ∞  for 𝑥 𝑘. 

Proof. In order to obtain the result, we just need to show that the first derivative of 

the function 𝑔 is positive on 𝑘, 0   and negative on 0, ∞  respectively. 

𝑔 𝑥 2𝑥𝜓 𝑥 𝑘 𝑥 𝜓 𝑥 𝑘 𝜓 𝑥 𝑘 𝑥𝜓 𝑥 𝑘 𝜓 𝑥 𝑘  

               𝑥𝜓 𝑥 𝑘 𝑥 𝜓 𝑥 𝑘 𝑥𝑓 𝑥  

where 𝑓 𝑥  is defined as in theorem 2.2. Since 𝑓 𝑥 0 for 𝑥 𝑘 in Theorem 2.2, we 

obtain desired results. 

Theorem 2.4  

(i) Let ℎ 𝑥 𝑥𝜓 𝑥 𝑘 ln Γ 𝑥 𝑘 . Then, the function ℎ 𝑥  

increases for 𝑥 0 and decreases for 𝑘 𝑥 0. Also, we have 

lim
→

ℎ 𝑥
𝑥

1
𝑘

. 

(ii) Let ℎ 𝑥 𝑥𝜓 𝑥 𝑘 ln Γ 𝑥 𝑘 . Then, the function ℎ 𝑥  

increases for 𝑥 0 and decreases for 𝑘 𝑥 0. Also, we have 

lim
→

ℎ 𝑥
𝑥

1
𝑘

. 
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(iii) The function 𝐻 𝑥 ln 𝑥 ln Γ 𝑥 𝑘  approximately increases for 

𝑥, 𝑘 0 and 𝑥 ≿ . 

Proof. Differentiating the function ℎ 𝑥  with respect to 𝑥 and using the equation 

(11) lead us that 

ℎ 𝑥 𝜓 𝑥 𝑘 𝑥𝜓 𝑥 𝑘 𝜓 𝑥 𝑘  

 𝑥𝜓 𝑥 𝑘 𝑥
1

𝑥 𝑛𝑘
. 

Hence, we obtain monotonicity of the function ℎ. By replacing  instead of 𝑥 in the 

equation (13), adding the term ln 𝑥 in both sides of the equation and using the equations 

(3), (4) and (9), we get 

ln Γ 𝑥 𝑘 ln 𝑥  ln 2𝜋 𝑂 . (15) 

By differentiating the equation (15), we obtain 

𝜓 𝑥 𝑘 ln 𝑥 𝑂 .  (16) 

Hence the limit follows from the equations (15) and (16). Now let us prove ii. By 

differentiating the function 𝐻 and using the Theorem 2.4 (i), we get 

𝐻 𝑥
1
𝑥

ℎ 𝑥
ℎ 𝑥

ln Γ 𝑥 𝑘
𝜓 𝑥 𝑘

ℎ 𝑥
 

1
𝑥

1
ℎ 𝑥

ℎ 𝑥 𝜓 𝑥 𝑘 ℎ 𝑥 ln Γ 𝑥 𝑘  

1
𝑥ℎ 𝑥

ℎ 𝑥 𝑥𝜓 𝑥 𝑘 ln Γ 𝑥 𝑘 𝑥𝜓 𝑥 𝑘

𝑥ℎ 𝑥 ln Γ 𝑥  

ln Γ 𝑥 𝑘
𝑥ℎ 𝑥

 𝑥ℎ 𝑥 ℎ 𝑥
𝑔 𝑥 ln Γ 𝑥 𝑘

𝑥ℎ 𝑥
 

where the function 𝑔 𝑥  is defined as in Corollary 2.3. 
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By using the equation (9), we get 

ln Γ 𝑥 𝑘
𝑥
𝑘

ln 𝑘   ln Γ
𝑥
𝑘

1  

for 𝑥 0 and 𝑘 0. The points which make the right hand side of the above equation 

positive are shown in the following Figure 1: 

 
Figure 1. 

 

𝑥 0 is a solution of the last equation for all 𝑘 0 and lower line segment is 𝑥 𝑘. 

The tangent of the line 𝑙 which passes from the points 𝑘, 𝑥 0,649, 1.5  and 𝑘, 𝑥

1.379, 0.5  approximately equals to . So, we calculate equation of the line with the 

point (1,1), which is also on the line, we get 𝑥 7-4k
. The upper blue area of Figure 1 

shows that for 𝑥 0 and 𝑥 , ln Γ 𝑥 𝑘 0 and also the lower blue area of 

Figure 1 shows that for 𝑥 0, 𝑘 𝑥 and 𝑥 , ln Γ 𝑥 𝑘 0. So the proof 

follows. 
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Now we can give the following: 

Corollary 2.5 The function 𝐹 𝑥  is an increasing function for 𝑥 ≿  

and 𝑘 0. Furthermore lim
→

𝐹 𝑥 . 

Proof. We have 

𝑥 ln 𝑥  𝐹′ 𝑥  𝑥𝜓 𝑥 𝑘 ln Γ 𝑥 𝑘 ln 𝑥  ln Γ 𝑥 𝑘  

                                           ℎ 𝑥 𝐻 𝑥  

where ℎ and 𝐻 are the functions in Theorem 2.4 (i) and (ii) respectively. Hence wet get 

the monotonicity result for 𝐹 𝑥 . 

By using the equation (15), we have 

lim
→

𝐹 𝑥 lim
→

ln 𝑘
2

𝑥
𝑘

1
2 ln 𝑥  𝑥

𝑘
1
2 ln 2𝜋

𝑥 ln 𝑥
 

lim
→

𝑥
𝑘

1
2 ln 𝑥

𝑥 ln 𝑥
 lim

→

 ln 𝑘
2

𝑥
𝑘

1
2 ln 2𝜋

𝑥 ln 𝑥
1
𝑘

 

as desired. 

Before we give other result we need following property. 

Lemma 2.6 The inequality 

2𝑘
𝑢

1
2 𝑢 𝑘

1
2 𝑢 𝑘

 

holds for 𝑢 𝑘 and 𝑘 0. 

Proof. Since 𝑘 𝑢, we have 

𝑢 2𝑢 𝑘 𝑘 𝑢 . 

Then we can write 

2𝑘
𝑢

2𝑢𝑘
𝑢 𝑘 𝑢 𝑘

𝑢 𝑘 𝑢 𝑘
2 𝑢 𝑘 𝑢 𝑘

 
1

2 𝑢 𝑘
1

2 𝑢 𝑘
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as desired. 

Theorem 2.8 Let 𝑔 𝑥 𝑥 𝜓 𝑥 𝑘 𝑥 𝜓 𝑥 𝑘  for 𝑥 0. Then 

0 𝑔 𝑥
1
2

. 

Proof. Since 𝑔 𝑥 𝑥 𝑓 𝑥 , where 𝑓 𝑥  as in Theorem 2.2, the lower bound 

follows by Theorem 2.2. For the upper bound, let us define the function 𝐺 by 

𝐺 𝑥
1

2𝑥
𝑓 𝑥  

for 𝑥 0. Since the function 𝐺 tends to zero as 𝑥 → ∞, we need to show that 𝐺 𝑥

𝐺 𝑥 𝑘 . By Lemma 2.6, we get 

𝐺 𝑥 𝐺 𝑥 𝑘
1

2𝑥
1

2 𝑥 𝑘
𝑓 𝑥 𝑓 𝑥 𝑘

1
2𝑥

1
2 𝑥 𝑘

1
𝑥 𝑘

2𝑘
𝑥 𝑛𝑘

1
2𝑥

1
2 𝑥 𝑘

1
2 𝑥 𝑛𝑘 𝑘

1
2 𝑥 𝑛𝑘 𝑘

1
2𝑥

1
2 𝑥 𝑘

 
1

2𝑥
1

2 𝑥 𝑘
0 

and the proof is completed. 
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