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Abstract. In this paper, we want to solve the singular semi-Sylvester equation using the Drazin-inverse and
the Drazin-inverse generalized minimum residual method (DGMRES (m) algorithm). First, we transform the semi-
Sylvester equation into a multiple linear systems. Then, we present the conditions and assumptions needed to apply
the DGMRES (m) algorithm. We compare our proposed method with the Galerkin projection method in point of
view CPU-time, accuracy and iteration number. Finally, by some numerical experiments, we show the efficiency of
the proposed method.
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1. Introduction

The semi-Sylvester equation
AX − EXB = C, (1.1)

where A ∈ Rn×n, E ∈ Rn×n, B ∈ Rs×s and C ∈ Rn×s are given and X ∈ Rn×s is to be determined, is one of the most
important matrix equations in theory and applications and appear frequently in many areas. We refer the reader to the
elegant survey by Bhatia and Rosenthal [6] and references therein for a history of the equation and many interesting and
important theoretical result. These types of equations are important in a number of applications such as matrix eigen-
decompositions [13, 23], control theory [10, 17], model reduction [1, 3, 24], numerical solution of matrix differential
Riccati equations, and many more.

In [16], Karimi and Attarzadeh showed the semi-Sylvester equation (1.1) has a unique solution if and only if (A,C)
and (BT , I) are regular matrix pairs with disjoint spectra. Several direct and iterative methods are proposed for solving
semi-Sylvester equation (1.1). When the size of the cofficient matrices A and B are small, the popular and widely used
numerical method is the Hessenberg-Schur algorithm [12]. For large and sparse matrices A and B, iterative schemes
to solve the semi-Sylvester equations such as those based on the matrix sign function or Newton method are widely
used [5, 14, 16]. During last years, sevral projection methods based on Krylov subspace methods have also been
proposed, see, e.g., [11, 15, 18].
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In [16] Karimi and Attarzadeh showed that in a particular case, the semi-Sylvester equation (1.1) can be converted
into the following multiple linear systems

A(i)x(i) = b(i), i = 1, 2, . . . , s. (1.2)

In [8], Chan and Michael presented the Galerkin projection method for solving multiple linear systems (1.2). In [16],
Karimi and Attarzadeh have considered a special case of the semi-Sylvester equation (1.1), in which the matrix B
is normal. Then, by using the Schur decomposition of B, they transformed the semi-Sylvester equation (1.1) into
the multiple linear systems (1.2). Finally, by presenting the following propositions 1.1 and 1.2, they studied the
nonsingular case of multiple linear systems (1.2) and, in this case, they applied Galerkin projection method to solve
the semi-Sylvester equation (1.1).

Proposition 1.1. Let A and B are symmetric matrices and E is symmetric positive definite matrix and

λ j <
〈Ax, x〉
〈Ex, x〉

, j = 1, 2, . . . , s, (1.3)

where λ j be the eigenvalues of B. Then Â(i) is symmetic positive definite.

Proposition 1.2. Let A, B and E be symmetric positive definite matrices and symmetric positive semi-definite matrix,
respectively. Then (A − λ jE) , j = 1, 2, . . . , s are symmetric positive definite, where λ j be the eigenvalues of B.

In this paper, we intend to consider a general case that the above propositions 1.1 and 1.2, dose not exist, that is, the
multiple linear systems (1.2) be singular, so in this regard, we provide the following definition.

Definition 1.3. We say that the multiple linear systems (1.2) is singular, if at least one of the coefficients matrices is
singular. Also we say that the semi-Sylvester equation (1.1) is singular if the corresponding multiple linear systems
(1.2) is singular.

Now assume that the semi-sylvester equation is singular. In this case, we apply the Drazin-inverse and DEGMRES (m)
method for solving the multiple linear systems (1.2) and hence the semi-Sylvester equation (1.1). The results of this
method will be compared with the results of Galerkin projection method [16], in point of view CPU-time, accurancy
and iteration number. Note that the semi-Sylvester equation (1.1) is the generalization of the standard Sylvester equa-
tion (this means that, if E be identity matrix I or an arbitary nonsingular matrix then the semi-Sylvester equation (1.1)
becomes the standard Sylvester equation).
The remainder of the paper is organized as follows. In Section 2, we will review the DGMRES method. In Section 3,
we explain how to numerical solve the semi-Sylvester equation (1.1) with the DGMRES (m) method, and in Section 4,
we will give some numerical expriments and compare them with the Galerkin projection method. Finally, we’ll make
some concluding remarks in Section 5.

2. DGMRES Method

Consider the following linear system
Ax = b, (2.1)

where A ∈ Rn×n is a singular matrix, b ∈ Rn and ind(A) is α. Here ind(A) is the smallest nonnegative number that
satisfy in rank(Aα+1) = rank(Aα).

Definition 2.1. Let A ∈ Rn×n and ind(A) = α. The matrix X ∈ Rn×n satisfying the conditions
(1) AX = XA,
(2) AαXA = Aα,
(3) XAX = X,

is called the Drazin-inverse of the matrix A. The Drazin-inverse of A denoted by AD.

We recall that the Drazin-inverse solution of the linear system (2.1) is the vector ADb [4, 7]. The Drazin-inverse
solution ADb is the unique solution of the equation Aα+1x = Aαb that belongs to R(Aα) (R(Aα) means range space
of A) [25]. In [21], Sidi developed the DGMRES method for singular system that is analogous to GMRES method
for nonsingular system. In addition, in [21], the author proposed an effective mode of usage for DGMRES , denoted
DGMRES (m), which is analogous to the GMRES (m) and requires a fixed amount of storage for its implementation.
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In restarted DGMRES (DGMRES (m)) the method is restarted once Krylov subspace reachs dimension m, and the
current approximate solution becomes the new initial guess for the next m iterations. The restart parameter m is
generally chosen small relative to n to keep storage and computation requirments reasonable. In the sequel, we review
the DGMRES (m) method.
Krylov space methods are considered as one of the ten most important classes of numerical methods [9]. DGMRES (m)
method is a Krylov subspace method for computing the Drazin-inverse solution of consistent or inconsistent linear
system (2.1) [21, 22]. In this method, there are not any restriction on the matrix A. Thus, in general, A is non-
Hermitian, α = ind(A) is arbitrary, and the spectrum of A can be any shape. Thus, it is unnecessary for us to put any
restriction on the linear system Ax = b. So the system may be consistent or inconsistent. We only assume that ind(A)
is known.
DGMRES (m) method starts with an initial vector x0 and generates a sequence of vectors x1, x2, . . . as follows

xm = x0 + qm−1(A)r0, r0 = b − Ax0, (2.2)

where qm−1(λ) is a polynomial in λ of degree at most m − 1 defined as follows

qm−1(λ) =

m−α∑
i=1

ciλ
α+i−1, α = ind(A). (2.3)

Let we define

pm(λ) = 1 − λqm−1(λ) = 1 −
m−α∑
i=1

ciλ
α+i, rm = pm(A)r0. (2.4)

Thus we have

xm = x0 +

m−α∑
i=1

ciAα+i−1, rm = b − Axm = r0 −

m−α∑
i=1

ciAα+ir0. (2.5)

The Krylov subspace used is as follows

Km−α(A, Aαr0) = span{Aαr0, Aα+1r0, . . . , Am−1r0}. (2.6)

We orthogonize the Krylov vectors {Aαr0, Aα+1r0, . . . , Am−1r0} by the Arnoldi-Gram-Schmidt process [2, 20], carried
out like the modified Gram-Schmidt process:

(1) Let β = ‖Aαr0‖ and set v1 = β−1(Aαr0).
(2) For i = 1, 2, . . . ,m do

(a) Compute h ji = 〈v j, Avi〉, j = 1, 2, . . . , i.
(b) Compute v̂i = Avi −

∑i
j=1 v jh ji.

(3) Let hi+1,i = ‖v̂i‖ and set vi+1 =
v̂i

hi+1,i
.

Let we set resulting orthonormal vectors as the columns of the matrix V̂k as follows

V̂k = [v1|v2| . . . |vk], k = 1, 2, . . . ,m. (2.7)

Thus we can write
xm = x0 + V̂m−αξm, ξ ∈ Rm−α, (2.8)

which we need to determine ξm. First, note that rm = r0 − AV̂m−αξm, so we have

Aαrm = Aαr0 − Aα+1V̂m−αξm = βv1 − Aα+1V̂m−αξm. (2.9)

Next, we write

AV̂k = V̂k+1H̄k; H̄k =



h11 h12 . . . . . . h1k

h21 h22 . . . . . . h2k

0 h32
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . hkk

0 . . . . . . 0 hk+1,k


. (2.10)
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Note that H̄k ∈ R
(k+1)×k and rank(H̄k) = k. If we apply (2.10) to Aα+1V̂m−α, we have

Aα+1V̂m−α = AαV̂m−α+1H̄m−α

= Aα−1V̂m−α+2H̄m−α+1H̄m−α = · · · = V̂m+1Ĥm;

Ĥm ≡ H̄mH̄m−1 . . . H̄m−α.

Thus

Aαrm = βv1 − V̂m+1Ĥmξm, (2.11)

we also have V̂T
m+1V̂m+1 = I(m+1)×(m+1) and rank(Ĥm) = m − α. We finally have the (m + 1) × (m − α) least squares

problem

‖Aαrm‖ = ‖βe1 − Ĥmξm‖ = min
ξ∈Rm−α

‖βe1 − Ĥmξ‖. (2.12)

Note that n is normally very large and m � n, which implies that the problem in (2.12) is very small. Also, note that
since Ĥm is a full rank, we can determine ξm by applying the QR decomposition on Ĥm. Thus Ĥm = QmRm, where
Qm ∈ R

(m+1)×(m−α) is a unitary matrix, that is, QT
mQm = I(m−α)×(m−α) and Rm ∈ R

(m−α)×(m−α) is a upper triangular matrix.
Since Ĥm is full rank, so Rm is nonsingular, therefore we can compute ξm by solution the upper triangular system as
follows

Rmξm = β(QT
me1), e1 = [1, 0, . . . , 0]T . (2.13)

Consequently, the algorithm of the DGMRES (m) method is as follows

Algorithm 2.1 (DGMRES(m) algorithm).
(1) Choose an initial guess x0 and compute r0 = b − Ax0 and Aαr0.
(2) Compute β = ‖Aαr0‖ and set v1 = β−1(Aαr0).
(3) Orthogonalize the Krylov vectors Aαr0, Aα+1r0, . . . , Am+α−1r0 via the Arnoldi-Gram-Schmidt process carried

out like the modified Gram-Schmidt process:
For j = 1, . . . ,m do
u = Av j

For i = 1, . . . , j do
hi, j = 〈u, v j〉

u = u − hi, jvi

end
h j+1, j = ‖u‖,
v j+1 = u/h j+1, j
end (The vectors v1, v2, . . . , vm+1 obtained by this way form an orthonormal set.)

(4) For k = 1 : m form the matrices V̂k ∈ R
n×k and H̄k ∈ R

(k+1)×k

V̂k = [v1|v2| . . . |vk], H̄k =



h11 h12 . . . . . . h1k

h21 h22 . . . . . . h2k

0 h32
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . hkk

0 . . . . . . 0 hk+1,k


.

(5) Form the matrix Ĥm = H̄mH̄m−1 . . . H̄m−α.
(6) Compute the QR decomposition of Ĥm : Ĥm = QmRm; Qm ∈ R

(m+1)×(m−α) and Rm ∈ R
(m−α)×(m−α).(Rm is upper

triangular.)
(7) Solve the (upper triangular) system Rmξm = β(QT

me1), where e1 = [1, 0, . . . , 0]T .
(8) Compute xm = x0 + V̂m−αξm(then ‖Aαrm‖ = β

√
1 − ‖QT

me1‖
2). If satisfied then stop.

(9) Set x0 = xm, compute r0 = b − Ax0, and go to (2).
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3. Numerically Solving the Semi-Sylvester Equation

In this section, we want to numerically solve the semi-Sylvester equation (1.1), by using the following theorem.

Theorem 3.1. Let A ∈ Rn×n. Then A is a normal matrix if and only if it is unitarily similar to a diagonal matrix [19].

Now let in the semi-Sylvester equation (1.1), B is a normal matrix. So, according to Theorem 3.1 there are a unitary
matrix QB and a diagonal matrix ΛB such that

B = QBΛBQT
B, (3.1)

where the diagonal components of ΛB are eigenvalues of B and the columns of the unitary matrix QB are normalized
eigenvectores of B. By substitution of (3.1) in (1.1), we have

AXQB − EXQBΛB = CQB.

By taking X̂ = XQB and Ĉ = CQB, we obtain the following multiple linear systems

Â(i) x̂(i) = ĉ(i), i = 1, 2, . . . , s, (3.2)

where Â(i) = (A − λiE), x̂(i) is the i-th column of X̂ and ĉ(i) is the i-th column of Ĉ.
Therefore, the semi-Sylvester equation (1.1) is converted to s linear systems. Notice, in this paper we considered the
general case; that is, we did not impose any conditions and constraints on coefficients matrices of the resulting system.
Therefore, it is possible to solve the semi-Sylvester equation by using s-time of the DGMRES (m) method. In the next
section we present some examples and numerical results.

4. Numerical Experiments and Conclusion

In this paper, we used the corresponding multiple linear systems form (form (3.2)) to solve the semi-Sylvester equa-
tion (1.1) and we considered the singular case. In this case, we used the DGMRES (m) method to solve these systems.
In this section, we present some experiments and numerical results. The described method is written with MATLAB..
In the following, we give three examples, in the first example 4.1, the equation is standard Sylvester equation and
coefficients matrices are nonsingular and well-conditioned. In examples 4.2 and 4.3, we consider the singular case
of the semi-Sylvester equation. In this tow examples the coefficients matrices are singular and ill-conditioned. In all
examples, the initial matrix X0, is the zero matrix and the stop condition is ‖Aαri‖2 ≤ 1e − 04. The results obtained
from these examples are presented in tables 1 and 2, which are compared with Galerkin projection method in point of
view CPU-time, iteration numbers and residuals norm. In both tables 1 and 2, the symbols Total itr, time and Cond
are total iteration numbers, total CPU-time and the maximun condition number of coefficients matrices, respectively.

Example 4.1. In this example we apply the DGMRES (m) method on the standard Sylvester equation, that is, the
matrix E = I. Also the matrices A, B and C are as follows

A = hilb(n, n), E = eye(n, n),

B = −tridiag(−1 +
1

1 + s
, 5,−1 +

1
1 + s

), C = ones(n, s),

where n = 1000 and s = 4. The numerical results are presented in table 1. We recall that resulting systems are
nonsingular and well-conditioned (the maximum condition number is 1.66).

method(1000,4,m) time(s) Total itr min ‖Aαri‖2 max ‖Aαri‖2 Cond
Galerkin 8.3464e-02 10 1.7554e-14 2.3386e-06 1.66

DGMRES(10) 1.5122e-01 4 3.5004e-29 1.5053e-13 1.66

Table 1. The results obtained from applying Galerkin projection and DGMRES(m) methods on ex-
ample 4.1
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Example 4.2. In this example we consider semi-Sylvester equation that coefficients matrices are singular, the maxi-
mum condition number is 3.36e + 22 and ind(A(i)) are all equal to 5. The matrices constituting the semi-Sylvester are
as follows:

A = 5 ∗ hilb(n, n), E = hilb(n, n),

B = tridag(−1 +
1

s + 1
, 5,−1 +

1
1 + s

), C = ones(n, s),

where n = 1000 and s = 4. The numerical results obtained in table 2 are presented.

Example 4.3. In this example we consider semi-Sylvester equation that coefficients matrices are singular, maximum
condition number is 1.9e + 21 and ind(A(i)) are 6, 5, 5, 6, respectively. The matrices constituting the semi-Sylvester are
as follows:

A = hilb(n, n), E = hilb(n, n),

B = tridiag(−1 +
1

s + 1
, 5,−1 +

1
1 + s

), C = eye(n, s),

where n = 1000 and s = 4. The numerical results are presented in table 2.

method problem Tol time(s) Total itr min ‖Aαri‖2 max ‖Aαri‖2 Cond
Galerkin example 4.2 1e-04 2.17 430 2.2590e-19 7.6387e-05 3.3e+22
Galerkin example 4.3 1e-02 4.28e+01 8525 6.2908e-03 9.4382e-03 1.9e+21
Galerkin example 4.3 1e-04 - - - - 1.9e+21

DGMRES(10) example 4.2 1e-04 1.35 4 6.5855e-23 2.0287e-05 3.3e+22
DGMRES(11) example 4.3 1e-02 1.21 4 3.5937e-09 1.5710e-04 1.9e+21
DGMRES(11) example 4.3 1e-04 1.52 5 3.5937e-09 5.1150e-06 1.9e+21

Table 2. The results obtained from applying the Galerkin projection and DGMRES(m) methods on
examples 4.2 and 4.3

As the results of the examples in Tables 1 and 2 show, when the coefficients matrices are nonsingular and well-
conditioned, the Galerkin projection method is better than the DGMRES (m) method in point of view the CPU-time,
although in terms of the number of itterations and the residuals norm ‖Aαri‖2 the DGMRES (m) method shows a
better result. But the results of Table 2 show that when the coefficients matrices are singular and ill-conditioned, in
point of view CPU-time, iteration numbers and residuals norm ‖Aαri‖2, the DGMRES (m) method has a more better
performance than the Galerkin projection method.
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