ABSTRACT: Land cover/use changes specially the forest cover changes affect the local surface temperature (LST) of the earth. In this study, a combination of remote sensing and GIS techniques was used to scrutinize the interactions between LST anomalies and deforestation in Sardasht County, NW Iran. The land cover/use change layers of the study area were extracted from Landsat satellite imagery based on Binary Encoding classification and change detection technique. The radiometric correction analysis were done for each Landsat image to derive LST map layers. According to the results, a descending trend in forest cover with a total 2560 ha decline in area and an ascending trend of about 4 degrees rise in surface temperature values on both forest and non-forest areas were detected in the study area from 1984 to 2017. The temporal and spatial analysis yielded high rates of reverse temporal correlation (-0.81) between forest areas and LST anomalies while the correlation value of 0.76 was found for non-forest areas and LST. The regression analysis of the values confirmed the correlation results to be trustable at 99 percent. It was also found that the deforested areas of the study area correlate with the LST rise spatially with a very high correlation (0.98) from which a tangible interaction of the parameters can be inferred.

Keywords: Iran, Land Surface Temperature, Sardasht, Zagros Forests
1. Introduction

Land Surface Temperature (LST) is an important environmental parameter having valuable applications in different disciplines especially environmental sciences. Earth and environmental scientists take its benefit to monitor the interactions between surface temperature and climate conditions as there is a direct relation between climate change and LST variations. The variations in surface temperatures can also affect other important environmental phenomena like ice melting, drought, evapotranspiration, deforestation etc. Similar to human body temperature, the earth’s surface temperature can be used as a diagnostic tool to detect and monitor arising challenges relating to rising surface temperatures. As LST changes impact soil moisture trends, some of the researchers have used this parameter to monitor and detect drought events in recent years (Karnieli et al., 2010; Son et al., 2012; Sruthi and Aslam., 2015; Arslan et al., 2016; Zhang et al., 2017; Gidy et al., 2018). Similarly, many researchers have recently focused on interactions between LST and landcover/land use (LCLU) changes and confirmed that there is a clear correlation between surface temperature and land cover changes. For instance, Bakar et al. (2016), applied three different indices to study the impacts of LCLU changes on LST and suggested that the NDVI, NDBI and MNDWI indices can be applied to monitoring land cover impacts on LST. Ding and Shi (2013), suggested that the development rate of Beijing Metropolis in China have led to the surface temperature increase of the city due to massive fast changes of land use. Amiri et al. (2009) applied the Temperature Vegetation Index (TVI) to assess the interactions of LST and heat island of Tabriz city and recommended to use multi-temporal imageries to obtain better and more useful results. Xiao and Weng (2006) found that there is a strong agreement between surface temperature increases and built-up expansions. The direct implications of desertification and greenness loss on LST increase was confirmed by Entezari et al. (2016). Manoharan et al. (2009) analysed the deforestation rate and its impacts on regional temperatures and soil moisture and found very high correlation between NDVI, LST and soil moisture. Sardasht is one of the green counties of Iran covered with Oak forests which play a key role in social, economic and environmental sustainability of the western parts of the country. The combination of human interference in the nature of the region due to population growth in one hand and the widespread climate change impacts on the other hand, have put the health and existence of these resources in peril in recent decades. Since no study has been done in Iran West Forests regarding LST changes, the current study was designed to assess the status of land cover/use and surface temperature to see the now and then status of forest cover and LST values as well as the possible linkage between LST and deforestation/afforestation processes.

2. Materials and Methods

2.1 Study Area

Sardasht is one of the wooded counties of the country located between geographic coordinates of 45°13’48” to 45°42’00” E and 35°57’36” to 36°28’12” N in SW of West Azerbaijan province, NW of Iran (Figure1). It is a mountainous region with an average height of 1521m above sea level and is located on the green belt of oak forests in west of the country known as ‘West Oak Forests’ which sprawls from south to north. A moderate mountain climate dominates the local hydrometeorology of the area with an average precipitation of 724 mm/y and annual temperature of 13.3°C (Beygi Heidarlou et al., 2018). A concise information about the datasets are shown in Table 1. Remotely sensed images of different Landsat missions of NASA were downloaded from its online database (https://landsat.gsfc.nasa.gov/data/).

![Figure 1. Geographic position of the study area (Landsat 8, 2016).](image_url)
Table 1. Characteristics of the selected Multitemporal Landsat imageries for Sardasht county (path/row: 168/35).

<table>
<thead>
<tr>
<th>Landsat Mission</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>7</th>
<th>5</th>
<th>5</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>TM</td>
<td>TM</td>
<td>TM</td>
<td>TM</td>
<td>ETM+</td>
<td>TM</td>
<td>TM</td>
<td>ETM+</td>
<td>OLI</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>27-Aug</td>
<td>02-Sep</td>
<td>19-Jul</td>
<td>19-Sep</td>
<td>06-Sep</td>
<td>09-Sep</td>
<td>19-Aug</td>
<td>17-Sep</td>
<td>23-Sep</td>
</tr>
</tbody>
</table>

2.2.2. Image Classification with Binary Encoding

As most raw data forms of satellite imagery restrict their scientific applications, image processing methods need to be implemented in order to extract useful information. Image classification is a well-known and routine step in any image processing procedure, in which each pixel or object is allocated to a real world feature on earth depending on the nature of the classification method (Pixel based or Object based). Its overall goal is to assign image pixels to land cover classes automatically (Kumar and Singh, 2013). Land cover/land use classification practices can be done by different strategies and algorithms provided by digital image processing tools (Cetin et al., 2004). The supervised classification method of Binary Encoding was applied in this study to do image classification.

The Binary Encoding (BE) is a standard classification technique for satellite imageries (Xie and Xiaohua, 2012), in which the spectral data of images are put into 0s and 1s. The classification process in this approach is done based on a mean spectral threshold in a way that the pixels which fall below and above the threshold are classified as 0 and 1 respectively (ENVI Tutorials, 2012). Since it is mostly applied when there are just two target classes, in the present study the BE technique was used to derive two required land cover classes (Forest and Non Forest). To remove the annoying shadow effects on the imageries, the ratio transformation was implied for digitizing the training shapefile for classification. The results obtained from BE algorithm were enhanced using the appropriate NDVI values for each imagery. Eventually, the abnormal pixel values were removed by applying a Majority filter. This filter replaces the abnormal values by the most common value surrounding the cells.

Table 2. The accuracy assessment results of the classification for the study period

| Year | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | Overall Accuracy % | Kappa Coef |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1984 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 1 |
| 1986 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 1 |
| 1993 | 90.17 | 92.77 | 92.87 | 90.07 | 9.83 | 7.23 | 7.13 | 9.93 | 91.45 | 0.82 |
| 1998 | 88.5 | 77.5 | 73.21 | 90.63 | 11.5 | 22.5 | 26.79 | 9.37 | 82 | 0.64 |
| 2002 | 97.22 | 90.57 | 92.11 | 96.64 | 7.89 | 3.36 | 2.78 | 9.43 | 94.10 | 0.88 |
| 2006 | 97.70 | 96.97 | 97.14 | 97.56 | 2.86 | 2.44 | 2.30 | 3.03 | 97.35 | 0.95 |
| 2010 | 95.03 | 97.47 | 97.73 | 94.48 | 2.27 | 5.52 | 4.97 | 2.53 | 96.17 | 0.92 |
| 2013 | 96.35 | 97.96 | 98.40 | 95.36 | 1.60 | 4.64 | 3.65 | 2.04 | 97.05 | 0.94 |
| 2017 | 97.81 | 96.15 | 96.76 | 97.40 | 3.24 | 2.60 | 2.19 | 3.85 | 97.05 | 0.94 |

LCLU ID: Forest (1), Non Forest (0)
2.3. Accuracy Assessment

The final step in any image classification approach is to check the accuracy of the classification to guarantee the trustworthiness of the results. The classification error matrix is one of the mostly used approaches in accuracy assessment practices in which the classified images are compared with ground truth points (Kumar and Singh, 2013). In this study the accuracy of the extracted LCLU map layers was assessed by applying ground-truth control points obtained from high-accuracy classification results of the previous studies and visual interpretation of remotely sensed imageries in order to achieve the highest possible precision. Overall accuracy, Kappa coefficient, user’s and producer’s accuracy values and commission and omission errors (Foody, 2002; Lu et al., 2004; Shooshvari and Gholamalifard, 2015) were computed (Table 2). The results of the assessment indicated that the classification accuracy has been satisfactory leading to the overall accuracy of more than 90% throughout the study period.

2.4. Retrieving Land Surface Temperature

Land surface temperature (LST) is a remotely sensed product demonstrating surface temperature of the earth where ‘the received energy (heat and radiation) of the sun is absorbed, reflected or dispersed’ (Anandababu et al, 2018). While some satellite sensors offer ready-to-use LST maps (at large scales), the usual and more applicable method for LST retrieval is to use thermal bands (TIR) of remotely sensed Landsat imageries. The mentioned steps below are the general approach of LST retrieval process which were followed in the current study to derive LST layers out of Landsat images for the study area. The specific parameters of thermal bands of different sensors used in the current study were received from metadata files offered with each sensor products by Landsat mission.

2.4.1. DN to Radiance Conversion

Digital numbers of thermal bands can be converted to the spectral radiances using the following equation (1). It depicts the outgoing energy radiated by the earth’s surface sensed by each band at top of the atmosphere (Waters et al, 2002).

\[L_\lambda = \frac{1}{(Q_{CAL\text{Max}} - Q_{CAL\text{Min}})} \times (DN - Q_{CAL\text{Min}}) + L_{\text{Min}} \]

Where DN is the digital number of each pixel. LMAX and LMIN are calibration constants, QCALMAX and QCALMIN are the highest and lowest range of values for rescaled radiance in DN. The units for L\(\lambda \) are W/m²sr/µm.

2.4.2. Radiance to Reflectance

Reflectance is defined as the ratio of incoming radiance to the outgoing radiation of the surface (Waters et al, 2002). It can be computed using the equation 2.

\[\rho_p = \frac{\pi \times L_\lambda \times d^2}{ESUN \times \cos \theta_s} \]

Where \(\rho_p \) is reflectance (Unitless), \(L_\lambda \) is spectral radiance, d is Earth-Sun distance in astronomical units, ESUN is Mean solar exoatmospheric irradiances, and \(\theta_s \) is solar zenith angle in degrees.

2.4.3. Reflectance to At-Satellite Temperature

The following equation is used to convert the radiance to temperature.

\[T = \frac{K_2}{\ln (\rho_1 + 1)} \]

Where T is effective at-satellite temperature (Kelvin), K1 and K2 are constants for Landsat images (Markham and Barker, 1987).

2.4.4. At-Satellite Temperature to Surface Temperature

At the final step, desired LST can be calculated using the following equation (Artis and Carnahan, 1982).

\[LST = \frac{BT}{1 + (\lambda \times d^2 \times \pi) \times \ln (e)} \]

Where BT is at satellite brightness temperature, \(\lambda \) is the wavelength of emitted radiance, \(P = h/c/s \) (1.438x10-2mk) \(P = 14380 \), \(h \) = Planck’s constant (6.626x10-34 Js), \(c = \) Velocity of light (2.998x10-8 m/s).

Figure 2. The visual fluctuations of LST values in the study area.

3. Results and Discussion

3.1. LST Anomalies

Calculating the required LST maps, the temporal variations of the environment temperature on each land cover class of the study area were extracted (Table 3). The results shows that while a slight wax and wane is seen in the values, the total trend of LST measures is ascending for both the land covers with an almost the same changes
(4.0 degrees in non-forest and 3.9 degrees in forest class) through the study period. The change detection map of LST also illustrates the spatial spread of the LST changes throughout the area. Figure 2, shows the total LST variations from 1984 to 2017 for the study area. While the max and min variations are 15 and -9.8 degrees respectively, the mean values correspond the temporal trends as mentioned before.

Table 3. The areal-mean LST variations regarding each LCLU category

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Forest</td>
<td>37.99</td>
<td>37.22</td>
<td>36.37</td>
<td>34.71</td>
<td>37.09</td>
<td>40.86</td>
<td>41.65</td>
<td>39.62</td>
<td>41.90</td>
</tr>
<tr>
<td>Forest</td>
<td>33.71</td>
<td>33.27</td>
<td>32.18</td>
<td>30.29</td>
<td>33.68</td>
<td>36.33</td>
<td>37.67</td>
<td>35.45</td>
<td>37.60</td>
</tr>
</tbody>
</table>

3.2. Land Cover/Use Changes

The statistics derived from LCLU map layers (Table 4) shows the temporal changes in Forest and Non-Forest areas during time. As expected, the trends are ascending for non-forest and descending for forest areas (Figure 4) with a high correlation value (about 98.5% for each land cover). These changes have been pictured for better understanding in figure 3. The results indicate about 7700 hectares decline in forest area in the last three decades, which corresponds to 5.6% of the total area of the region. On the other hand the destructed forest has been transformed into the other land uses, which was seen from increased non-forest area.

To examine the spatial changes occurred in forest cover of the region, the change detection map was derived (Figure 3). The figure represents the total status of deforestation and afforestation process in the region during the last three decades. According to the change detection information obtained for the period 1984-2017, about 9700 ha forest cover change was detected from which 7700 ha was defined as forest loss and 2000 ha as forest gain. About 128000 ha of the study area was detected to suffer no change during the same period.

Table 4. The LCLU changes for each category from 1984 to 2017.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Forest</td>
<td>1009</td>
<td>1027</td>
<td>962</td>
<td>809</td>
<td>1024</td>
<td>1014</td>
<td>1033</td>
<td>1029</td>
<td>1086</td>
</tr>
<tr>
<td>Forest</td>
<td>372</td>
<td>354</td>
<td>420</td>
<td>573</td>
<td>358</td>
<td>367</td>
<td>349</td>
<td>353</td>
<td>295</td>
</tr>
</tbody>
</table>
Figure 4. The temporal changes of land cover/use values

3.3. Forest/Non-Forest Cover Changes Impacts on LST Variations

The wooded areas have a great potentiality to alleviate the harsh climatic conditions interacting with the sun radiations thus providing shadow to lower the temperatures. Theoretically, the forest degradation would have reverse impact on temperature values (either air or surface temperature) so that the more deforestation occurs, the more the temperature rises up. To study this relation in Sardasht County, the calculated measures were compared in a statistical manner. Comparing the two change detection maps (LST and LCLU) a very high spatial correlation coefficient of 0.98 was detected between forest loss and LST increase areas which confirms the found relation spatially. On the other hand the high correlation (98.2%) was detected for forest gain areas with LST changes.

To reveal the LST feedbacks to the current forest and non-forest cover change information, the temporal trend lines were drawn as shown in Figures 5 and 6 respectively. Accordingly, though the trend lines of forest change mimic each other in some short periods (1984 and 2006), the relation between deforestation and LST variations seems logical for the remaining periods with a total temporal correlation of -0.81 which is meaningful at 0.01 significance level where the destructed forest leads to increasing temperatures through time. On the other hand the trends in non-forested areas follows the LST trends through the study period indicating the positive relation between changing non-forested areas and LST values with an estimated correction of 0.71. Table 5 shows the correlation statistics of forest/non-forest temporal changes and LST variations during the study period.
Overall, the results indicated that the study area has suffered severe degradation process from 1984 to 2017 loosing 2560 ha of its forest coverage. The temporal results suggested that a rational trend obtains between deteriorating process of LCLU changes and LST fluctuations in both forest and non-forest classes. The decreasing forest cover was associated with increasing LST in cleared out areas with a mean value of 3.8°C. On the other hand, 4°C of mean LST increase was found in the increasing non-forest areas. The spatial comparison of the changes also revealed that the total changes in forest cover (deforestation and afforestation) and LST trends go hand in hand closely with a 98.5% and 98.2% of correlation for forest loss and forest gain points with LST changes respectively which proves the direct negative contribution of forest change to increasing surface temperatures.

4. Conclusion
The main goal of the current study was to analyze the impacts of deforestation on land surface temperature variations. Since some of the important environmental phenomena can be inferred from temperature anomalies of the earth’s surface, monitoring LST changes seems to have a pivotal role in any environmental conservation policy. In this study the temporal as well as spatial changes of land cover/use and surface temperatures were analyzed to incorporate the results in assessment of the possible expected impacts of the changing LCLU on LST variations. As a concluding results for this study it can be said that deforestation process as an outcome of human interferences in the nature have had the most tangible implications for the changing temperature values of the environment of Sardasht. The LST anomalies appeared to have a close relation with deforestation and afforestation processes so it is suggested that LST monitoring can be used as a diagnostic mean to study the health and status of wooded areas to make the decision makers much more able to guard these natural resources.

References

Management in Developing Countries, Iran, Tehran, 25 Feb. 2015.

