

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

161

Predicting Co-Changed Files: An External, Conceptual Replication

Ayşe Tosun*, Betül Romero

 Faculty of Computer and Informatics Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
*tosunay@itu.edu.tr

Received: 28 November 2018

Accepted: 13 May 2019

DOI: 10.18466/cbayarfbe.489291

Abstract

A software project can be comprised of several, highly connected files. A software developer may not

know the files that are connected to which are developed or that are changed by another developer. This

may induce faults by missing necessary edits on all related files. We build a prediction model for

identifying files that should be edited together during a code change, and evaluate the performance of our

model on two Apache projects’ development history over more than 10 years. We conduct an external,

conceptual replication study based on Wiese et al.'s prior work on predicting co-changed files. Our study

shares the same goal but differentiates the experimental design in terms of data set construction, selection

of file pairs, feature selection and the model output. Our prediction model’s results, although the same

performance measures are used, are much lower than what is reported in Wiese et al.’s study, mainly due

to the differences in calculating these measures. The models evaluated at commit granularity could

achieve 20% and 45% lower recall and precision rates, respectively, than those aggregated over all file-

pairs. Although it is practically more useful, predicting all files that will be co-changed together during a

commit is more challenging than predicting whether a particular file will be changed in that commit. More

information about the context of a co-change, the degree of centrality of a file in the project, or project

characteristics could reveal more insights in building such predictors in the future.

Keywords: Mining software repositories, association rule mining, predicting co-changed files, replication

study.

1. Introduction

Software projects consist of thousands of files among

which contextual, functional or other kinds of

dependencies exist. A change made on a source file

might require several changes on other files due to such

dependencies. A developer’s misunderstanding of the

code or lack of experience might hinder necessary

changes that should be done on all relevant files. This

eventually raises quality issues in software projects.

Empirical studies focusing on co-change prediction aim

to preserve the code integrity and reliability by guiding

developers to necessary code fragments that need to be

inspected or edited with regard to a particular code

change.

There are mainly two approaches for developing co-

change prediction models in the literature. The first one

utilizes dependency graphs of a software project

extracted at any entity level, i.e., from dependencies

between business requirements, to static call

dependencies between methods [1], while the second

one makes use of software code repositories and builds

learning-based models [2]. The first approach often

requires manual work to update change impact set

incrementally, and the changes are not semantically

related and analysed [1]. The second approach is more

dynamic in nature as it is based on automatic data

collection from source code and issue repositories over

several releases and updating the prediction models

accordingly.

In this paper, we analyzed a recent work by Wiese et al.

[3] that proposes co-change prediction models for

source files using contextual information from version

control systems and issue repositories, and chose it as

our baseline empirical study. We conceptually

replicated the baseline in [3] by extracting more than 10

years of development data of two projects, Apache

Derby and Apache CXF, and calculating commit and

developer related features. We then built co-change

prediction models for a subset of files based on their

ranking over commits, and associated co-changed files.

Our study differs from the original study [3] in terms of

experimental protocol in selecting co-changed file pairs,

model construction, and performance evaluation.

2. Related Work

One of the early works on tracking file co-changes

through mining code repositories is proposed in [4]. The

authors in [4] show that historical commit data can be

used to track code evolution. Another study by Gall et

al. [5] also used the historical release data from version

control systems, and they were able to predict

mailto:tosunay@itu.edu.tr

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

162

evolutionary coupling between files. Later,

Zimmermann et al. [6] developed an Eclipse plugin to

predict co-change occurrence at method level, again

using the information obtained through mining software

repositories. The designed tool was able to suggest

some co-changes, but its precision was around 30%.

The false alarm rates were very high, and further steps

were needed to be taken to improve the accuracy of

suggestions.

There have also been other approaches in the context of

co-change prediction. For instance, Canfora et al. [7]

extracted association rules from the historical code

changes to predict file co-changes, and obtained 30% F-

measure. The reason of having so low F-measure was

due to high false alarms that the association rules

generated. The rules are successful at finding co-

changes but they also have very high false positives.

Wiese et al. [3] proved this in their study by comparing

association rules with contextual features. Moreover,

Hassan et al. [8] investigated change propagation, and

used different heuristics to predict co-changes at the

entity granularity by analysing five large open source

software projects. They defined heuristics according to

their data source and pruning techniques. They obtained

the best recall performance when using the entity based

historical co-change data with hybrid pruning method,

which combines both frequency and recency methods.

In order to improve precision performance, Hassan et al.

[8] used hybrid heuristics and combined the results of

entity based historical co-change and entity based code

structure using code layout heuristics. With this new

approach, precision increased up to 49%, while recall

decreased down to 51%. The authors of [8] stated that

more sophisticated heuristics should be developed to

obtain better performance.

Macho et al. [9] conducted a study to improve the

prediction of build co-changes by using the detailed

information on source code changes and commit

categories. They obtained significantly higher

performance compared to prior works, and planned to

improve the performance more by including the issue

tracking system into their prediction model.

Furthermore, Kouroshfar [10] investigated in his article

whether there is a relationship between co-change

dispersion and the software quality. He used four open

source Apache projects and showed that the location of

co-changes has an impact on the code defects.

2.1. Baseline Study

Wiese et al. [3] conducted an empirical study to observe

whether change patterns could be identified using

contextual information from both issue tracking and

version control systems. They built predictive models

using Random Forest classifier that is trained with the

previous changes of file pairs, and recommends whether

the second file in the pair should be changed when the

first file in the pair has changed. One separate model is

trained for every file pair, but this was not done for all

file pairs that exist in the historical code changes. They

grouped all the commits that were done for an issue to a

single change transaction, and all the files that are

changed by that change transaction are considered as a

co-changed file pair. Association rules based on support

and confidence values were generated for each co-

change file pairs. Wiese et al. [3] selected the top 25

relevant association rules as the list of co-changed file

pairs. They later built models for these 25 pairs by

extracting features from issues, commit history, and

communication network. The prediction models

reported in [3] on Apache Derby and Apache CXF

projects, achieve around 90% precision and recall

values. Although this original study provides

remarkable performance in the context of co-change

prediction, there might be several reasons to observe

such high recall and precision rates.

First and foremost, the classifier building and evaluation

process depicted in [3] may not represent the change

propagation in reality. For instance, when a developer

makes a change on file A, then the prediction model

trained on (A,B) pairs is used to recommend if file B

should also be changed. But if another file, say C, also

needs to be changed, another model trained on (A, C)

pair is used for recommendation. However, in practice,

when a developer changes file A, he/she wants the list

of files that should be changed together with A. So all

models having file A in their co-changed file set (e.g.

(A, B), (A, C), (A, D)) should provide recommendations

at each commit including A.

Second, the performance evaluation method in [3] might

have led to such high rates due to their classifier

building strategy. The original study reports precision

and recall over all models used in multiple releases of

two software products, although in each release, there

exist multiple models corresponding to several file

pairs. So the recall and precision values do not depict

the performance of separate models with different co-

changed pairs. Furthermore, performance evaluation

was made by considering each model trained on a pair

(A, B) [3] although this does not resemble the practical

scenario. When a developer changes an entity (A),

he/she would like to learn what other entities need to be

changed together with A. The number of recommended

entities should ideally be compared with the actual

changed entities, and recall and precision should be

calculated over all recommended entities for a single

commit. This way, it is easier to assess which entities

are correctly predicted or give false alarms, and discuss

how co-changed pairs could be better predicted.

3. Methods and Materials

Our research is defined as an external and conceptual

replication of the baseline study published in [3]. In

[11], authors discuss all the types of replication studies

and divide them into two categories: “internal” and

“external”. It defines a study “internal” if the people,

who conduct both the original and the replication

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

163

studies, are the same, and “external” if the two studies

are conducted by different researchers. The authors in

[11] also state that replications, which use different

experimental protocol in order to check the baseline

experimental results, are named as “conceptual

replication”. Shepperd et al. [12] discuss the

importance of the replication studies, and argue that

internal replications have been reported more often than

the external ones in the area of empirical software

engineering. Silva et al. [13] also supports [12] that the

replication studies are necessary in any empirical

science, and external ones should be encouraged more

in order to increase the quality in this field.

We share the same goal of recommending co-changed

entities using contextual data from version control

systems with [3], while our study differs from the

baseline study with regard to the features used, classifier

building and evaluation strategies that we believe better

illustrates the developer’s needs in practice. Wiese et al.

[3] identify six dimensions to investigate the

performance of each in predicting co-changed files.

These dimensions can be collected from an issue

tracking system (issue, communication over issues,

developer’s role in communication, structural hole in

communication, communication properties) and a

version control system (commit context). Although they

argue that co-change prediction is a multi-dimensional

phenomenon, the most frequently selected features in

these models are from two dimensions: commit context

and developer’s role in communication [3]. However,

collecting all these dimensions is very costly, especially

for large scale software projects connected to multiple

version control and issue tracking systems. Therefore,

we reduced our feature set to the metrics from the

commit and communication dimensions only, as

concluded by [3].

Moreover, Wiese et al. [3] found co-changed file pairs

based on issues attached to the commits, and selected

top 25 co-changed file pairs based on support and

confidence values derived from association rules over

all commits. We have revised this approach by

considering the top-5 files changed in all commits,

because a model built for a file can only be successful if

they are enough number of changes associated with the

file in commit history. Then we identified pairs with

these top-5 files, based on the support and confidence

values derived from association rules over all commits.

The details for these association rule calculations will be

provided in the next subsections.

Finally, we modified the calculation of performance

measures from ‘recall and precision over different

models for the selected file pairs’ [3] to ‘recall and

precision of a single model that recommends multiple

entities to a commit’. The details of performance

evaluation are further explained in the corresponding

subsection. We also report the performance measures

achieved using the approach in [3] to compare our

findings with the original study.

3.1. Data Used

Wiese et al. [3] analysed two repositories, namely

Apache Derby and Apache CXF, to build co-change

prediction models. We mined the GitHub repositories of

the same two projects to compare and contrast our

findings with the original study. While extracting the

commit history, we used GitHub API. As the features

we selected are from the commit and developer

communication contexts, it was enough to mine only the

GitHub repos in our study. The descriptive statistics for

Apache Derby and CXF are reported in Table 1.

Projects have 10-12 years of development data, and

thousands of file edited over the years by 17 to 20

developers. Note that GitHub API provides historical

change data on the main branch, and hence, we did not

consider branches generated from the main branch in

our research.

Table 1. Descriptive statistics for the projects used.

 Apache Derby Apache CXF

Time interval of

the commits

extracted

11 August 2004

- 3 February

2018

23 April 2008

- 23 April

2018

Total no. of

commits

8175 13999

Total no. of files 6179 19233

Total no. of co-

changed files

17 20

3.2. Calculation of Confidence Values

Wiese et al. [3] prepared train and test data sets for each

file pair, which were changed in the same commit group

related to an issue, and selected the top 25 with regard

to their confidence values. In order to calculate the

confidence values, they firstly calculated the support

values of each association rule (r), which is a file pair as

mentioned before. The support and confidence

calculations are as follows:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (r) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐼 → 𝐽)

= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖} ∪ {𝑓𝑗})

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑟) = 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐼 → 𝐽)

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(I → J) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(I→ J)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼)
 =

𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖}∪{𝑓𝑗})

𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝑓𝑖})

The support values refer to the total number of

transactions on fi where other files fj are also changed.

In other words, it is the number of common

transactions. While the support calculation takes into

account the file pairs only, and does not take into

consideration the order of their association rule, the

confidence calculation considers association rules in

which the order of the files is important. More

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

164

specifically, two association rules can be made from one

file pair. For example, if the file pair consists of files

“a” and “b”, then the possible association rules are a->b

and b->a. While their support values are the same since

it equals to total common transactions, their confidence

values are different because it is a fraction, which is

obtained by the total number of common transactions

divided by the total number of the transactions of the

first file of the association rule. Therefore, selection of

the first file matters.

In this study, we obtained the co-changed file pairs’ and

calculated their confidence values based on the formulas

above. Then, the first file in co-change file pairs (a,b) is

determined by choosing the top-5 files that are changed

the most, i.e., based on the total number of commits,

whereas the second file in a pair (b) is found based on

the confidence value between files a and b. If the

confidence value between a and b is at least 0,15, we

chose these two files as one of the co-changed pairs.

This confidence value will represent the ratio of co-

changes over all changes during training.

3.3. Feature Extraction

In order to determine which features could be used, the

information that the API provides are analysed. Based

on this, we decided that the features associated with

commit and developer communication context in Wiese

et al. [3] could be calculated for our study. These

features, as stated above, are found as the most

frequently selected ones to predict co-changes in the

original study. The list of features and their descriptions

are provided below:

Commit Context:

 Date: The date, when the commit is done. It is

numeric and is determined by calculating the

time difference in days between a commit and

the first commit date.

 Developer: The name and surname of the

developer who made the commit.

 The number of the changed lines of code: It is

the total number of the changed lines of code

belonging to the file in the commit.

 The number of the added lines of code: It is the

total number of the added lines of code

belonging to the file in the commit.

 The number of the deleted lines of code: It is

the total number of the deleted lines belonging

to the file in the commit.

Developer Communication Context:

These features are derived from communication matrix

in which developers are rows, files are columns, and

each index (d,f) in the matrix represents whether the

developer d makes changes on file f. It is a matrix of

binary values (0,1) indicating developer’s contribution

to a file. This matrix is then converted to closeness and

betweenness features using UCINET software to

represent a developer’s level of communication with

others.

 Closeness: It is the total number of the distances

(edges) between a developer and the other

developers based on the number of files edited by

the developer. This feature is obtained by

extracting the adjacency matrix of the developers,

i.e. developer-developer matrix, from the

communication matrix.

 Betweenness: It is the number of times that a

developer appears in the shortest paths between all

developers. This feature is also obtained by

extracting the adjacency matrix of the developers

from the communication matrix.

To assign class labels to the co-changes, we chose the

most frequently changed files (as the first file in a pair)

and the files co-changed with the selected files (as

second file in a pair). Thus, co-changed file pairs are

labelled as 1 when both elements of the pair are

changed, while they are labelled as 0 when only the first

of the pair is changed. Consequently, the data sets

consist of the features related to the commit and

developers’ communication network, and numerical

labels, which indicates if there is a co-change or not (0

or 1). Please note that different models will later be used

to predict if a co-change occurs for each file pair or not.

3.4. Model Construction

As mentioned earlier, the prediction models are

constructed for the file pairs. The first item in the pair is

one of the top-5 file list, the second item is the file that

changed together with the first, and had at least 0,15

confidence value. The training and test datasets of each

model associated to a file pair are constructed as

follows:

For each co-change file pair (a,b),

 80% of the commits where both files (a,b) are

changed, and 80% of the commits where only

first file (a) is changed are added to the training

set. The rest, 20%, of the commits are added to

the test set.

 Training set contains only co-changed state of

(a,b) pair as the labels. As the number of co-

changed instances (1) is larger than those of not

co-changed (0), we applied under-sampling on

the majority class in training set. In other words,

the number of not co-changed instances is

randomly picked from the original dataset until

there exist equal number of instances from both

classes (0 and 1).

 Test set contains co-changed state of all pairs

corresponding to file a, e.g., ((a,b),..(a,x)), as

labels. This is done to make predictions on all

test instances, using the models constructed for

all pairs consecutively.

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

165

 The Random Forest algorithm is used to build

the model on the training set for all file pairs

separately. We chose the same algorithm used in

[3] to keep our analysis comparable with the

original study’s.

 Each model makes predictions on the test

instances such that for a file a, the models

provide 0 or 1 indicating the corresponding file

(b,..,x) is likely to be changed with a.

 The predictions are assessed per test instance,

i.e., recall and precision are calculated based on

the number of correctly predicted co-changes

over all pairs.

This process is repeated five times for each file pair, and

the model is constructed at each iteration using a

different training and test set. It should be noted that the

commits in two sets must be different, and the test set

should not contain duplicate commits of the first file in

a pair, coming from multiple model’s test sets. To avoid

this, when the sets are generated for each file-pair, we

check if the training contains any instance from the test

set, and if so, we replaced those with new instances by

random sampling from the dataset.

The process of model construction is depicted in Fig. 1.

Based on Fig.1, suppose there is a file “a” and it is one

of top-5 files changed in most of the commits in a

dataset. All files that are co-changed with “a” are found

first. Then based on the file pairs’ confidence values,

the file pairs that are relevant to our context are

identified. In Fig. 1, these files are named as “b” and

“c”. First, the training and test sets are generated for

(a,b) and (a,c) file pairs following 80/20% rule. Second,

while the training sets are kept separately to build

different models, the test sets of (a,b) and (a,c) are

combined to have one test set. At this stage, we paid

attention not to include any commit twice in both sets,

because the test set of (a,b) might contain a commit in

which file c might also be changed. In such a case, this

instance could be in the training set of (a,c). We had to

double check these cases before proceeding to model

construction. Our final test set corresponds to commits

in which file “a” has changed, and all the models would

make a prediction about whether b or c should also

change in the corresponding commit.

Moreover, the instances of the training sets (a,b) and

(a,c) have only one label, which indicates that if b or c

has co-changed with a or not, while the instances of the

test for file a contain labels for both b and c.

3.5. Performance Evaluation

In order to measure the performance of our prediction

models, we calculated confusion matrices and reported

precision and recall, which were also used in [3]. Table

2 shows the representation of a confusion matrix for a

co-change prediction. While precision gives what

percentage of the model’s predictions for co-changes

are true, recall measures what percentage of the file

pairs that are actually co-changed are truly predicted as

co-change. One of the differences between our study

and Wiese et al. [3] lies in the calculation of these

measures.

Figure 1. Model construction process of our study.

Table 2. Confusion matrix.

Predicted

A
ct

u
al

 0 1

No co-change (0) TN FP

Co-change (1) FN TP

Precision:
𝐓𝐏

(𝐓𝐏+𝐅𝐏)
 Recall:

𝐓𝐏

(𝐓𝐏+𝐅𝐍)

In [3], recall is calculated based on the total number of

correctly classified instances over all models. So if two

models for (a,b) and (a,c) correctly classify 2/3 and 2/2

co-changes, then recall is 4/5, 80% in [3]. In our study,

we calculated recall for each instance in test set of a.

Let’s assume that in total of these five commits, one

commit has all three files changed (a, b, c), and the

models correctly classify b and c. So for this commit,

recall is 100%. If two of the five commits have only

(a,b) changed, and only one is correctly classified, recall

is 0% and 100% respectively. Finally, if two of the five

commits have only (a,c) changed, and the model

correctly classifies one, recall is 0% and 100%. In this

scenario, the recall of our model is

(0+100+100+100+0)/5 = 60%. We believe such

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

166

evaluation is practically more useful for developers as

they would see how many files are correctly

recommended by the model in a commit. On the other

hand, our approach produces lower recall and precision

rates than [3]. Therefore, we expect to see worse

performance than [3]. We report recall and precision

rates using both our approach and Wiese et al.’s

approach in the Results Section.

4. Results

Our results on Apache Derby and CXF projects are

presented in Table 3. For each project, models built for

the top-5 files and the performance on the test sets of

these five files are reported in terms of precision and

recall. The average performance is also presented in

Table 3 in two different ways: The first average is based

on our performance calculation, whereas the second

average is based on the approach used in [3]. As shown

in the table, the recall values change from file to file; in

some cases, we could predict up to 100% of files co-

changed with the target file, e.g. file #3 in Apache

Derby, whereas in other cases, it is only possible to

correctly predict half of the files co-changed with the

target file, e.g. file #4 in Derby and file #1 in CXF. On

average, 59% to 76% of co-changes can be predicted

with the model that we proposed. Precision values, on

the other hand, show that around half of our predictions

are correct, i.e. false alarms are high. When the

performance measures are calculated based on Wiese et

al. [3], it is seen that both the precision and recall values

have increased up to 92% and 89%, respectively. These

rates are in line with the findings in Wiese et al. [3].

We have also calculated precision and recall values for

the five files and their associated pairs separately, as

well as the ratio of the total number of commits that

these pairs co-changed over the total number of

commits of one of these five files. Tables 4 and 5 report

these statistics for the two projects. In Apache Derby,

we can observe that it is easier for a model to predict co-

changed pairs (93% recall on average), but the model

also produces false positives that degrades the

performance in terms of precision (62% on average). On

the contrary, in Apache CXF, both precision and recall

values are below 50%.

5. Discussion

The findings on two Apache projects show that 1) the

performance evaluation strategy greatly affect the

findings on co-change prediction, 2) although we use

the same model construction and performance

evaluation methods, it is possible to achieve

contradictory findings on different projects and file sets,

and 3) the performance of a co-change prediction model

seem to be not related to the amount of prior changes on

file pairs, but might related to the

characteristics/features of co-changed files. In this

section, we discuss each of these observations below.

Table 3. Performance evaluation of the predictions.

Project File ID

Precision (%)

Recall (%)

Apache

Derby

1 63,43 75,89

2 57,14 82,05

3 25,00 100,00

4 55,42 55,42

5 45,00 69,23

Avg. 49,20 76,52

Avg (as in [3]) 92,83 89,00

Apache

CXF

1 33,12 53,24

2 42,34 66,11

3 56,00 53,08

4 10,00 50,00

5 62,33 71,00

Avg. 40,75 58,69

Avg (as in [3]) 89,79 88,42

As mentioned in Section 4.5, we used two different

approaches for calculating the precision and recall

values of the predictors. Table 3 reports the statistics at

commit level, e.g., for each commit in which file #1 was

changed (SQLState.java in Derby), the number of

correct predictions for its pairs (messages.xml and

messages_en.properties) are aggregated to calculate the

precision. Based on the statistics in Table 5 for the file

#1, 248 commits were made, 180 of which were with

messages.xml whereas 52 of which were with

messages_en.properties files. Table 3 reports the

precision of file #1 over these 248 commits as 63%.

This indicates 63% of predictions correctly highlighted

whether each of these two files were co-changed with

file #1. On the other hand, using Wiese et al. [3]’s

approach, we could observe that the models used for

predicting two file pairs associated with file #1

(SQLState.java) are very successful on their own. Over

180 commits, 97% of predictions correctly highlighted

that the first pair co-changed together.

Overall we could say we were able to confirm the

findings in [3]. On the other hand, we observe that these

rates are biased towards the granularity, i.e., commit

level or file-pair level. This difference points out that it

is more challenging to predict all entities that will be co-

changed in a single commit than to predict whether a

particular entity will be co-changed with the target file

in a single commit. According to our point of view, it is

more useful to succeed the former than the latter. More

analysis and different modelling approaches could be

needed to make multiple predictions during a commit.

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

167

Nevertheless, we do not claim that one modelling and

analysis approach would yield the best results in all

circumstances. For instance, in Apache Derby, both

Wiese et al. [3]’s and our findings at file-pair level

(Tables 4 and 5) reach very high precision and recall

values. However, the same approach performed

significantly worse in CXF. For almost all file pairs of

CXF, the predictors using commit and developer

communication features could not succeed even as good

as a random classifier. The precision values are

relatively better than recall values in CXF. But in

particular, file #3 (JAXRSClientServerBookTest.java)

and file #4 (HTTPConduit.java) got 21% and 10%

precision indicating high false positives. We first argue

that such differences could be due to training sample

size, because in these aforementioned pairs, only 80%

of 22 and 33 instances exist in the training sets of the

associated models respectively, and random forest

classifier might need a bigger sample to make more

accurate predictions. On the other hand, although a

similar scenario exists in file #5

(WSS4JInInterceptor.java) and its pair

(UsernameTokenInterceptor.java), i.e., the model

trained on this pair consists of around 30 instances, it

has achieved 100% precision. The reasons of high false

positives, and hence, low precision rates need to be

further investigated. On the other hand, the reasons of

low recall rates in CXF project might be explained by

analysing the characteristics of co-changed entities.

Table 4. Performance measures on the selected co-changed file pairs of Apache CXF.

File name

Co-changed file name

Precision

Recall

file pairs co-

changed /

total no.

commits on

the selected

file

…/JAXRSUtils.java

.../JAXRSUtilsTest.java 100,0 29,87 60 / 228

…/JAXRSInvoker.java 67,86 23,46 41 / 228

…/ProviderFactory.java 89,19 23,24 54 / 228

…/JAXRSOutInterceptor.java 94,87 32,46 49 / 228

…/InjectionUtils.java 100,0 24,84 58 / 228

…/JAXRSInInterceptor.java 93,10 21,77 49 / 228

…/AbstractJAXBProvid41.java 91,30 14,58 35 / 228

Average 90,90 24,32

…/AbstractBindingBuilder.java

…/SymmetricBindingHandler.java 70,27 34,21 76 / 208

…/AsymmetricBindingHandler.java 43,75 42,42 69 / 208

…/TransportBindingHandler.java 75,75 34,72 68 / 208

Average 63,26 37,12

…/JAXRSClientServerBookTest.java

…/BookStore.java 27,27 75,00 101 / 200

…/JAXRSUtils.java 14,28 55,88 33 / 200

Average 20,77 65,44

…/HTTPConduit.java …/HTTPConduitURLEasyMockTest.java 10,00 50,00 22 / 181

Average 10,00 50,00

…/WSS4JInInterceptor.java

…/AbstractBindingBuilder.java 50,00 6,67 35 / 177

…/UsernameTokenInterceptor.java 100.0 11,65 30 / 177

Average 75,00 9,16

 Average of the Repository 46,80 36,60

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

168

Table 5. Performance measures on the selected co-changed file pairs of Apache Derby.

File name Co-changed file name

Precision

Recall

file pairs co-

changed / total

no. commits on

the selected file

…/SQLState.java

…/messages.xml 97,30 97,30 180 / 248

…/messages_en.properties 90,91 90,91 52 / 248

Average 94,10 94,10

…/DataDictionaryImpl.java

…/EmptyDictionary.java 76,47 76,47 41 / 237

…/DD_Version.java 66,67 94,12 56 / 237

…/SystemProcedures.java 69,23 75,00 38 / 237

…/DataDictionary.java 78,72 90,24 90 / 237

…/sqlgrammar.jj 55,55 100,0 39 / 237

Average 69,13 87,17

…/sqlgrammar.jj

…/QueryTreeNode.java 50,00 80,00 35 / 223

…/SelectNode.java 54,54 100,0 36 / 223

…/DataDictionaryImpl.java 61,54 80,00 39 / 223

Average 55,36 86,67

…/_Suite.java
…/derby_lang.runall 25,00 100,0 46 / 201

Average 25,00 100,0

…/DRDAConnThread.java

…/DDMReader.java 66,67 100,0 26 / 172

…/Database.java 68,75 91,67 26 / 172

…/NetworkServerControlImpl.java 64,71 100,0 31 / 172

…/DDMWriter.java 66,67 100,0 29 / 172

…/DRDAStatement.java 80,95 85,00 37 / 172

…/AppRequester.java 38,46 100,0 26 / 172

Average 64,37 96,11

Average of the repository 61,59 92,81

For example, file #1 (JAXRSUtils.java) has in total

seven files in its co-changed file set. Although the

models trained on each of these seven pairs are able to

achieve reasonably high precision rates, they could only

be able to catch 24% of actual co-change cases in the

associated test sets. This might indicate that the features

used to predict co-changed entities in some projects and

file pairs are not explanatory. Although Wiese et al. [3]

highlighted commit and developer communication

network contexts as good indicators, it could be possible

that each project and file pair depicts a different

dependency, and such dependencies could only be

captured with different contextual information from

issue and code repositories.

6. Threats to Validity

Replications help addressing both internal and external

validity issues [14]. We replicated the original study [3]

in an external setting, and observed that using the same

projects but following with a different experimental

protocol; findings could significantly vary in the context

of co-changed files prediction. In terms of internal

validity, we observe that the findings in both the

original study and our replication hold only under

specified conditions. The set of features, model

construction methodology and evaluation criteria used

in an empirical study could lead to inconsistent findings.

For instance, we picked the top five files to build

separate predictors on those with their co-changed file

set. We specifically chose the most frequently edited

files throughout the development history so that the

models could have reasonable amount of data for

training. This selection might jeopardize the findings

achieved, specifically in cases of very high precision

and recall values. However, if we built models for all

files, we might have ended up with having files, which

do not have any other files being co-changed. Therefore,

in order to build a co-change predictor, we had to

choose the most active files in the software projects.

To filter the files co-changed with the top-5 files, we

took into consideration confidence values. A confidence

ratio of 0,15 indicates that the training set for a model

(a,b) consists of 100 changes on file a, and 15 of those

100 changes also includes file b. We referred to defect

prediction models while choosing this rate, as in defect

prediction the ratio of defective and defect-free

instances is around 15-25% in public datasets and a

machine learning classifier could roughly detect 70% of

the defective instances.

Celal Bayar University Journal of Science

Volume 15, Issue 2, 2019, p 161-169
Doi: 10.18466/cbayarfbe.489291 A. Tosun

169

The algorithm we chose in this study is random forest,

which is the same as in [3]. We intentionally chose the

same classifier to eliminate the effect of multiple factors

over our findings. We also conducted analyses with

support vector machine and logistic regression and

checked if they performed better. In Apache Derby, the

best performance achieved with these additional

classifiers was 43% and 55% in terms of precision and

recall. Therefore, we continued with the random forest

classifier in this replication study.

7. Conclusion

In this study, we performed a conceptual replication of

the original study by Wiese et al. [3] by modifying the

experimental protocol regarding the list of features,

training data generation and evaluation criteria. The

results confirm that we could achieve around 90%

precision and recall rates using commit and developer

communication information on Apache Derby and CXF

projects. However, these ratios are highly dependent on

the level of granularity in which performance metrics

are calculated. If a developer wants to see during a

commit, which files will also be changed with the file

that she is currently editing, predictor models could only

recommend 59-76% of the files.

We also observe that these findings might be dependent

on the project characteristics, file characteristics and/or

other aspects. In order to improve models that predict

co-changes, we suggest looking at other contextual

information at project level and at file level, e.g.

distinguishing core files that are changed with many

files in the system from the files that are often co-

changed with a subset of files. Although the closeness

and betweenness measures were used to depict

developer relations, it could also be useful to construct

such dependency at file level to incorporate those into

the prediction models.

Acknowledgement

This research is supported in part by in part by

Scientific Research Projects Division of Istanbul

Technical University with project number MGA-2017-

40712.

Author’s Contributions

Ayşe Tosun: Supervised the analytical progress,

interpreted the results, helped in manuscript preparation,

editing, and final proofreading.

Betül Romero: Completed the data collection,

performed the analysis, and drafted the manuscript.

Ethics

There are no ethical issues after the publication of this

manuscript.

References

1. Borg, M., Wnuk, K., Regnell, B., Runeson, P. 2017. Supporting

change impact analysis using a recommendation system: an

industrial case study in a safety- critical context. IEEE

Transaction on Software Engineering, 43(3): 675-700.

2. Kagdi, H., Maletic, J.I. Combining Single-version and

Evolutionary Dependencies for Software-change Prediction,

proceedings of the Fourth International Workshop on Mining

Software Repositories (MSR), Minneapolis, USA, 2007, pp 17.

3. Wiese, I.S., Ré, R., Steinmacher, I., Kuroda, R.T, Oliva, G.A.,
Treude C., Gerosa, M.A. 2017. Using contextual information to

predict co-changes. Journal of Systems and Software, 128: 220-

235.

4. Ball, T., Kim, J., Porter, A.A., Siy, H.P. If Your Version Control

System Could Talk, proceedings of the ICSE Workshop on

Process Modeling and Empirical Studies of Software

Engineering, 1997.

5. Gall, H., Hajek K., Jazayeri, M. Detection of Logical Coupling

Based on Product Release History, proceedings of the

International Conference on Software Maintenance (ICSM),

Washington, DC, USA, 1998, pp. 190-198.

6. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A. Mining

Version Histories to Guide Software Changes, proceedings of the

26th International Conference on Software Engineering (ICSE),

Washington, DC, USA, 2004, pp. 563-572.

7. Canfora, G., Cerulo, L., Cimitile, M., Penta, M.D. 2014. How

changes affect software entropy: an empirical study. Empirical

Software Engineering, 19(1): 1-38.

8. Hassan, A.E., Holt, R.C. Predicting Change Propagation in

Software Systems, proceedings of the 20th IEEE International

Conference on Software Maintenance, Chicago, IL, USA, 2004,

pp. 284-293.

9. Macho, C., McIntosh, S., Pinzger, M. Predicting Build Co-

changes with Source Code Change and Commit Categories,

proceedings of the 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), Suita, Japan,

2016, pp. 541-551.

10. Kouroshfa, E. Studying the Effect of Co-change Dispersion on

Software Quality, proceedings of the International Conference on

Software Engineering (ICSE), Piscataway, USA, 2013, pp. 1450-

1452.

11. Meyer, B., Nordio M. Empirical Software Engineering and

Verification: International Summer Schools; Springer-Verlag:

Berlin, Heidelberg, 2012.

12. Shepperd, M., Ajienka, N., Counsell, S. 2018. The role and value

of replication in empirical software engineering results.

Information and Software Technology, 99: 120-132.

13. Silva, F.Q., Suassuna, M., França, A.C., Grubb, A.M., Gouveia,

T.B., Monteiro, C.V., Santos, I.E. 2014. Replication of empirical

studies in software engineering research: a systematic mapping

study. Empirical Software Engineering, 19(3): 501-557.

14. Shull, F., Carver, J., Vegas, S., Juristo, N. 2008. The role of

replications in empirical software engineering. Empirical

Software Engineering, 13: 211-218.

