MEAN ERGODIC TYPE THEOREMS

G. OGUZ AND C. ORHAN

Abstract. Let T be a bounded linear operator on a Banach space X. Replacing the Cesàro matrix by a regular matrix $A = (a_{nj})$ Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices $A = (A^{(i)})$ that contains both convergence and almost convergence. This result also yields an A-ergodic decomposition. When T is power bounded we give a characterization for T to be A-ergodic.

1. Introduction

Let X be a Banach space and T be a bounded linear operator on X into itself. By $M_n(T)$ we denote the Cesàro averages of T given by $M_n(T) := \frac{1}{n+1} \sum_{j=0}^{n} T^j$.

An operator $T \in B(X)$ is called mean ergodic, respectively uniformly ergodic, if $\{M_n(T)\}$ is strongly, respectively uniformly, convergent in $B(X)$. Cohen [3] considered the problem of determining a class of regular matrices $A = (a_{nj})$ for which

$$L_n := \sum_{j=1}^{\infty} a_{nj} T^j$$

converges strongly to an element invariant under T. It is the case when $\{L_n x : n \in \mathbb{N}\}$ is weakly compact and $\lim_{n \to \infty} \sum_{j=k}^{\infty} \sum_{i=k}^{\infty} |a_{n,j+1} - a_{nj}| = 0$ uniformly in n (see also [11]).

Observe that Cohen’s result is an extension of the mean ergodic theorems due to von Neumann [10], F. Riesz [8] and K. Yosida [12].

In the present paper, replacing the matrix $A = (a_{nj})$ by a sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$ we study results in an analogy of Cohen.

Now, we give some basic notations concerning the sequence of infinite matrices. Let A be a sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$. Given a sequence $x = (x_j)$
we write

\[A_n^{(i)} x = \sum_{j=1}^{\infty} a_{nj}^{(i)} x_j \]

if it exists for each \(n \) and \(i \geq 0 \). The sequence \((x_j) \) is said to be summable to the value \(s \) by the method \(A \) if

\[A_n^{(i)} x \to s \quad (n \to \infty, \text{ uniformly in } i). \]

(1)

If (1) holds, we write \(x \to s(A) \).

The method \(A \) is called conservative if \(x \to s \) implies \(x \to s'(A) \). If \(A \) is conservative and \(s = s' \), we say that \(A \) is regular. We now recall a theorem which characterizes the regularity of the sequences of infinite matrices.

Theorem 1 ([2, 9]). Let \(A \) be the sequence of infinite matrices \((A^{(i)}) = (a_{nj}^{(i)}) \). Then, \(A \) is regular if and only if the following conditions hold:

(1) \(\sum_{j} |a_{nj}^{(i)}| < \infty, \) (for all \(n \), for all \(i \)),

(2) There exists an integer \(m \) such that \(\sup_{i \geq 0, n \geq m} \sum_{j} |a_{nj}^{(i)}| < \infty \),

(3) for all \(j \), \(\lim_{n} a_{nj}^{(i)} = 0 \), (uniformly in \(i \)),

(4) \(\lim_{n} \sum_{j} a_{nj}^{(i)} = 1 \), (uniformly in \(i \)).

In addition, we write

\[\|A\| := \sup_{n,i} \sum_{j} |a_{nj}^{(i)}| \]

(2)

and \(\|A\| < \infty \) to mean that, there exists a constant \(M \) such that \(\sum_{j} |a_{nj}^{(i)}| \leq M \), (for all \(n \), for all \(i \)) and the series \(\sum_{j} a_{nj}^{(i)} \) converges uniformly in \(i \) for each \(n \).

Throughout the paper we assume that the sequence of matrices \((A^{(i)}) = (a_{nj}^{(i)}) \) satisfies the following conditions:

(i) \(A \) is regular,

(ii) \(\|A\| < \infty \),

(iii) \(\lim \sup_{k} i,n \sum_{j=k}^{\infty} |a_{nj+1}^{(i)} - a_{nj}^{(i)}| = 0 \).

2. Main results

In this section, using a sequence of infinite matrices we give a theorem analogous to one of Cohen [3].

We now present a lemma which will be used in the proof of the main theorem.
Lemma 2. Let T and $A_n^{(i)}$ be bounded linear operators on a Banach space X into itself such that $TA_n^{(i)} = A_n^{(i)}T$ for all n and i. If
\[\lim_{n \to \infty} A_n^{(i)}(x - Tx) = 0, \quad \text{(uniformly in } i), \] (3)
and
\[A_n^{(i)}x \to x_0(w), \quad (n \to \infty, \text{ uniformly in } i), \]
then $Tx_0 = x_0$, where (w) indicates the weak convergence.

Proof. By X' we denote the dual space of X. Let $f \in X'$. Then, by weak convergence (uniformly in i) of $(A_n^{(i)}x)$ we have
\[\lim_{n} \sup_{i} f(A_n^{(i)}x - x_0) = 0. \] (4)
Since T is a linear and continuous operator on X, we also have
\[\lim_{n} \sup_{i} f(TA_n^{(i)}x - Tx_0) = 0. \] (5)
It follows from (3) and the fact that $f \in X'$,
\[\lim_{n} \sup_{i} f(A_n^{(i)}x - A_n^{(i)}Tx) = 0. \] (6)
Using the commutativity $TA_n^{(i)} = A_n^{(i)}T$ for each n and i, one may write
\[f(x_0 - Tx_0) = f(x_0 - A_n^{(i)}x) + f(A_n^{(i)}x - A_n^{(i)}Tx) + f(TA_n^{(i)}x - Tx_0). \] (7)
Applying the operator $\lim sup_{n} \sup_{i}$ to both sides of (7) we get that
\[\left| \lim_{n} \sup_{i} f(x_0 - Tx_0) \right| \leq \left| \lim_{n} \sup_{i} f(x_0 - A_n^{(i)}x) \right| + \left| \lim_{n} \sup_{i} f(A_n^{(i)}x - A_n^{(i)}Tx) \right| \\
+ \left| \lim_{n} \sup_{i} f(TA_n^{(i)}x - Tx_0) \right|. \] (8)
Then by (4), (5), (6) and (8), we conclude that $f(x_0 - Tx_0) = 0$ for all $f \in X'$. This implies that $Tx_0 = x_0$.

We now present the main result of the paper.

Theorem 3. Let X be a Banach space and $T : X \to X$ be a bounded linear operator. Suppose that there exists an $H > 0$ such that $\|T\| \leq H$ for all $j \in \mathbb{N}$. Suppose that the sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$ satisfies the conditions (i)-(iii) and define $A_n^{(i)}x = \sum_{j=1}^{\infty} a_{nj}^{(i)}T^jx$. Assume that there exists a subsequence
\[\{A_{n_p}^{(i)}x\} \subset \{A_n^{(i)}x\} \] such that
\[\lim_{p} \sup_{i} A_{n_p}^{(i)}x = x_0(w), \] (9)
where \(x_0 \in X \). Then, \(Tx_0 = x_0 \) and \(\lim_{n \to \infty} A_n^{(i)} x = x_0 \) (uniformly in \(i \)). Denote by
\(P \) the strong limit in \(B(X) \) of \(\{A_n^{(i)} x\} \). Then it is the projection onto the space \(N(I - T) \) of \(T \)-fixed points corresponding to the ergodic decomposition
\(X = R(I - T) \oplus N(I - T) \) and \(P = P^2 = TP = PT \).

Proof. From the hypothesis there exists an \(H > 0 \) such that \(\|T^j\| \leq H \) for all \(j \in \mathbb{N} \). Since \(\|A\| < \infty \), for \(x \in X \) we have

\[
\left\| A_n^{(i)} x \right\| = \left\| \sum_{j=1}^{\infty} a_{n,j}^{(i)} T^j x \right\| \leq H \left\| x \right\| \sum_{j=1}^{\infty} |a_{n,j}^{(i)} | < H \left\| x \right\| \| A\|.
\]

(10)

Since \(X \) is complete, each \(\{A_n^{(i)} x\} \) is defined on \(X \). By taking supremum over \(\|x\| = 1 \) in both sides of (10), we get, for all \(n \) and \(i \), that

\[
\| A_n^{(i)} \| \leq H \| A\|.
\]

(11)

Also we have

\[
TA_n^{(i)} x = \sum_{j=1}^{\infty} a_{n,j}^{(i)} T^{j+1} x = A_n^{(i)} T x.
\]

(12)

By the hypothesis, we have for any \(\varepsilon > 0 \) that there exists a \(k_0 = k_0(\varepsilon) \in \mathbb{N} \) such that for all \(k \geq k_0 \)

\[
\sup_{i,n,j} |a_{n,j}^{(i)} - a_{n,j+1}^{(i)}| < \varepsilon.
\]

Hence, we get, for each \(x \in X \), that

\[
\left\| A_n^{(i)} (x - Tx) \right\| = \left\| a_{n,1}^{(i)} T x + \sum_{j=1}^{k_0} (a_{n,j+1}^{(i)} - a_{n,j}^{(i)}) T^j+1 x \right\|
\]

\[
\leq H \left\| x \right\| \left(\sup_{i} |a_{n,1}^{(i)}| + \sum_{j=1}^{k_0} |a_{n,j+1}^{(i)} - a_{n,j}^{(i)}| + \sup_{i,n,j \geq k_0} |a_{n,j}^{(i)} - a_{n,j+1}^{(i)}| \right)
\]

\[
\leq H \left\| x \right\| \left(2 \sup_{i} \sum_{j=1}^{k_0} |a_{n,j}^{(i)}| + \varepsilon \right).
\]

Then, for \(n > n_\varepsilon \) we also have \(\sup_{i,j} |a_{n,j}^{(i)}| < \varepsilon \) which yields

\[
\left\| A_n^{(i)} (x - Tx) \right\| \leq H \left\| x \right\| 3\varepsilon.
\]
This implies
\[\lim_{n \to \infty} A_n(i)(x - Tx) = 0, \quad \text{(uniformly in } i). \quad (13) \]
Furthermore, from (9), (12) and (13), the conditions of Lemma 2 are satisfied. Thus, one can get \(Tx_0 = x_0 \).

Now, we consider the linear subspace \(X_0 \) spanned by \(x - Tx \) for \(x \in X \). We will show that \(x_0 - x \in X_0 \). To achieve this, we follow the idea given by Cohen [3]. Assume that \(x_0 - x \notin X_0 \). Then, one can easily see that there exists an \(f \in X' \) such that
\[f(u) = 0, \quad u \in X_0; \quad f(x - x_0) = 1. \]
Since \(T^k x - T^{k+1} x \in X_0 \) for \(k = 0, 1, 2, \ldots \), we have \(f(T^k x - T^{k+1} x) = 0 \). Then, it is easy to show that \(f(x - T^j x) = 0 \). So we obtain
\[f(x) = f(T^j x), \quad j = 1, 2, \ldots \quad (14) \]
Moreover, from (11) and (13), it follows that
\[\lim_{n \to \infty} A_n(i) u = 0, \quad u \in X_0. \quad (15) \]
Since \(f \in X' \), one can get by (14) that
\[f(A_n(i)x) = \sum_{j=1}^{\infty} a_{nj}^{(i)} f(T^j x) = \left(\sum_{j=1}^{\infty} a_{nj}^{(i)} \right) f(x) \]
which yields
\[\lim_{n \to \infty} f(A_n(i)x) = f(x). \quad (16) \]
By (9) and (16) we obtain
\[0 = \lim_{p \to \infty} f(A_{np}(i)x - x_0) = \lim_{p \to \infty} (f(A_{np}(i)x) - f(x_0)) = f(x) - f(x_0) = f(x - x_0). \]
This is a contradiction. Then we necessarily have \(x_0 - x \in X_0 \). Since \(Tx_0 = x_0 \) we have \(T^j x_0 = x_0 \) for \(j = 1, 2, \ldots \). Hence we have
\[A_n(i)x_0 = \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j x_0 = \left(\sum_{j=1}^{\infty} a_{nj}^{(i)} \right) x_0 \quad (17) \]
from which we immediately get
\[\lim_{n \to \infty} A_n(i)x_0 = x_0. \quad (18) \]
Since \(x = x_0 + (x - x_0) \), we get from (15) and (18) that
\[\lim_{n \to \infty} A_n(i)x = x_0, \]
which proves the first claim.

We can write \(x = x_0 + (x - x_0) \) such that \(x_0 \in N(I - T) \) and \((x - x_0) \in R(I - T) \).
$R(I - T)$. Now let $\varepsilon > 0$ and let $z \in \overline{R(I - T)} \cap N(I - T)$. Following [4] we then have $\|z - (u - Tu)\| < \varepsilon/(3H\|A\|)$ for $u \in X$. Hence

$$\left\|A_n^{(i)}(z - (u - Tu))\right\| < \left\|\sum_{j=1}^{\infty} a_{nj}^{(i)}T^j\right\| \left\|z - (u - Tu)\right\| < \frac{\varepsilon}{3}. \quad (19)$$

Since $z \in \overline{R(I - T)} \cap N(I - T)$, we observe that

$$A_n^{(i)}z = \sum_{j=1}^{\infty} a_{nj}^{(i)}T^j z = \sum_{j=1}^{\infty} a_{nj}^{(i)}z \quad (20)$$

from which we get

$$\lim_{n} \sup_{i} A_n^{(i)}z = z. \quad (21)$$

By (15), (19) and (21), we conclude that

$$\lim_{n} \sup_{i} A_n^{(i)}x = x_0.$$

Remark 4. If we define the sequence of matrices $(A^{(i)}) = (a_{nj}^{(i)})$ by

$$a_{nj}^{(i)} = \begin{cases} \frac{1}{n + 1}, & i \leq j \leq i + n, \\ 0, & \text{otherwise} \end{cases}$$

then A reduces to almost convergence method of Lorentz [6]. Observe that $(a_{nj}^{(i)})$ defined as above satisfies the conditions (i)-(iii) imposed in Section 1. Some results concerning the almost convergence of the sequence of operators may be found in [1] and [7].
Given a sequence \(A \) of matrices \(\{A(i)\} = \{a(i)_{kj}\} \), if the limit of \(\{A_n^{(i)}x\} \) exists then we call the operator \(T \) an \(\mathcal{A} \)-ergodic operator. Motivated by that of Proposition 2.2 in [3] we have the following

Theorem 5. Let \(X \) be a Banach space, \(T \) be a bounded linear operator on \(X \) into itself. Assume that there exists an \(H > 0 \) such that \(\|T^j\| \leq H \) for all \(j \in \mathbb{N} \). Let \(\{A(i)\} = \{a(i)_{kj}\} \) be a sequence of infinite matrices satisfying the conditions (i)-(iii). Then, the operator \(T \) is \(\mathcal{A} \)-ergodic if and only if \((I - T)(I - T)X = (I - T)X \).

Proof. Let the operator \(T \) be \(\mathcal{A} \)-ergodic. Then, by Theorem 3 we have
\[
X = \overline{R(I - T)} \oplus N(I - T).
\]
The necessity is proved by applying the operator \((I - T) \).

Assume that \((I - T)(I - T)X = (I - T)X \). We have, for \(x \in N(I - T) \), that
\[
A_n^{(i)}x = \sum_{j=1}^{\infty} a(n)_j T^j x = \sum_{j=1}^{\infty} a(n)_j x.
\]
Hence, we get
\[
\|A_n^{(i)}x - x\| \rightarrow 0, \quad (n \rightarrow \infty, \text{uniformly in } i).
\]
(22)

Now, let \(x \in \overline{R(I - T)} \). Hence, there exists \(x_k \in R(I - T) \) so that \(x_k \rightarrow x \). One can get
\[
\left\| A_n^{(i)}x \right\| \leq \left\| A_n^{(i)}x_k \right\| + \left\| A_n^{(i)}(x_k - x) \right\|.
\]
If we choose \(k \) in order to make \(\|x_k - x\| \) sufficiently small, we find that \(\|A_n(x_k - x)\| \) is also sufficiently small (no matter what \(n \) may be) because of the fact that \(\mathcal{A} \) satisfies (ii) and \(T \) is power bounded. Combining this with (15), we observe, for \(x \in \overline{R(I - T)} \), that
\[
\|A_n^{(i)}x\| \rightarrow 0, \quad (n \rightarrow \infty, \text{uniformly in } i).
\]
(23)

Thus, by (22) and (23) the sequence \(\{A_n^{(i)}\} \) is strongly convergent on \(\overline{R(I - T)} \oplus N(I - T) \). Since \((I - T)(I - T)X = (I - T)X \), for \(y \in X \) there exists \(z \in \overline{R(I - T)} \) such that \((I - T)z = (I - T)y \). We then get \(h = y - z \in N(I - T) \). Since we have \(y = h + z \) such that \(h \in N(I - T) \) and \(z \in \overline{R(I - T)} \), the proof is completed. \(\Box \)

References

Current address: G. Oğuz: Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara, Turkey.
E-mail address: gencayoguz@gmail.com
ORCID Address: https://orcid.org/0000-0003-4077-1080

Current address: C. Orhan: Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara, Turkey.
E-mail address: orhan@science.ankara.edu.tr
ORCID Address: https://orcid.org/0000-0002-3558-4945