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Abstract 

Internet of Things (IoT) includes connected devices such as industrial embedded devices, vehicles, smart home appliances, sensors, and 

actuators. Even non-internet-enabled physical devices can be part of the IoT system through gateways. IoT platforms are getting the 

attraction of the attackers because of the security weakness of the constrained devices. They can use the IoT devices for DDOS attacking 

or directly attack the device to damage the overall system. Since several communication industry standard protocols such as MQTT, 

AMQP, and COAP can be utilized in an environment, communication between devices can be provided through a broker. Unencrypted 

communications can be sniffed; therefore, username and passwords can be stolen or message content can be modified by an attacker. 

Therefore,  secure authentication and encrypted communication are required in order to make the systems secure. TLS based approaches 

can be utilized to provide encrypted communication. However, constrained devices cannot handle asymmetric encryption algorithms. 

In this paper, we propose a new approach for IoT gateways with the utilization of a secure element which has storage for keys, true 

random generator, and AES 128-bit encryption capability. The proposed approach includes authentication and encrypted 

communication between the gateway and the broker. We also proposed a new method to provide simultaneous encryption and MQTT 

based communication with the utilization of physical I2C property of the ARM Cortex-M3. The secure element/chip is utilized in two 

different embedded devices, namely new developed embedded device (ARM Cortex-M0) and a demo card (ARM Cortex-M3) to test 

the approach and measure performances. We also investigate message integrity methods through the cryptographic hash (such as MD5, 

SHA-1, and SHA-2) or cyclic redundancy check (CRC32/64) algorithms.  
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Nesnelerin İnterneti için Güvenli Ağ Geçidi 

Öz  

Nesnelerin interneti cihazları, endüstriyel gömülü sistemler, araçlar, akıllı ev aygıtları, sensörler ve işleticiler gibi birbirine bağlı 

cihazlardan meydana gelmektedir. İnternete bağlanma imkanı olmayan cihazlar dahi ağ geçitleri sayesinde bir nesnelerin interneti 

sisteminin parçası olabilmektedirler. Nesnelerin interneti sistemleri gömülü sistemlerin sahip oldukları donanım sınırları nedeni ile 

saldırganların hedefi olmaya başladı. Saldırganlar bu cihazları DDOS ataklarından kullanabilmekte veya doğrudan ilgili cihaza yapılan 
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saldırılar ile bağlı oldukları sistemlerde çok ciddi hasarlara neden olabilmektedirler. Bir ortamda birden fazla MQTT, AMQP ve COAP 

gibi iletişim protokolünün kullanılması nedeni ile cihazlar arasındaki iletişimde aracı olarak bir aracı/broker kullanılabilir. Saldırganlar 

şifresiz iletişimin bir sonucu olarak kullanıcı adı ve parolası gibi bilgileri ağ üzerinden elde edilebilmekte ya da mesaj içeriklerini 

değiştirebilmektedirler. Sistemin güvenli hale getirmek için güvenli yetkilendirme ve şifreli iletişimi sağlamamız gerekmektedir. TLS 

tabanlı yaklaşımlar uygulanabilir. Ancak, kısıtlı gömülü sistemler asimetrik şifreleme yaklaşımlarını uygulamakta güçlük 

çekilmektedirler. Bu makalemizde nesnelerin internet ağ geçitleri için güvenli anahtar depolama, gerçek rastgele üretici ve 128 bit AES 

şifreleme/çözme özelliklerine sahip olan bir chipi baz alan bir yaklaşım önerilmektedir. Sunulan çalışma broker ile cihaz arasında kimlik 

doğrulama ve şifreli iletişim imkanı sunmaktadır. Sunulan çalışmada ayrıca ARM Cortex-M3’ün sahip olduğu fiziksel I2C özelliğini 

kullanan bir metod ile iletişim ve şifrelemenin aynı zamanda gerçekleştirilmesini sağladık. Bu çalışma için ARM Cortex-M0 işlemcisine 

sahip yeni bir gömülü system cihazı geliştirildi ayrıca ARM Cortex-M3 işlemcisine sahip bir demo kart kullanılarak önerilen yaklaşım 

test edildi ve performans değerleri ölçüldü. Ayrıca, mesajların bütünlüğüne yönelik olarak kriptografik hash (MD5, SHA-1 ve SHA-2) 

ve çevrimsel fazlalık sınaması (CRC32/64)  algoritmaları kullanıldı. 

 

 

Anahtar Kelimeler: Nesnelerin İnterneti, Kimlik doğrulama, Şifreleme, Modbus, Gömülü Sistemler 

 

1. Introduction 

Today, the Internet of Things (IoT) devices are used widely, such as in smart agriculture, smart city, smart transportation, smart 

grid, e-health, and industrial solutions. IoT systems consist of various sensors and actuators. They need to share their status and be 

controlled by a remote entity such as other device or application. Because the IoT devices can support various physical and 

communication protocols, middleware approaches can be applied as represented in Figure 1. The broker is responsible for converting 

among well-known protocols such as the Message Queuing Telemetry Transport (MQTT) (Banks & Gupta, n.d.), Advanced Message 

Queuing Protocol (AMQP) (ISO/IEC 19464:2014: Advanced Message Queuing Protocol (AMQP) 1.0, 2014), and WebSockets. Data 

generated by IoT devices can be delivered to various subscribers by the Broker. For example, the consumers collect data and process 

them to conclude an action, or store them. Applications can also send some commands to IoT devices. Even non-internet-enabled 

physical devices can be part of the IoT system through IoT gateways as represented in Figure 1. The gateways provide communication 

between the devices in the network and the cloud services. They can also be responsible for data fusion, protocol conversion and 

adaptation, authentication, and secure data transportation. 

In industry, both data and commands are considered valuable. IoT devices have to be prepared against various attacks such as 

hijacking the device or intercepting the traffic related to IoT devices. When an attacker modifies data or commands, production processes 

can be affected, or even some hazardous situations can occur. Numerous IoT devices are deployed without security implementations 

regarding the list of OWASP’s IoT vulnerability list such as weak passwords, poorly implemented encryption, or unencrypted services 

(“OWASP IoT Vulnerabilities,” n.d.)(Choi, Yang, & Kwak, 2018). IoT devices can be separated depending on the restrictions such as 

memory, computing performance, energy consumptions, and reliability of network connection. Security approaches applied to the IoT 

devices/systems are directly affected by these limitations. If computation performance is not high enough, we should prefer to use a 

lightweight security protocol with a small code size (Andy, Rahardjo, & Hanindhito, 2017). Because of the hardware costs and 

environment, some of the sensors communicate with the servers through IoT gateways. 

An IoT gateway is developed that can communicate with the applications through a modified broker adapted from ActiveMQ. The 

modified broker has a new authentication and key exchange mechanism based on an external chip (ATAES132A (“ATAES132A,” 

n.d.)) chip’s features and encrypted communication. Although, the proposed approach is protocol and encryption algorithm independent, 

our gateway is designed to communicate with the Message Queuing Telemetry Transport (MQTT) protocol (ISO / IEC 20922: 2016)  

and messages are encrypted with The Advanced Encryption Standard (AES) (FIPS 197: Announcing the ADVANCED ENCRYPTION 

STANDARD (AES), 2001)(Fathy, Tarrad, Hamed, & Awad, 2012). As represented in Figure 1, there are four components, namely:  

 an application responsible for data processing and service providing,  

 a broker bridging messages among publishers and subscribers such as IoT gateways and internet-enabled devices and applications,  

 an IoT gateway bridging devices and broker, and 

 devices as data producers or consumers such as sensors or actuators.  

Any text or binary messages can be transferred through the broker. The gateway can communicate with an application through 

broker utilizing any protocol such as JSON, XML, and Modbus protocols (“Modbus,” n.d.). Both publishers and subscribers trust to the 

broker. They only communicate through a topic or a queue mechanism, and they have no information (which user published or which 

users can reach the published data) about each other. Since only the broker knows the publishers and subscribers, anonymity is provided 

in terms of the users and devices. 
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Figure 1. IoT Test Platform 

IoT gateways communicate with the broker through TCP over WiFi or Ethernet technologies. Several IoT devices can communicate 

with the application through an IoT gateway. Advantages of IoT gateway utilization can be listed as below: 

 only one user account connects to the broker instead of the several devices' accounts,  

 network costs are decreased because of the connection number,  

 complex encryption and security approaches can be applied instead of lightweight cryptography, 

 IoT devices can save their processing power and memory required for TCP, TLS, and MQTT stacks, 

 information fusion can be provided or selected data, such as only changed parameters or some values more than a threshold can be 

published in terms of all data, and 

 all devices can communicate with applications, even not internet capable devices. 

The primary focus of this research investigates on cost-effective and secure IoT solutions regarding the storage of pre-shared keys, 

authentication, session key generation, throughput, and encrypted data transfer with the utilization of the external chip of the Microchip 

Technology. Both IoT and gateway devices can utilize the proposed approach. We evaluate two embedded devices: 

 

 STM32 Nucleo-144 demo board card includes ARM Cortex-M3 (STM32F207ZGT6) processor (120 MHz), 1 MB Flash, 128KB 

RAM, and physical I2C and external chip. 

 A new industrial IoT gateway includes external chip, ARM Cortex-M0 processor (W7500P) which supports the ARMv6-M Thumb 

instruction set, Ethernet, Serial communication (RS-232 and RS-485) and I/O interface as represented in Figure 2. 

The remainder of this paper is composed of the following sections: background section presents a brief overview of Modbus, 

MQTT, and AES. Proposed approach section presents a method for encryption and authentication.  Analysis and results section includes 

security analysis and performances of encryption and integrity. Finally, the conclusion section presents a discussion on the results and 

future works. 

 

 

Figure 2. New Industrial IoT Gateway 

2. Background 

2.1. Modbus Protocol 

IoT devices can communicate with the IoT gateway and each other through various technologies such as Z-Wave, ZigBee, WiFi, 

RFID, Bluetooth, RS-485, RS-232, and Ethernet. Some protocols, such as Modbus, can be applied to devices. In this study, IoT gateway 
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communicates with the devices through the Modbus RTU (binary) protocol (“Modbus,” n.d.), one of the most popular peer-to-peer 

serial communication protocols utilized in industrial control applications and monitoring processes. This protocol is developed by 

Modicon for use in PLC (programmable logic computers) communication and defines the message structure (slave address, Modbus 

application protocol data unit (PDU), and an error checking field) and communication rules. We utilized RS-485 as a physical 

communication channel. One or more master devices (IoT gateway) send a query to slave devices (sensors and actuators), and the slave 

devices prepare a response depending on the request. In a standard Modbus network, one master device can communicate with up to 

247 slave devices. Modbus concentrate on robust communication, and security was not considered during the development phase of the 

protocol (Urbina et al., 2017). Therefore, various form of attacks can be applied, such as sniffing, identity spoofing, denial of service, 

and message modification. There are 20 attacks that are classified as interception, interruption, modification, and fabrication for Modbus 

serial(Huitsing, Chandia, Papa, & Shenoi, 2008). Some of these attacks can cause catastrophic results.  

2.2. Message Queuing Telemetry Transport (MQTT) 

Message Queuing Telemetry Transport (MQTT) (ISO / IEC 20922: 2016) protocol is standardized by ISO. MQTT is a message 

exchange protocol designed for Machine-to-Machine (M2M) communications. It is based on a publish/subscribe mechanism. Since it 

has low bandwidth and memory consumption and supports for various levels of Quality of Service (QoS), MQTT has been preferred in 

IoT solutions. MQTT messages are exchanged through a server named broker, as presented in Figure 1. IoT devices are connected to 

the broker, authenticate themselves through username and password, and register to topics for publishing and subscribing. The device 

only publishes or subscribes to specific/authorized topics/queues. The broker utilizes and maintains an Access Control List (ACL) to 

control the topics/queues regarding the users of the system (such as IoT devices). When a message arrives at the broker, the message is 

replicated to authorized subscribers. 

Publisher does not know which subscribers its messages are delivered to, and subscribers do not know which publisher published 

the message. If an attacker can publish a message in a topic, all subscribers assume that the message is published by an authorized user 

of the system and process it. Weak passwords, unencrypted transportation, lack of a change mechanism for passwords, and weak RSA 

key lengths such as 1024 bits can cause such a scenario. 

Communication security consists of three components, namely confidentiality, integrity, and availability. Other components of 

security are authentication, authorization, and access control. By default, MQTT has only the authentication with username and 

password (Andy et al., 2017). Since by default, MQTT does not provide any data encryption, all data can be sniffed during 

communication. Therefore, all published data such as the value of sensors and password of an account can be obtained, or data can be 

manipulated during transportation with applications such as Etterfilter or Ettercap (“Ettercap,” n.d.). When the value of a sensor is 

changed during transportation, catastrophic results may occur. 

MQTT connection can be encrypted between the device and the broker. The message is encrypted and decrypted with a pre-shared 

session key on both sides. The session key is generated by a key agreement algorithm. In TLS connections, the key agreement is 

succeeded with asymmetric encryption (such as RSA or Diffie-Hellman), and then symmetric encryption such as The Advanced 

Encryption Standard (AES) (FIPS 197: Announcing the ADVANCED ENCRYPTION STANDARD (AES), 2001)(Fathy et al., 2012) 

is applied. For TLS based encryption, either root certificate or the public key of the server certificate, implementation of cryptographic 

hash (such as MD5, SHA-1 or SHA-256), asymmetric encryption and symmetric encryption algorithms have to be stored in the IoT 

devices. There are TLS-enabled MQTT implementations such as PAHO (“Eclipse Paho,” n.d.) and Fusesource (“Fusesource MQTT 

Client,” n.d.). TLS based communication can be utilized where root certificates or public key of server certificate can be maintained, 

processing power and memory requirements are met (Oliveira, Moreira, de Oliveira Silva, Miani, & Rosa, 2018). There are few and 

widely used brokers such as Mosquitto(“Mosquitto,” n.d.), ActiveMQ (“ActiveMQ,” 2003) and RabbitMQ(Ionescu, 2015). Depending 

on the search in Shodan, ~25.000 brokers with the default port (1883) are identified (Andy et al., 2017). It should be noted that these 

MQTT brokers can also operate with TLS support in a different port. The same devices can connect to both ports with the same username 

and password. Therefore, an attacker can utilize this to obtain credentials through blocking TLS port. It is shown that some IoT devices 

already connected to the MQTT broker without any encryption (Andy et al., 2017). 

Class-0, defined in RFC 7228 (Bormann, Ersue, & Keränen, 2014) IoT devices have limited resources such as computing 

performance, small ROM size (less than 100 KB), and small RAM size (less than 10 KB) (Andy et al., 2017)(King & Awad, 2016). 

This kind of device is utilized for collecting and transmitting data to servers for storing and processing. Since their resources are limited, 

most of the security approaches, such as TLS for transport security, are not feasible (Andy et al., 2017). 

As another approach, MQTT message payload can be encrypted with a pre-shared key before publishing in IoT device. The 

encrypted payload can then be decrypted in either broker or subscriber(s)(Katsikeas, 2016). In the first approach, a custom-developed 

broker is needed. The broker should decrypt the payload depending on the user-specific pre-shared key. In the second approach, all 

subscribers have to know the related key to decrypt the payload. The key can be loaded into all devices during production, or it can be 

set with the registration of the device to the system. One downside of this approach is that when one of the subscribers is exploited, the 

entire communication of the publisher can be compromised. 

2.3. The Advanced Encryption Standard 

The Advanced Encryption Standard (AES) adopted by the U.S. government is utilized widely since November 2001 (FIPS 197: 

Announcing the ADVANCED ENCRYPTION STANDARD (AES), 2001)(Fathy et al., 2012). AES has 128 bits block size and three 

key sizes, namely 128, 192 and 256 bits. In AES, some rounds (10, 12, and 14 respectively by key sizes) are defined. FIPS 197 (FIPS 

197: Announcing the ADVANCED ENCRYPTION STANDARD (AES), 2001) defines the standards of the algorithm and 

implementations can be verified with test vectors (Bassham, 2002). The algorithm can be implemented by both hardware and software 

(Wardhani, Ogi, Syahral, & Septono, 2017). The AES algorithm is implemented considering the performance and resources such as 



Avrupa Bilim ve Teknoloji Dergisi 

e-ISSN: 2148-2683  418 

memory, processing power, and battery. Some embedded devices have a coprocessor that can perform AES encryption in hardware 

(Schwabe & Stoffelen, 2016). However, it increases power consumption and the cost of the device. ARM cores are used in the embedded 

industry. One of the AES software implementations is optimized regarding memory for ARM Cortex-M3 processors (Wardhani et al., 

2017). In another approach, ARM instruction sets are utilized to increase the speed of AES (Schwabe & Stoffelen, 2016). Also, some 

countermeasures regarding side-channel attacks are presented in (Schwabe & Stoffelen, 2016). 

A lightweight version of the AES is utilized to encrypt MQTT payloads in ESP8266WiFi (Chowdhury, Istiaque, Mahmud, & 

Miskat, 2018). The ESP8266WiFi has a 32-bit single core RISC processor clocked at 80 or 160 MHz. AES symmetric key and 𝐼𝑉 is 

shared by the MQTT publisher in ESP8266 and a subscriber during the setup of the system. IoT device manufacturers may prefer to 

leave physical access for maintaining issues. This access can be exploited by an attacker for tampering with firmware, inserting 

malicious code, or dumping memory to get user account information (Choi et al., 2018). Therefore, the key and 𝐼𝑉 can be retrieved 

from the device through console access. MQTT with TLS connection is also implemented on the ESP8266WiFi (Vrettos, Logaras, & 

Kalligeros, 2018). 

We tested one hardware (ATAES132A chip) and two software implementations namely mbedTLS(“MbedTLS,” n.d.) (formerly 

PolarSSL) and TinyCrypt (“TinyCrypt,” n.d.). All implementations are tested regarding test vectors (Bassham, 2002). TinyCrypt library 

targets constrained devices and consists of HMAC-PRNG and AES-CTR-PRNG random number generators, AES-128 block cipher 

(with AES-CBC, AES-CTR, and AES-CMAC encryption modes), AES-CCM authenticated encryptions, ECC-DH key changes, and 

ECC_DSA digital signatures. Software implementations suffer from the side-channel attacks. Side-channel countermeasures can be 

implemented but increase overall code size. The TinyCrypt includes certain generic timing-attack countermeasures. The mbedTLS 

implements symmetric encryption algorithms (Blowfish, Triple-DES (3DES), DES, ARC4, Camellia, XTEA), hash algorithms (MD2, 

MD4, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, RIPEMD-160), RSA / PKCS#1, Diffie-Hellman / PKCS#3, and Elliptic 

Curve Cryptography (ECC). Although pseudo-random implementations are included in the mbedTLS and TinyCrypt, they need to find 

an entropy source to produce seed. 

2.4. ATAES132A microchip 

ATAES132A chip (“ATAES132A,” n.d.) is developed by Microchip Technology and presented in Figure 3. This chip can store 

sixteen 128-bit keys, encrypt/decrypt through AES algorithm standardized by NIST with 128-bit keys, and generate random octets 

through Internal High-Quality FIPS Random Number Generator (RNG). It supports 10 MHZ SPI (Mode 0 and 3) and 1 MHZ standard 

I2C Interface. It can serve in an industrial environment (−40°C to +85°C). ATAES132A chip supports Electronic Codebook (ECB) and 

the Counter with Cipher Block Chaining-Message Authentication Code (CCM) (Dworkin, n.d.)(Whiting, Housley, & Ferguson, 2003) 

algorithms. The CCM is a block cipher mode of operation which is used to provide authenticated encryption. AES-CCM mode in the 

chip provides both confidentiality and integrity with a single key. There are EEPROM Counters (16 high-endurance), and they can 

count up to 2097134. Counters have a power interruption protection feature to prevent corruption. Each key can be utilized 2097134 

times because of the counter limits in CCM mode. When the counter reaches to limit, the related key is disabled. We listed the algorithms 

tested in this study and their size of memory requirements in Table 1. We did not apply any optimization on source codes of libraries. 

Therefore, it can be preferred to use where flash memory is a constraint. 

 

  

 

 

 

 

Figure 3.  ATAES132A chip 

 

Table 1. Source Code and Flash Memory Requirements 

Name Total Flash (Byte) 

MQTT 5247 

MbedTLS 14052 

TinyCrypt 1092 

ATAES132A 599 

CRC32 1064 

CRC64 2099 

MD5 2508 

2. Material and Method 

We propose an approach based on the external (ATAES132A) chip to utilize for authentication and encryption of MQTT payload. 

As mentioned in previous sections, constrained devices such as (Class-0) can prefer to utilize gateways for publishing their produced 

data such as sensor values and getting commands from a control application or an administrator. In this study, we concentrate on the 

communication security between the broker and IoT things such as the IoT gateway, devices, and applications. The processor module 
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in the IoT gateway is responsible for communicating with external chip and connected device (sensors and actuators), task allocation 

and scheduling, data integration and transmission through the MQTT.  

Since the proposed approach requires an adapted broker, we modified the ActiveMQ broker for our implementations. The broker 

is responsible for the authentication of devices, a key agreement for session keys, encrypt/decrypt messages, and ensure message 

integrity. Each gateway (device) has sixteen pre-shared AES symmetric key(s) in the external chip. One of the keys named 𝐾1 is utilized 

during authentication, as presented in Figure 4. 𝐾1  and 𝐾2  are associated with  keyId_1 and keyId_2, respectively, in the database 

of the broker. When the device sets up a TCP connection to the broker, the external chip generates a random 12-octet nonce and a 16-

octet Initialization Vector (𝐼𝑉). The nonce is extended with a four-octet counter that includes the number of usage of 𝐾1. Also, an 

encrypted value (named  𝐶𝑎) is calculated through the encryption of nonce with 𝐾1. The device starts the authentication process by 

sending the username and password as "nonce:counter:IV:keyId_1:keyId_2: 𝐶𝑎  ". The broker authenticates the device with  𝐶𝑎  

generated by  keyid_1 and nonce, as presented in Figure 4. When  𝐶𝑎 is verified, both sides have a session key (𝑆𝐾) generated through 

encryption of the nonce with 𝐾2. When authentication is succeeded, the broker sets a new value of the counter in the database.  

 

 

 

Figure 4. Authentication process 

The 𝑆𝐾 and 𝐼𝑉 are used to encrypt and decrypt all MQTT payloads during a session as depicted in Figure 5. The client encrypts 

payload before publishing to the broker, and the payload is decrypted in the broker. After that, using each subscriber's 𝑆𝐾 and 𝐼𝑉, the 

broker encrypts the payload and sends it to respective subscribers. As represented in Figure 6, N blocks (128 bits) and their digest are 

encrypted through block cipher, session 𝐼𝑉, and session key. Padding can be applied on the plain text to provide 128-bit blocks. When, 

128 bits cipher blocks (𝐶1, 𝐶2, .., 𝐶𝑁, and𝐶𝑁+1) are generated, they are sent to receivers as an MQTT payload.  

So far, we concentrate on secrecy and confidentiality issues. Another important part of security is integrity. Cryptographic hash 

functions are utilized to obtain digest (fingerprint) of the payload. If digest obtained by the receiver without change/modified, it can be 

used to verify the integrity of the payload. Therefore, it should be transferred via a secure channel. Digest calculator can provide a tag 

value of the payload. The last block includes the tag value and can be encrypted with another key. In this study, we utilize the same key 

because of the performance issues. The digest can be generated through a cryptographic hash (such as MD5, SHA-1, and SHA-2) or 

cyclic redundancy check (CRC) algorithms. MD5 generates directly 128 bits of data. CRC algorithm generates 32 and 64 bits data for 

CRC32 and CRC64, respectively. The tag value can be extended to 128 bits with zeros or random octets before XOR operation. 

Therefore, any change/modification on the encrypted payload can be identified. Some well-known approaches, such as HMAC can be 

applied. Our approach is designed based on parameters such as cost, performance, and hardware issues. Such as some processors have 

included CRC and cryptographic hash algorithms. The proposed approach can be modified based on the parameters. 
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Figure 5. Encrypted communication through custom Broker 

The recipient decrypts the payload with its’ symmetric session key and 𝐼𝑉 as depicted in Figure 7. When an encrypted MQTT 

message which includes blocks (𝐶1, 𝐶2, .., 𝐶𝑁, and𝐶𝑁+1) are received, each block is decrypted by 𝑆𝐾 and 𝐼𝑉. When all blocks are 

decrypted, the digest value is recomputed in the recipient side and verified with the last block that consists digest value calculated by 

the sender. 

 

 

Figure 6. Encryption process 

 

 

Figure 7. Decryption process 

 

An application can be communicated with the IoT gateway through custom or well-known protocols such as Modbus over MQTT. 

Therefore, non-internet-enabled physical devices can be monitored and controlled remotely. In our case, the IoT gateway has no 

capability to control the system. The application in the IoT platform has to know all devices connected to the IoT gateway with their 

"𝑠𝑙𝑎𝑣𝑒𝐼𝑑"s or "𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑"s and register address. The application sends a Modbus request that includes 𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑, Modbus address, 

and size values. This message is delivered to the IoT gateway by the broker, as represented in Figure 8. When the message is received, 

the IoT gateway saves it to a request buffer. When the gateway is available to process, gets the request from the request buffer and sends 
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to Modbus network. Whenever the requested device gets the message, it prepares a response a Modbus packet and sends to the gateway. 

When this response arrives, it is also is stored in a buffer. Whenever the gateway is available to publish, gets the response from the 

buffer, sends it to the application through the broker. As is represented in Figure 8, several Modbus requests can be sent one after 

another by the application and the IoT gateway process them in the received order. All traffic is encrypted with the session key as 

defined in Figure 6 and Figure 7. 

 

Figure 8.  The communication flow between application and device with Modbus over MQTT 

 

3. Results and Discussion 

3.1. Security Assessment 

IoT security is investigated regarding authentication and encrypted data transfer (Andy et al., 2017)(Chowdhury et al., 2018)(Naik 

& Maral, 2018). An attacker can sniff the ciphertext and initial parameters such as nonce but must not be able to recover the message. 

Also, the attacker should not be able to construct a valid ciphertext, a tag, and a nonce.  

Username or device identity can be evaluated as a secret as defined in (Naik & Maral, 2018). They can be encrypted during 

communication. However, a symmetric key for encrypting username should be the same on all devices. When any device is investigated, 

the key can be compromised. Therefore, username or device ID can be sniffed and decrypted with the key. In this paper, since we query 

keys depending on device/username in the broker, we are sending username as unencrypted. 

Username and password based authentication approaches cause a maintenance problem such as credentials should be changed 

periodically (Andy et al., 2017). Passwords can be obtained from the devices. Therefore, each device must have a unique password. In 

our proposed approach, all devices have unique keys. However, even if their keys are different, some replay attacks can be employed. 

One way is the utilization of the challenge-response mechanism for preventing the replay attacks. However, MQTT has no capability 

for the challenge-response mechanism. Therefore, we propose a method corresponding with the standard MQTT. The challenge-

response mechanism can be applied, but protocol implementations should be modified in both server (broker) and client sides.   

MQTT broker listens on port 1883 by default. Any TCP socket application can open a connection to the broker. Therefore, DDOS 

attacks can be possible for the broker. Brokers can be configured with IP restrictions, and also firewall utilization can be evaluated.  

 

In the proposed approach, the session key is generated through the AES algorithm and random nonce bytes. AES can be utilized as 

a block cipher-based pseudorandom number generator (PRNG) (Petit, Standaert, Pereira, Malkin, & Yung, 2007). As mentioned before, 

the seed of the PRNG should be random. Therefore, we utilize a true random generator of the external chip. Some processors also have 

random generators such as ARM Cortex-M3. 

We have implemented an adapted broker for authentication and encrypted data transfer. It should be noted that MQTT or other 

protocols are not modified. When an attacker sniffs the wire, only username/device Id and a password value consisting of 

“nonce:counter:IV:keyId_1:keyId_2: 𝐶𝑎” can be obtained. As defined in the proposed approach section, the random nonce value with 

the counter is encrypted with a pre-shared key associated with 𝑘𝑒𝑦𝐼𝑑1. Broker verifies the encrypted value (𝐶𝑎) with the utilization of 

user related key in a user account database. Since nonce and encrypted value is known, the known-plaintext attack can be applied. In 

that case, only one session related data can be obtained because each session has unique keys.  

In order to prevent replay attacks, timestamp, or a counter addition to nonce can be evaluated. In real life, the maintenance of these 

values can be a problem. For example, counters or the clock of the device can be reinitialized. In that case, synchronization between 

peers can be broken. Fortunately, a reliable counter mechanism can be utilized with ATAES132A chip. The chip provides high-

endurance counters associated with each key. The counters are incremented with each usage (encryption, decryption, etc.) of that 

particular key. The counter value can then be included in password value. This way, the broker can keep track of previous payloads and 

reject any payload that has been processed before. The proposed approach is secure in terms of the replay attacks. An attacker can start 

a replay attack in three ways: 
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 All packets during a session include authentication and data packets sniffed. Since nonce value includes the old value of the counter, 

authorization is going to be failed.  

 An attacker can start an active attack through stole authentication packets. In that case, it can be authorized and gain the privilege 

of the user. We assume that keyId_2 related symmetric key is not known by an attacker. Therefore, an attacker cannot encrypt or 

decrypt messages. When a message is sent by the attacker, the broker will evaluate that message is modified or broken as represented 

in Figure 7. In that case, the message can be discarded, or an alarm can be generated for administrators.  

 During a session, any sniffed packet can be sent to the broker. Since each message and its MAC value encrypted through CBC 

mode, any change or replay of previous packet cause integrity error as represented in Figure 7. 

We should not use the same key and IV for connection. For each connection, two keys are utilized, and their counters are 

incremented in ATAES312A chip. When a key usage counter reaches a limit, we should use a different key. An attacker can use this 

method for his advantages. An attacker can prevent connection request of the device to the broker or behave as a broker and return a 

false error message to the device for providing the device’s reconnection. As long as the device continues to try, keys are utilized. As a 

result, there will be no key to use for connection to the broker. Therefore, the device cannot connect to the broker anymore. As a 

precaution, if it is possible device waits a limited time and try again. Therefore, all keys are not consumed in a short time. 

Software-based AES implementations suffer from the timing attacks, power analysis attacks, and other forms of side-channel 

attacks (Schwabe & Stoffelen, 2016). The external chip has protections for these kinds of attacks (“ATAES132A,” n.d.). If the 

throughput requirement of the gateway is close to the external chip, the chip can be utilized to encrypt the payload instead of the software 

implementations. In that case, the CBC mode can be considered.  

The tag length can be more than 32 bits, but less than 64 bits is not proposed (Dworkin, n.d.). Since we also encrypt the tag value 

and payloads are generally smaller than 1024 bytes, 32 byte CRC can be preferred where the processor includes hardware CRC 

calculator. As represented in the performance section, software implementations of the CRC 64 bits and MD5 have close throughputs.  

3.2. Performance of the Encryption Process 

 For demonstration purpose, we tested two software implementations, namely mbedTLS (“MbedTLS,” n.d.) and TinyCrypt 

(“TinyCrypt,” n.d.) in the embedded devices. The embedded device includes ARM Cortex-M0 performs 6272, 28912, and 272742 

microseconds for encrypting 1024 bytes through mbedTLS, TinyCrypt, and ATAES132A, respectively as depicted in Figure 9. Based 

on these values and MQTT publish cost, the throughput of the device is represented in Figure 10. The embedded device includes ARM 

Cortex-M3 performs 2543, 18670, and 204800 microseconds for encrypting 1024 bytes through mbedTLS, TinyCrypt, and 

ATAES132A, respectively as depicted in Figure 11. As represented in Figure 9 and Figure 10, ARM Cortex-M3 has about two times 

better performance than ARM Cortex-M0. It should be noted that M0’s (W7500P) price is about 3.49$ and M3’s (STM32F207VGT6) 

price is 13,89$ on a website (“Digikey,” n.d.). 

 

 

Figure 9. AES 128-Bit encryption with ARM Cortex-M0  
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Figure 10. The throughput of encryption approaches for ARM Cortex-M0. 

 

 
 

Figure 11. AES 128-Bit in ARM Cortex-M3 

Software encryption libraries (mbedTLS and TinyCrypt) consume computation time. Therefore, it is not possible to achieve 

encryption and to publish simultaneously such as in ARM Cortex-M0. However, since the demo board card includes ARM Cortex-M3 

with physical I2C; MQTT communication and AES encryption can be accomplished simultaneously as represented in Figure 12. We 

used a Tektronix MSO 2014 digital oscilloscope to measure the performance of implementations. While MQTT payload is sending, the 

external chip can encrypt several new raw data. Encryption operation takes about 3200 microseconds. The external chip can be utilized 

where MQTT operations take more than 3200 microseconds, effectively. In that case, encryption cost downs to zero. Throughput is 

affected by block size and network latency. Since, ARM Cortex-M3 enabled gateway can encrypt and publish simultaneously, its 

throughput high where the network latency is more than 3200 microseconds and block size is small as depicted in Figure 13. Therefore, 

the external chip-based solution can be selected where the processor has physical I2C, and communication latency is high, or 

requirement for encryption throughput is low.  

 

 

Figure 12. Encryption (channel 1) and MQTT (channel 2) 

In the test environment, we evaluated a remote broker. The gateway sends 1024 octet (64 blocks) encrypted payload to a broker in 

between 3425 and 8104 microseconds for both embedded devices. In our performance evaluation, publish time is assumed as 6400 
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microseconds. It should be noted that MQTT throughput effected by processor speed, the network latency, and performance of the 

Broker. 

 

Figure13. The throughput of encryption approaches for ARM Cortex-M3.  

3.3. Performance of Message Integrity 

The proposed approach can detect the attack after the whole message is decrypted. MD5 is more secure to attacks than CRC 32 and 

64 bits. We measure that 256 octet data’s tag value is calculated in 648, 1228, and 1787 microseconds through CRC32 (software), 

CRC64 (software), and MD5 (software), for ARM Cortex-M0, respectively as represented in Figure 12. The MD5 algorithm can be 

selected instead of CRC64 in the advantage of security and performance for large message size. Memory consumption for two 

algorithms is almost the same. 

Some processors such as ARM Cortex-M3 has internal CRC32. In that case, CRC32 can be utilized to take advantage of 

performance and code size. Depending on our test are represented in Figure 14, 256 octet data's tag value is calculated in 15, 74, 126, 

and 137 microseconds through CRC32 (hardware), CRC32 (software), CRC64, and MD5 (software) for ARM Cortex-M3, respectively 

as depicted in Figure 13. CRC32 hardware implementation can be selected where throughput is essential. The MD5 algorithm can also 

be selected in ARM Cortex-M3 instead of CRC64 in the advantage of security and performance for large message size. Some models 

of the ARM such as STM32F217VG have also AES, MD5, and SHA-1 internal accelerators. Algorithms and implementations should 

be defined depending on the processor and desired throughput.  

 

 

Figure 12. Performance of message authentication algorithms in ARM Cortex-M0 

 

 

Figure 13. Performance of message authentication algorithms in ARM Cortex-M3 



European Journal of Science and Technology 

e-ISSN: 2148-2683  425 

4. Conclusions and Recommendations 

This paper is aimed to develop a cost-effective IoT gateway. The gateway sends collected sensor data from various devices with 

Modbus protocol to a server application for processing through an adapted broker. MQTT is a standardized communication protocol 

over TCP for IoT devices. By default, data is transported unencrypted. However, TLS based communication can be set up by asymmetric 

key exchange mechanisms. Both the RSA operation library and RSA public keys should be stored in an embedded device's non-volatile 

memory. Therefore, the TLS based key exchange is not suitable for constrained devices such as Class-0. In this study, we utilized the 

pre-shared keys stored in an external (ATAES132A) chip. The keys used for both authentication and encryption and integrity of MQTT 

message payload between senders such as IoT Gateway and receiver such as the broker. 

Through the proposed approach, cost-effective, secure IoT gateways/devices can be developed. The proposed approach offers the 

utilization of the external chip for two cases 1) authentication and key exchange, 2) authentication and payload encryption. The first 

method can be preferred where the processor has not physical I2C. Through the proposed approach, keys are securely stored in the 

external chip. The session key is generated from a true-random seed. Software implementations such as mbedTLS or hardware 

cryptographic accelerators such as CRC, MD5, and AES are utilized, and payload integrity is satisfied. Shared keys are stored in the 

chip's secure area. Therefore, keys cannot be obtained through memory dump or side channel attacks. Chip has a true-random generator, 

which is one of the requirements for secure communication and FIPS based AES implementation. 

In the second method, simultaneous encryption and publish can be succeeded in the utilization of physical I2C. The only difference 

from method 1 is external chip can be utilized for encryption and decryption of the payloads, especially processor's hardware 

cryptographic accelerators are limited, such as ARM Cortex-M3 (STM32F207VGT6). AES encryption algorithm is not located in flash 

memory or RAM of the device. Therefore, more memory is reserved for the application. Since encryption operations are performed in 

the chip, more process power is saved for the applications in the IoT gateway. The chip is secure against the side channel attacks. Most 

of the AES algorithm software implementations suffer from the side channel attacks. 

Modbus data can include 245 bytes maximum. Therefore, encryption with mbedTLS can be selected for software implementation 

in both embedded devices. However, when small queries are sent to the gateway or gateway sends sensor values periodically, the 

external chip can be evaluated efficiently with physical I2C of ARM Cortex-M3. 

As future work, we will evaluate other software implementations and SPI connection interfaces of ATAES132A for more efficient 

communication between the processor and the chip. ARM Cortex-M3 (STM32F217VGT6) that include cryptographic accelerators such 

as AES, MD5, SHA-1 can be utilized.  
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