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A B S T R A C T  A R T I C L E  I N F O  

This paper involves the use of the Galerkin finite element method to determine the temperature 
distribution in a rectangular cooling fin. The governing equation is a one-dimensional second 
order differential equation. The result shows that the temperature at the tip of the rectangular 
cooling fin which was 100oC and begins to drop as it proceeds to the other end of the rectangular 
cooling fin which is 61.5518oC at 0.1m. The result obtained from the finite element solutions 
when compared with the analytical solution, shows that the accuracy was very high with the 
highest percentage error of 0.000432875. It can be stated that the finite element solution is an 
accurate method for determining the temperature distribution in a rectangular cooling fin. 
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1. Introduction 

Rectangular fins are used to remove heat from the surface of 
a body by conduction along the fins and convection from the 
surface of the fins into the surroundings. Fins are the most 
effective instrument for increasing the rate of heat transfer. As 
we know, they increase the area of heat transfer and cause an 
increase in the transferred heat amount. A complete review on 
this topic is presented by Kraus et al. [1]. Fins are widely used 
in many industrial applications such as air conditioning, 
refrigeration, automobile, chemical processing equipment and 
electrical chips. 

Although there are various types of the fins, but the 
rectangular fin is widely used among them, probably, due to 
simplicity of its design and its easy manufacturing process. 
For ordinary fins problem, the thermal conductivity assumes 
to be constant, but when temperature difference between the 
tip and base of the fin is large, the effect of the temperature on 
thermal conductivity must be considered. Also, it is very 
realistic that to consider the heat generation in the fin (due to 
electric current or etc.) as a function of temperature. Domairi 
and Fazeli [2] used the least squares method for predicting the 
performance of a longitudinal fin with temperature-dependent 

internal heat generation and thermal conductivity and they 
compared their results by Homotopy Perturbation Method 
(HPM), Variational Iteration Method (VIM) and double series 
regular perturbation method and found that the least squares 
method was a simpler method. 

Razani and Ahmadi [3] considered circular fins with an 
arbitrary heat source distribution and a nonlinear temperature-
dependent thermal conductivity and obtained the results for 
the optimum fin design. Unal [4] conducted an analytical 
study of a rectangular and longitudinal fin with temperature-
dependent internal heat generation and temperature-
dependent heat transfer coefficient. Another study about this 
issue (convective fin with both temperature dependent thermal 
conductivity and internal heat generation) was performed by 
Shouman [5]. Kundu [6] had solved a problem about thermal 
analysis and optimization of longitudinal and pin fins of 
uniform thickness subject to fully wet, partially wet and fully 
dry surface conditions. Domairry and Fazeli [7] solved the 
nonlinear straight fin differential equation by the Homotopy 
Analysis Method (HAM) to evaluate the temperature 
distribution and fin efficiency. Also, temperature distribution 
for annual fins with temperature-dependent thermal 
conductivity was studied by Ganji et al. [8] using HPM. The 
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effects of temperature-dependent thermal conductivity of a 
moving fin with considering the radiation losses have been 
studied by Aziz and Kaani [9]. Furthermore, Bouaziz and Aziz 
[10] introduced a double optimal linearization method 
(DOLM) to get a simple and accurate solution for the 
temperature distribution in a straight rectangular convective–
radiative fin with temperature-dependent thermal 
conductivity. Inc [11] used HAM to obtain the efficiency of 
straight fin with temperature dependent thermal conductivity. 

The concept of Differential Transformation Method (DTM) 
was firstly introduced by Ghafoori et al. [12] which was used 
to solve both linear and nonlinear initial value problems in 
electric circuit analysis. This method can be applied directly 
for linear and nonlinear differential equations without 
requiring linearization, discretization or perturbation and this 
is the main benefit of this method. Ghafoori, et al. [13] used 
the DTM for solving the nonlinear oscillation equation. 
Abdel-Halim Hassan [14] applied DTM for different systems 
of differential equations and he discussed the convergence of 
this method in several examples of linear and nonlinear 
systems of differential equations. Recently, analytical 
methods were used for solving the heat transfer through the 
porous fins with different geometries [15-19]. It is obvious 
that a number of researchers seem not to have analyzed the 
temperature distribution in a rectangular cooling fin. But none 
has attempted to use the finite element method. Hence, this 
paper using the finite element analysis tends to fill this gap. 

2. Methodology 

Consider a rectangular cooling fin. The governing equation 
(i.e. balance of energy) is 
 

( )
2

2 0d T T T
kadx
β

∞− + − =  (1) 

 
where T is the temperature, k is the thermal conductivity, β  

is the film coefficient, a is the thickness and T∞  is the 
temperature of the surrounding fluid (i.e., ambient 
temperature) [20]. 
Eq. 1 was derived by approximating the true physical 
situation. Therefore, the assumptions are: 
 

i. The temperature is a function of the x direction alone 

ii. No heat is lost from the end or from the edges 

iii. The heat flux at the surface is given by qx = h(T-Ta), 
where h is a constant and T depends on x [21]. 

The boundary conditions of the problem are 
 

T (0) = Tw (wall temperature) (2) 

0
x L

dTkA
dx =

  = 
 

 (3) 

2.1. Solution 

The equations can be recast in the residual form as: 
2

2 0
Td T T

ka kadx
ββ ∞− + − =  (4) 

 
In the analysis involving Finite Element method, the 
governing equation can only be solved if it is in order one. But 
the governing equation for the temperature distribution in a 
rectangular cooling fin is in order two, so, the need to weaken 
the governing equation to order one. Therefore, the weak form 
of eq. 4 is as shown in eq. 5. 
 

0

B B B

A A A

x x x

x x x

A B

Tw T dx wTdx wdx
x x ka ka

wQ wQ

ββ ∞∂ ∂
+ − −

∂ ∂

− − =

∫ ∫ ∫  (5) 

 
This is followed by the introduction of the interpolation 
functions to unable us derive the finite element model. The 
weak form in eq. 5 requires that the approximation chosen for 
T should be at least quadratic in x so that there are no terms in 
eq. 5 that are identically zero. Since the primary variable is 
simply the function itself, the Lagrange family of interpolation 
functions is admissible. We proposed that T is the 
approximation over a typical finite element domain by the 
expression: 
 

( ) ( ) ( )
1

n
e e

j j i
j

T x T x and w xψ ψ
=

= =∑  (6) 

 
In Galerkin’s weighted residual method, the weighting 
functions are chosen to be identical to the trial functions as 
shown in eq. 6.  
Substituting eq. 6 into eq. 5 and simplifying, eq. 5 reduces to 
eq. 7. 
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(7) 

where B Ax x h= +  (8) 
 
Eq. 7 is the developed finite element model. This is then used 
to generate the elemental matrices. 
Eq. 7 can be written in the condensed form as: 
 

{ } { }{ } { } { }e e e e e e
ij j ij j i i

TK T M T f Q
ka ka

ββ ∞  + = + 
 (9) 

where ( ) ( )A e

A

ex h e
jie

ij
x

xx
K dx

x x
ψψ+ ∂∂

=
∂ ∂∫  (10) 
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Hence, the one-dimensional Lagrange quadratic interpolation 
function for Equation becomes 
 

( )1
21 1

e e

x xx
h h

ψ
  

= − −  
  

 (13) 

( )2
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e e

x xx
h h
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= − 
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( )3
21

e e

x xx
h h

ψ
 

= − − 
 

 (15) 

 
where eh = Elemental length of the rectangular cooling fin 

To evaluate the ijK , if and ijM  matrices, we substitute eq. 
13-15 accordingly into eq. 10, 11 and 12 respectively, we 
have;
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(18) 

Assembly of the Matrix using four elements 
The assembled eK  matrix is given as: 
 

7 8 1 0 0 0 0 0 0
8 16 8 0 0 0 0 0 0

1 8 38 80 49 0 0 0 0
0 0 80 208 128 0 0 0 0

1 0 0 49 128 230 344 193 0 0
3

0 0 0 0 344 784 440 0 0
0 0 0 0 193 440 614 800 433
0 0 0 0 0 0 800 1744 944
0 0 0 0 0 0 433 944 511

e

e

K
h

− 
 − − 
 − −
 

− − 
   = − −   

− − 
 − − 

− − 
 − 

 

(19) 

 
The assembled eM  matrix is given as: 
 

4 2 1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
1 2 68 178 149 0 0 0 0

0 0 178 496 418 0 0 0 0
0 0 149 418 1628 3118 2039 0 0

30
0 0 0 0 3118 7696 5038 0 0
0 0 0 0 2039 5038 10508 16738 9989
0 0 0 0 0 0 16738 38896 23218
0 0 0 0 0 0 9989 23218 138964

e hM

− 
 
 
 − −
 

− − 
 = − −
 

− − 
 − −

− −
 − 






 

(20) 

The assembled ef  matrix is given as: 
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1
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  =  
 
 
 
 
 
  

 

(21) 

 
Eq. 19, 20 and 21 are substituted into eq. 9 to obtain the 
temperature distribution in the rectangular cooling fin. But the 
assembled matrix cannot be solved directly. But with the 
introduction of either the boundary condition or initial 
conditions or a combination of both the initial and boundary 
conditions, the nodal values of the parameter (Temperature) 
can be determined. 

3. Results  

In other to solve this problem analytically, we recast eq. 1, 2 
and 3 by introducing the following non-dimensional 
quantities; 
 

w

T T
T T

θ ∞

∞

−
=

−
; x

L
ξ = ;  

2LN
ka
β 

=  
 

 (22) 

 
Therefore, eq. 1, 2 and 3 becomes respectively 
 

2
2

2 0d N
d
θ θ
ξ

− + =  (23) 

( )0 1θ =  (24) 

1

0d
d

ξ

θ
ξ

=

 
= 

 
 (25) 

 
The analytical solution of the problem is given in eq. 26 
 

( )cosh tanh sinhN N Nθ ξ ξ= −  (26) 
 
The data used in analysing this problem are given thus: 

2 0 0 0
0

0

35 /  ,   170 /  ,  100 ,  

20 ,  100 ,  1

W m C k W m C T C

T C L mm t mm

β

∞

= = =

= = =
 

4. Discussion 

The Finite Element solutions obtained in this problem can be 
used to determine the temperature distribution in a rectangular 
cooling fin. This is as a result of substituting the appropriate 
values of the domains and boundary conditions into the 
formulated coefficient matrix equations. The results are 
represented in the Table 1 for both the Finite Element Solution 
and the analytical solution.  

Table 1. Comparison between FEM solution and analytical 
solution. 

Length 
(m) 

T 0C (FEM 
Solution) 

T 0C (Analytical 
Solution) % ERROR 

0.0000 100.0000 100.0000 0.0000 
0.0125 89.8610 89.8614 4.3288E-04 
0.0250 81.6539 81.6537 -3.1399E-04 
0.0375 75.1120 75.1120 9.4111E-05 
0.0500 70.0259 70.0255 -5.5540E-04 
0.0625 66.2302 66.2301 -1.5269E-04 
0.0750 63.6037 63.6032 -7.0786E-04 
0.0875 62.0604 62.0602 -2.8332E-04 
0.1000 61.5519 61.5514 -7.6003E-04 

The graph of the finite element solution and the analytical 
solution converges as shown in Figure 1 which shows a 
decline in temperature as the length of the fin increases. 

 
Figure 1. A graph of Temperature and Length of fin for FEM and 
analytical solution. 

Figure 1 shows that the temperature at the tip of the 
rectangular cooling fin is 100oC and begins to drop as it 
proceeds to the other end of the rectangular cooling fin which 
is 61.5518oC at 0.1m. As a result of the decrease in 
temperature from one end of the cooling fin to the other, more 
heat is released into the surrounding air thereby raising the 
ambient temperature (T∞). This increase in the ambient 
temperature (T∞) has a direct relationship with the temperature 
in the rectangular cooling fin. This means that the higher the 
ambient temperature (T∞), the higher the temperature in the 
rectangular cooling fin. This is shown in Figure 2. 

 
Figure 2. A graph of fin temperature against ambient temperature. 
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A mathematical model was developed keeping other 
parameters constant to show the relationship between the fin 
temperature and the ambient temperature. The model 
developed is as shown in eq. 27. 
 

0.4282 57.18T T∞= +  (27) 
 
It was observed that the model fits in well with a coefficient 
of determination (R2) of 100%. This shows that the ambient 
temperature was able to account for 100% of the variation in 
the temperature of the rectangular cooling fin. 

5. Conclusion 

In this paper, the Galerkin finite element method has been 
used to determine the temperature distribution in a rectangular 
cooling fin. The results shows that finite element method is a 
more reliable and accurate method for determining the 
temperature distribution in a rectangular cooling fin 
successfully. 
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