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Abstract 

A software project can be comprised of several, highly connected files. A software developer may not 

know the files that are connected to which are developed or that are changed by another developer. This 

may induce faults by missing necessary edits on all related files. We build a prediction model for 

identifying files that should be edited together during a code change, and evaluate the performance of our 

model on two Apache projects’ development history over more than 10 years. We conduct an external, 

conceptual replication study based on Wiese et al.'s prior work on predicting co-changed files. Our study 

shares the same goal but differentiates the experimental design in terms of data set construction, selection 

of file pairs, feature selection and the model output. Our prediction model’s results, although the same 

performance measures are used, are much lower than what is reported in Wiese et al.’s study, mainly due 

to the differences in calculating these measures. The models evaluated at commit granularity could 

achieve 20% and 45% lower recall and precision rates, respectively, than those aggregated over all file-

pairs.  Although it is practically more useful, predicting all files that will be co-changed together during a 

commit is more challenging than predicting whether a particular file will be changed in that commit. More 

information about the context of a co-change, the degree of centrality of a file in the project, or project 

characteristics could reveal more insights in building such predictors in the future. 

Keywords: Mining software repositories, association rule mining, predicting co-changed files, replication 

study. 

 

1. Introduction 

Software projects consist of thousands of files among 

which contextual, functional or other kinds of 

dependencies exist. A change made on a source file 

might require several changes on other files due to such 

dependencies. A developer’s misunderstanding of the 

code or lack of experience might hinder necessary 

changes that should be done on all relevant files. This 

eventually raises quality issues in software projects. 

Empirical studies focusing on co-change prediction aim 

to preserve the code integrity and reliability by guiding 

developers to necessary code fragments that need to be 

inspected or edited with regard to a particular code 

change. 

There are mainly two approaches for developing co-

change prediction models in the literature. The first one 

utilizes dependency graphs of a software project 

extracted at any entity level, i.e., from dependencies 

between business requirements, to static call 

dependencies between methods [1], while the second 

one makes use of software code repositories and builds 

learning-based models [2]. The first approach often 

requires manual work to update change impact set 

incrementally, and the changes are not semantically 

related and analysed [1]. The second approach is more 

dynamic in nature as it is based on automatic data 

collection from source code and issue repositories over 

several releases and updating the prediction models 

accordingly.  

In this paper, we analyzed a recent work by Wiese et al. 

[3] that proposes co-change prediction models for 

source files using contextual information from version 

control systems and issue repositories, and chose it as 

our baseline empirical study. We conceptually 

replicated the baseline in [3] by extracting more than 10 

years of development data of two projects, Apache 

Derby and Apache CXF, and calculating commit and 

developer related features. We then built co-change 

prediction models for a subset of files based on their 

ranking over commits, and associated co-changed files. 

Our study differs from the original study [3] in terms of 

experimental protocol in selecting co-changed file pairs, 

model construction, and performance evaluation.  

2. Related Work 

One of the early works on tracking file co-changes 

through mining code repositories is proposed in [4]. The 

authors in [4] show that historical commit data can be 

used to track code evolution. Another study by Gall et 

al. [5] also used the historical release data from version 

control systems, and they were able to predict 
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evolutionary coupling between files. Later, 

Zimmermann et al. [6] developed an Eclipse plugin to 

predict co-change occurrence at method level, again 

using the information obtained through mining software 

repositories. The designed tool was able to suggest 

some co-changes, but its precision was around 30%. 

The false alarm rates were very high, and further steps 

were needed to be taken to improve the accuracy of 

suggestions.  

There have also been other approaches in the context of 

co-change prediction. For instance, Canfora et al. [7] 

extracted association rules from the historical code 

changes to predict file co-changes, and obtained 30% F-

measure. The reason of having so low F-measure was 

due to high false alarms that the association rules 

generated. The rules are successful at finding co-

changes but they also have very high false positives. 

Wiese et al. [3] proved this in their study by comparing 

association rules with contextual features. Moreover, 

Hassan et al. [8] investigated change propagation, and 

used different heuristics to predict co-changes at the 

entity granularity by analysing five large open source 

software projects. They defined heuristics according to 

their data source and pruning techniques. They obtained 

the best recall performance when using the entity based 

historical co-change data with hybrid pruning method, 

which combines both frequency and recency methods. 

In order to improve precision performance, Hassan et al. 

[8] used hybrid heuristics and combined the results of 

entity based historical co-change and entity based code 

structure using code layout heuristics. With this new 

approach, precision increased up to 49%, while recall 

decreased down to 51%. The authors of [8] stated that 

more sophisticated heuristics should be developed to 

obtain better performance. 

Macho et al. [9] conducted a study to improve the 

prediction of build co-changes by using the detailed 

information on source code changes and commit 

categories. They obtained significantly higher 

performance compared to prior works, and planned to 

improve the performance more by including the issue 

tracking system into their prediction model. 

Furthermore, Kouroshfar [10] investigated in his article 

whether there is a relationship between co-change 

dispersion and the software quality. He used four open 

source Apache projects and showed that the location of 

co-changes has an impact on the code defects.  

2.1. Baseline Study 

Wiese et al. [3] conducted an empirical study to observe 

whether change patterns could be identified using 

contextual information from both issue tracking and 

version control systems. They built predictive models 

using Random Forest classifier that is trained with the 

previous changes of file pairs, and recommends whether 

the second file in the pair should be changed when the 

first file in the pair has changed. One separate model is 

trained for every file pair, but this was not done for all 

file pairs that exist in the historical code changes. They 

grouped all the commits that were done for an issue to a 

single change transaction, and all the files that are 

changed by that change transaction are considered as a 

co-changed file pair. Association rules based on support 

and confidence values were generated for each co-

change file pairs. Wiese et al. [3] selected the top 25 

relevant association rules as the list of co-changed file 

pairs. They later built models for these 25 pairs by 

extracting features from issues, commit history, and 

communication network. The prediction models 

reported in [3] on Apache Derby and Apache CXF 

projects, achieve around 90% precision and recall 

values. Although this original study provides 

remarkable performance in the context of co-change 

prediction, there might be several reasons to observe 

such high recall and precision rates.  

First and foremost, the classifier building and evaluation 

process depicted in [3] may not represent the change 

propagation in reality. For instance, when a developer 

makes a change on file A, then the prediction model 

trained on (A,B) pairs is used to recommend if file B 

should also be changed. But if another file, say C, also 

needs to be changed, another model trained on (A, C) 

pair is used for recommendation. However, in practice, 

when a developer changes file A, he/she wants the list 

of files that should be changed together with A. So all 

models having file A in their co-changed file set (e.g. 

(A, B), (A, C), (A, D)) should provide recommendations 

at each commit including A.  

Second, the performance evaluation method in [3] might 

have led to such high rates due to their classifier 

building strategy. The original study reports precision 

and recall over all models used in multiple releases of 

two software products, although in each release, there 

exist multiple models corresponding to several file 

pairs. So the recall and precision values do not depict 

the performance of separate models with different co-

changed pairs. Furthermore, performance evaluation 

was made by considering each model trained on a pair 

(A, B) [3] although this does not resemble the practical 

scenario. When a developer changes an entity (A), 

he/she would like to learn what other entities need to be 

changed together with A. The number of recommended 

entities should ideally be compared with the actual 

changed entities, and recall and precision should be 

calculated over all recommended entities for a single 

commit. This way, it is easier to assess which entities 

are correctly predicted or give false alarms, and discuss 

how co-changed pairs could be better predicted. 

3. Methods and Materials 

Our research is defined as an external and conceptual 

replication of the baseline study published in [3]. In 

[11], authors discuss all the types of replication studies 

and divide them into two categories: “internal” and 

“external”. It defines a study “internal” if the people, 

who conduct both the original and the replication 
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studies, are the same, and “external” if the two studies 

are conducted by different researchers. The authors in 

[11] also state that replications, which use different 

experimental protocol in order to check the baseline 

experimental results, are named as “conceptual 

replication”.  Shepperd et al. [12] discuss the 

importance of the replication studies, and argue that 

internal replications have been reported more often than 

the external ones in the area of empirical software 

engineering. Silva et al. [13] also supports [12] that the 

replication studies are necessary in any empirical 

science, and external ones should be encouraged more 

in order to increase the quality in this field. 

We share the same goal of recommending co-changed 

entities using contextual data from version control 

systems with [3], while our study differs from the 

baseline study with regard to the features used, classifier 

building and evaluation strategies that we believe better 

illustrates the developer’s needs in practice. Wiese et al. 

[3] identify six dimensions to investigate the 

performance of each in predicting co-changed files. 

These dimensions can be collected from an issue 

tracking system (issue, communication over issues, 

developer’s role in communication, structural hole in 

communication, communication properties) and a 

version control system (commit context). Although they 

argue that co-change prediction is a multi-dimensional 

phenomenon, the most frequently selected features in 

these models are from two dimensions: commit context 

and developer’s role in communication [3]. However, 

collecting all these dimensions is very costly, especially 

for large scale software projects connected to multiple 

version control and issue tracking systems. Therefore, 

we reduced our feature set to the metrics from the 

commit and communication dimensions only, as 

concluded by [3]. 

Moreover, Wiese et al. [3] found co-changed file pairs 

based on issues attached to the commits, and selected 

top 25 co-changed file pairs based on support and 

confidence values derived from association rules over 

all commits. We have revised this approach by 

considering the top-5 files changed in all commits, 

because a model built for a file can only be successful if 

they are enough number of changes associated with the 

file in commit history. Then we identified pairs with 

these top-5 files, based on the support and confidence 

values derived from association rules over all commits. 

The details for these association rule calculations will be 

provided in the next subsections.  

Finally, we modified the calculation of performance 

measures from ‘recall and precision over different 

models for the selected file pairs’ [3] to ‘recall and 

precision of a single model that recommends multiple 

entities to a commit’. The details of performance 

evaluation are further explained in the corresponding 

subsection. We also report the performance measures 

achieved using the approach in [3] to compare our 

findings with the original study. 

3.1. Data Used 

Wiese et al. [3] analysed two repositories, namely 

Apache Derby and Apache CXF, to build co-change 

prediction models. We mined the GitHub repositories of 

the same two projects to compare and contrast our 

findings with the original study. While extracting the 

commit history, we used GitHub API. As the features 

we selected are from the commit and developer 

communication contexts, it was enough to mine only the 

GitHub repos in our study. The descriptive statistics for 

Apache Derby and CXF are reported in Table 1. 

Projects have 10-12 years of development data, and 

thousands of file edited over the years by 17 to 20 

developers. Note that GitHub API provides historical 

change data on the main branch, and hence, we did not 

consider branches generated from the main branch in 

our research. 

Table 1. Descriptive statistics for the projects used. 

 Apache Derby Apache CXF 

Time interval of 

the commits 

extracted 

11 August 2004 

- 3 February 

2018 

23 April 2008 

- 23 April 

2018 

Total no. of 

commits  

8175 13999 

Total no. of files 6179 19233 

Total no. of co-

changed files 

17 20 

3.2. Calculation of Confidence Values 

Wiese et al. [3] prepared train and test data sets for each 

file pair, which were changed in the same commit group 

related to an issue, and selected the top 25 with regard 

to their confidence values. In order to calculate the 

confidence values, they firstly calculated the support 

values of each association rule (r), which is a file pair as 

mentioned before. The support and confidence 

calculations are as follows: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (r) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐼 → 𝐽) 

= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖} ∪ {𝑓𝑗}) 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑟) = 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐼 → 𝐽)   

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(I → J)   =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡( I→ J)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼)
 = 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖}∪{𝑓𝑗})

𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖})
 

The support values refer to the total number of 

transactions on fi where other files fj are also changed. 

In other words, it is the number of common 

transactions. While the support calculation takes into 

account the file pairs only, and does not take into 

consideration the order of their association rule, the 

confidence calculation considers association rules in 

which the order of the files is important. More 
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specifically, two association rules can be made from one 

file pair. For example, if the file pair consists of files 

“a” and “b”, then the possible association rules are a->b 

and b->a. While their support values are the same since 

it equals to total common transactions, their confidence 

values are different because it is a fraction, which is 

obtained by the total number of common transactions 

divided by the total number of the transactions of the 

first file of the association rule. Therefore, selection of 

the first file matters.  

In this study, we obtained the co-changed file pairs’ and 

calculated their confidence values based on the formulas 

above. Then, the first file in co-change file pairs (a,b) is 

determined by choosing the top-5 files that are changed 

the most, i.e., based on the total number of commits, 

whereas the second file in a pair (b) is found based on 

the confidence value between files a and b. If the 

confidence value between a and b is at least 0,15, we 

chose these two files as one of the co-changed pairs. 

This confidence value will represent the ratio of co-

changes over all changes during training. 

3.3. Feature Extraction 

In order to determine which features could be used, the 

information that the API provides are analysed. Based 

on this, we decided that the features associated with 

commit and developer communication context in Wiese 

et al. [3] could be calculated for our study. These 

features, as stated above, are found as the most 

frequently selected ones to predict co-changes in the 

original study. The list of features and their descriptions 

are provided below: 

Commit Context: 

 Date:  The date, when the commit is done. It is 

numeric and is determined by calculating the 

time difference in days between a commit and 

the first commit date. 

 Developer: The name and surname of the 

developer who made the commit. 

 The number of the changed lines of code: It is 

the total number of the changed lines of code 

belonging to the file in the commit. 

 The number of the added lines of code: It is the 

total number of the added lines of code 

belonging to the file in the commit. 

 The number of the deleted lines of code: It is 

the total number of the deleted lines belonging 

to the file in the commit. 

 

Developer Communication Context: 

These features are derived from communication matrix 

in which developers are rows, files are columns, and 

each index (d,f) in the matrix represents whether the 

developer d makes changes on file f. It is a matrix of 

binary values (0,1) indicating developer’s contribution 

to a file. This matrix is then converted to closeness and 

betweenness features using UCINET software to 

represent a developer’s level of communication with 

others.  

 Closeness: It is the total number of the distances 

(edges) between a developer and the other 

developers based on the number of files edited by 

the developer. This feature is obtained by 

extracting the adjacency matrix of the developers, 

i.e. developer-developer matrix, from the 

communication matrix. 

 Betweenness: It is the number of times that a 

developer appears in the shortest paths between all 

developers. This feature is also obtained by 

extracting the adjacency matrix of the developers 

from the communication matrix. 

To assign class labels to the co-changes, we chose the 

most frequently changed files (as the first file in a pair) 

and the files co-changed with the selected files (as 

second file in a pair). Thus, co-changed file pairs are 

labelled as 1 when both elements of the pair are 

changed, while they are labelled as 0 when only the first 

of the pair is changed. Consequently, the data sets 

consist of the features related to the commit and 

developers’ communication network, and numerical 

labels, which indicates if there is a co-change or not (0 

or 1). Please note that different models will later be used 

to predict if a co-change occurs for each file pair or not.  

3.4. Model Construction 

As mentioned earlier, the prediction models are 

constructed for the file pairs. The first item in the pair is 

one of the top-5 file list, the second item is the file that 

changed together with the first, and had at least 0,15 

confidence value. The training and test datasets of each 

model associated to a file pair are constructed as 

follows:  

For each co-change file pair (a,b),  

 

 80% of the commits where both files (a,b) are 

changed, and 80% of the commits where only 

first file (a) is changed are added to the training 

set. The rest, 20%, of the commits are added to 

the test set.  

 Training set contains only co-changed state of 

(a,b) pair as the labels. As the number of co-

changed instances (1) is larger than those of not 

co-changed (0), we applied under-sampling on 

the majority class in training set. In other words, 

the number of not co-changed instances is 

randomly picked from the original dataset until 

there exist equal number of instances from both 

classes (0 and 1).  

 Test set contains co-changed state of all pairs 

corresponding to file a, e.g., ((a,b),..(a,x)), as 

labels. This is done to make predictions on all 

test instances, using the models constructed for 

all pairs consecutively.  
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 The Random Forest algorithm is used to build 

the model on the training set for all file pairs 

separately. We chose the same algorithm used in 

[3] to keep our analysis comparable with the 

original study’s. 

 Each model makes predictions on the test 

instances such that for a file a, the models 

provide 0 or 1 indicating the corresponding file 

(b,..,x) is likely to be changed with a. 

 The predictions are assessed per test instance, 

i.e., recall and precision are calculated based on 

the number of correctly predicted co-changes 

over all pairs. 

This process is repeated five times for each file pair, and 

the model is constructed at each iteration using a 

different training and test set. It should be noted that the 

commits in two sets must be different, and the test set 

should not contain duplicate commits of the first file in 

a pair, coming from multiple model’s test sets. To avoid 

this, when the sets are generated for each file-pair, we 

check if the training contains any instance from the test 

set, and if so, we replaced those with new instances by 

random sampling from the dataset. 

The process of model construction is depicted in Fig. 1. 

Based on Fig.1, suppose there is a file “a” and it is one 

of top-5 files changed in most of the commits in a 

dataset. All files that are co-changed with “a” are found 

first. Then based on the file pairs’ confidence values, 

the file pairs that are relevant to our context are 

identified. In Fig. 1, these files are named as “b” and 

“c”. First, the training and test sets are generated for 

(a,b) and (a,c) file pairs following 80/20% rule. Second, 

while the training sets are kept separately to build 

different models, the test sets of (a,b) and (a,c) are 

combined to have one test set. At this stage, we paid 

attention not to include any commit twice in both sets, 

because the test set of (a,b) might contain a commit in 

which file c might also be changed. In such a case, this 

instance could be in the training set of (a,c). We had to 

double check these cases before proceeding to model 

construction. Our final test set corresponds to commits 

in which file “a” has changed, and all the models would 

make a prediction about whether b or c should also 

change in the corresponding commit. 

Moreover, the instances of the training sets (a,b) and 

(a,c) have only one label, which indicates that if b or c 

has co-changed with a or not, while the instances of the 

test for file a contain labels for both b and c. 

3.5. Performance Evaluation 

In order to measure the performance of our prediction 

models, we calculated confusion matrices and reported 

precision and recall, which were also used in [3]. Table 

2 shows the representation of a confusion matrix for a 

co-change prediction. While precision gives what 

percentage of the model’s predictions for co-changes 

are true, recall measures what percentage of the file 

pairs that are actually co-changed are truly predicted as 

co-change. One of the differences between our study 

and Wiese et al. [3] lies in the calculation of these 

measures. 

 

Figure 1.  Model construction process of our study. 

 

Table 2. Confusion matrix. 

Predicted 

A
ct

u
al

 

 

 0 1 

No co-change (0) TN FP 

Co-change (1) FN TP 

 

Precision: 
𝐓𝐏

(𝐓𝐏+𝐅𝐏)
 Recall: 

𝐓𝐏

(𝐓𝐏+𝐅𝐍)
 

 

In [3], recall is calculated based on the total number of 

correctly classified instances over all models. So if two 

models for (a,b) and (a,c) correctly classify 2/3 and 2/2 

co-changes, then recall is 4/5, 80% in [3]. In our study, 

we calculated recall for each instance in test set of a. 

Let’s assume that in total of these five commits, one 

commit has all three files changed (a, b, c), and the 

models correctly classify b and c. So for this commit, 

recall is 100%. If two of the five commits have only 

(a,b) changed, and only one is correctly classified, recall 

is 0% and 100% respectively. Finally, if two of the five 

commits have only (a,c) changed, and the model 

correctly classifies one, recall is 0% and 100%. In this 

scenario, the recall of our model is 

(0+100+100+100+0)/5 = 60%. We believe such 
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evaluation is practically more useful for developers as 

they would see how many files are correctly 

recommended by the model in a commit. On the other 

hand, our approach produces lower recall and precision 

rates than [3]. Therefore, we expect to see worse 

performance than [3]. We report recall and precision 

rates using both our approach and Wiese et al.’s 

approach in the Results Section. 

4. Results 

Our results on Apache Derby and CXF projects are 

presented in Table 3. For each project, models built for 

the top-5 files and the performance on the test sets of 

these five files are reported in terms of precision and 

recall. The average performance is also presented in 

Table 3 in two different ways: The first average is based 

on our performance calculation, whereas the second 

average is based on the approach used in [3]. As shown 

in the table, the recall values change from file to file; in 

some cases, we could predict up to 100% of files co-

changed with the target file, e.g. file #3 in Apache 

Derby, whereas in other cases, it is only possible to 

correctly predict half of the files co-changed with the 

target file, e.g. file #4 in Derby and file #1 in CXF. On 

average, 59% to 76% of co-changes can be predicted 

with the model that we proposed. Precision values, on 

the other hand, show that around half of our predictions 

are correct, i.e. false alarms are high. When the 

performance measures are calculated based on Wiese et 

al. [3], it is seen that both the precision and recall values 

have increased up to 92% and 89%, respectively. These 

rates are in line with the findings in Wiese et al. [3]. 

We have also calculated precision and recall values for 

the five files and their associated pairs separately, as 

well as the ratio of the total number of commits that 

these pairs co-changed over the total number of 

commits of one of these five files. Tables 4 and 5 report 

these statistics for the two projects. In Apache Derby, 

we can observe that it is easier for a model to predict co-

changed pairs (93% recall on average), but the model 

also produces false positives that degrades the 

performance in terms of precision (62% on average). On 

the contrary, in Apache CXF, both precision and recall 

values are below 50%.  

5. Discussion 

The findings on two Apache projects show that 1) the 

performance evaluation strategy greatly affect the 

findings on co-change prediction, 2) although we use 

the same model construction and performance 

evaluation methods, it is possible to achieve 

contradictory findings on different projects and file sets, 

and 3) the performance of a co-change prediction model 

seem to be not related to the amount of prior changes on 

file pairs, but might related to the 

characteristics/features of co-changed files. In this 

section, we discuss each of these observations below. 

Table 3. Performance evaluation of the predictions. 

 

Project File ID 

 

Precision (%) 

 

Recall (%) 

 

 

Apache 

Derby 

 

 

1 63,43 75,89 

2 57,14 82,05 

3 25,00 100,00 

4 55,42 55,42 

5 45,00 69,23 

Avg. 49,20 76,52 

Avg (as in [3]) 92,83 89,00 

 

 

Apache 

CXF 

1 33,12 53,24 

2 42,34 66,11 

3 56,00 53,08 

4 10,00 50,00 

5 62,33 71,00 

Avg. 40,75 58,69 

Avg (as in [3]) 89,79 88,42 

As mentioned in Section 4.5, we used two different 

approaches for calculating the precision and recall 

values of the predictors. Table 3 reports the statistics at 

commit level, e.g., for each commit in which file #1 was 

changed (SQLState.java in Derby), the number of 

correct predictions for its pairs (messages.xml and 

messages_en.properties) are aggregated to calculate the 

precision. Based on the statistics in Table 5 for the file 

#1, 248 commits were made, 180 of which were with 

messages.xml whereas 52 of which were with 

messages_en.properties files. Table 3 reports the 

precision of file #1 over these 248 commits as 63%. 

This indicates 63% of predictions correctly highlighted 

whether each of these two files were co-changed with 

file #1. On the other hand, using Wiese et al. [3]’s 

approach, we could observe that the models used for 

predicting two file pairs associated with file #1 

(SQLState.java) are very successful on their own. Over 

180 commits, 97% of predictions correctly highlighted 

that the first pair co-changed together.  

Overall we could say we were able to confirm the 

findings in [3]. On the other hand, we observe that these 

rates are biased towards the granularity, i.e., commit 

level or file-pair level. This difference points out that it 

is more challenging to predict all entities that will be co-

changed in a single commit than to predict whether a 

particular entity will be co-changed with the target file 

in a single commit. According to our point of view, it is 

more useful to succeed the former than the latter. More 

analysis and different modelling approaches could be 

needed to make multiple predictions during a commit.  
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Nevertheless, we do not claim that one modelling and 

analysis approach would yield the best results in all 

circumstances. For instance, in Apache Derby, both 

Wiese et al. [3]’s and our findings at file-pair level 

(Tables 4 and 5) reach very high precision and recall 

values. However, the same approach performed 

significantly worse in CXF. For almost all file pairs of 

CXF, the predictors using commit and developer 

communication features could not succeed even as good 

as a random classifier. The precision values are 

relatively better than recall values in CXF. But in 

particular, file #3 (JAXRSClientServerBookTest.java) 

and file #4 (HTTPConduit.java) got 21% and 10% 

precision indicating high false positives. We first argue 

that such differences could be due to training sample 

size, because in these aforementioned pairs, only 80% 

of 22 and 33 instances exist in the training sets of the 

associated models respectively, and random forest 

classifier might need a bigger sample to make more 

accurate predictions. On the other hand, although a 

similar scenario exists in file #5 

(WSS4JInInterceptor.java) and its pair 

(UsernameTokenInterceptor.java), i.e., the model 

trained on this pair consists of around 30 instances, it 

has achieved 100% precision. The reasons of high false 

positives, and hence, low precision rates need to be 

further investigated. On the other hand, the reasons of 

low recall rates in CXF project might be explained by 

analysing the characteristics of co-changed entities. 

Table 4. Performance measures on the selected co-changed file pairs of Apache CXF. 

 

 

 

File name 

 

 

 

Co-changed file name 

 

 

 

Precision 

 

 

 

Recall 

file pairs co-

changed / 

total no. 

commits on 

the selected 

file 

 

 

 

 

…/JAXRSUtils.java 

.../JAXRSUtilsTest.java  100,0 29,87 60 / 228 

…/JAXRSInvoker.java  67,86 23,46 41 / 228 

…/ProviderFactory.java 89,19 23,24 54 / 228 

…/JAXRSOutInterceptor.java 94,87 32,46 49 / 228 

…/InjectionUtils.java 100,0 24,84 58 / 228 

…/JAXRSInInterceptor.java 93,10 21,77 49 / 228 

…/AbstractJAXBProvid41.java 91,30 14,58 35 / 228 

Average 90,90 24,32 
 

…/AbstractBindingBuilder.java 

…/SymmetricBindingHandler.java  70,27 34,21 76 / 208 

…/AsymmetricBindingHandler.java  43,75 42,42 69 / 208 

…/TransportBindingHandler.java  75,75 34,72 68 / 208 

Average 63,26 37,12 

 

…/JAXRSClientServerBookTest.java 

…/BookStore.java 27,27 75,00 101 / 200 

…/JAXRSUtils.java 14,28 55,88 33 / 200 

Average 20,77 65,44 

…/HTTPConduit.java …/HTTPConduitURLEasyMockTest.java 10,00 50,00 22 / 181 

Average 10,00 50,00 

 

…/WSS4JInInterceptor.java 

…/AbstractBindingBuilder.java 50,00 6,67 35 / 177 

…/UsernameTokenInterceptor.java 100.0 11,65 30 / 177 

Average 75,00 9,16 

 Average of the Repository 46,80 36,60 
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Table 5. Performance measures on the selected co-changed file pairs of Apache Derby. 

File name Co-changed file name 

 

 

Precision 

 

 

Recall 

file pairs co-

changed / total 

no. commits on 

the selected file 

…/SQLState.java 

…/messages.xml 97,30 97,30 180 / 248 

…/messages_en.properties 90,91 90,91 52 / 248 

Average 94,10 94,10 

…/DataDictionaryImpl.java 

…/EmptyDictionary.java 76,47 76,47 41 / 237 

…/DD_Version.java 66,67 94,12 56 / 237 

…/SystemProcedures.java 69,23 75,00 38 / 237 

…/DataDictionary.java 78,72 90,24 90 / 237 

…/sqlgrammar.jj 55,55 100,0 39 / 237 

Average 69,13 87,17 

…/sqlgrammar.jj  

…/QueryTreeNode.java 50,00 80,00 35 / 223 

…/SelectNode.java 54,54 100,0 36 / 223 

…/DataDictionaryImpl.java 61,54 80,00 39 / 223 

Average 55,36 86,67 

…/_Suite.java 
…/derby_lang.runall 25,00 100,0 46 / 201 

Average 25,00 100,0 

…/DRDAConnThread.java 

…/DDMReader.java  66,67 100,0 26 / 172 

…/Database.java  68,75 91,67 26 / 172 

…/NetworkServerControlImpl.java  64,71 100,0 31 / 172 

…/DDMWriter.java  66,67 100,0 29 / 172 

…/DRDAStatement.java 80,95 85,00 37 / 172 

…/AppRequester.java 38,46 100,0 26 / 172 

Average 64,37 96,11 

Average of the repository 61,59 92,81 

 

For example, file #1 (JAXRSUtils.java) has in total 

seven files in its co-changed file set. Although the 

models trained on each of these seven pairs are able to 

achieve reasonably high precision rates, they could only 

be able to catch 24% of actual co-change cases in the 

associated test sets. This might indicate that the features 

used to predict co-changed entities in some projects and 

file pairs are not explanatory. Although Wiese et al. [3] 

highlighted commit and developer communication 

network contexts as good indicators, it could be possible 

that each project and file pair depicts a different 

dependency, and such dependencies could only be 

captured with different contextual information from 

issue and code repositories.  

6. Threats to Validity 

Replications help addressing both internal and external 

validity issues [14]. We replicated the original study [3] 

in an external setting, and observed that using the same 

projects but following with a different experimental 

protocol; findings could significantly vary in the context 

of co-changed files prediction. In terms of internal 

validity, we observe that the findings in both the 

original study and our replication hold only under 

specified conditions. The set of features, model 

construction methodology and evaluation criteria used 

in an empirical study could lead to inconsistent findings. 

For instance, we picked the top five files to build 

separate predictors on those with their co-changed file 

set. We specifically chose the most frequently edited 

files throughout the development history so that the 

models could have reasonable amount of data for 

training. This selection might jeopardize the findings 

achieved, specifically in cases of very high precision 

and recall values. However, if we built models for all 

files, we might have ended up with having files, which 

do not have any other files being co-changed. Therefore, 

in order to build a co-change predictor, we had to 

choose the most active files in the software projects. 

To filter the files co-changed with the top-5 files, we 

took into consideration confidence values. A confidence 

ratio of 0,15 indicates that the training set for a model 

(a,b) consists of 100 changes on file a, and 15 of those 

100 changes also includes file b. We referred to defect 

prediction models while choosing this rate, as in defect 

prediction the ratio of defective and defect-free 

instances is around 15-25% in public datasets and a 

machine learning classifier could roughly detect 70% of 

the defective instances.   
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The algorithm we chose in this study is random forest, 

which is the same as in [3]. We intentionally chose the 

same classifier to eliminate the effect of multiple factors 

over our findings. We also conducted analyses with 

support vector machine and logistic regression and 

checked if they performed better. In Apache Derby, the 

best performance achieved with these additional 

classifiers was 43% and 55% in terms of precision and 

recall. Therefore, we continued with the random forest 

classifier in this replication study.  

7. Conclusion 

In this study, we performed a conceptual replication of 

the original study by Wiese et al. [3] by modifying the 

experimental protocol regarding the list of features, 

training data generation and evaluation criteria. The 

results confirm that we could achieve around 90% 

precision and recall rates using commit and developer 

communication information on Apache Derby and CXF 

projects. However, these ratios are highly dependent on 

the level of granularity in which performance metrics 

are calculated. If a developer wants to see during a 

commit, which files will also be changed with the file 

that she is currently editing, predictor models could only 

recommend 59-76% of the files. 

We also observe that these findings might be dependent 

on the project characteristics, file characteristics and/or 

other aspects. In order to improve models that predict 

co-changes, we suggest looking at other contextual 

information at project level and at file level, e.g. 

distinguishing core files that are changed with many 

files in the system from the files that are often co-

changed with a subset of files. Although the closeness 

and betweenness measures were used to depict 

developer relations, it could also be useful to construct 

such dependency at file level to incorporate those into 

the prediction models. 
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