ŞALGAM SUYU ÜRETİMİNDE NaCl YERINE KCl KULLANARAK
SODYUM MIKTARINI AZALTMA OLANAKLARI

THE POSSIBILITIES OF THE REDUCTION OF SODIUM QUANTITY
USING KCI INSTEAD OF NaCI IN THE PRODUCTION OF
“ŞALGAM SUYU” BEVERAGE

Ahmet DERYAOĞLU
1
1Harran Üniversitesi, Ziraat Fakültesi, Gıda Mühendisliği Bölümü, Şanlıurfa

ÖZET: Bu çalışmada, şalgam suyu üretiminde NaCl yerine KCl kullanılarak sodyum miktarının azaltılması araştırılmıştır. Bu amaçla NaCl (tank), KCl ve NaCl/KCl (3:1, 1:1, 1:3, w/w) karışımları ile başlangıç şalgam suyu üretiminiştir. Şalgam sularının kaliteleri kimyasal ve duysusal analizlerle değerlendirilmiştir. Elde edilen bulgulara göre, şalgam suyu üretiminde NaCl yerine 3/4 oranında KCl (NaCl/KCl, 1:3) kullanılarak, bilişimsi olumsuz etkilemeden, kabul edilebilir kalitede şalgam suyu üretilebileceği ve sodyum miktarının % 70'e kadar azaltılabileceği belirlenmiştir. NaCl/KCl'nin 3:1 ve 1:1 karışımları ile üretim ve tanıga göre, sırasıyla, % 26 ve % 47 daha az sodyum içeren şalgam suyu tankı kadar beğenilmiştir. NaCl/KCl’nin 1:3 karışımlı ise üretim ve tanıga göre % 71 daha az sodyum içeren şalgam suyu ise tankından daha az beğenilmiş, ancak kabul edilebilir bulunmaktadır.

Anahtar kelimeler: Şalgam suyu, siyah havuç, NaCl, KCl, sodyumun azaltılması

ABSTRACT: In this study, the possibilities of the reduction of sodium content were investigated by using KCl instead of NaCl in the production of "Şalgam suyu" or "Şalgam" beverage which is a product of lactic acid fermentation. For this purpose, five different şalgam beverages with NaCl as control, KCl and mixtures of NaCl/KCl (3:1, 1:1, 1:3, w/w) were prepared. Qualities of şalgam beverages were determined by chemical and sensory analyses. According to the results, it was determined that şalgam beverage of acceptable quality can be produced without affecting the compositions adversely with replacing NaCl by KCl up to three-fourth whereby reducing the sodium content up to 70%. The şalgam beverages produced with 3:1 and 1:1 mixtures of NaCl/KCl, and contain 26% and 47% less sodium than the control beverage respectively, were preferred as much as the control itself. Şalgam beverage produced with 1:3 mixture of NaCl/KCl, and contain 71% less sodium than the control, was preferred less than the control, but it was found to be acceptable.

Keywords: Şalgam suyu, black carrot, NaCl, KCl, reduction of sodium

GİRİŞ
Şalgam suyu, laktik asit fermentasyonu sonucu elde edilen kimliği renkli, bulanık ve eksi lezzetli bir içecek tır (Canbaş ve Fenercioğlu 1984, Canbaş ve Deryaoğlu 1993). Önceleri, tüketimi yalnız Adana ve çevreyi ilerini de içine alan güney bölgesinde sınırlı olan şalgam suyu, özellikle son 10-15 yıldan beri ülkemizin her tarafında, en az diğer içecekler kadar sevilen tüketti bir içecek haline gelmiş ve diyetlerde öne mü Bir yer tutмышı başlamıştır.

Geleneksel olarak şalgam suyu üretiminde siyah havuç, bulgur unu (setik), eksi hamur, su ve sofra tuzu (NaCl) kullanılmaktadır. Üretimde kullanılan tuz miktarına bağlı olarak şalgam suyunun 11.7-20.5 g/l arasında değişmektedir (Canbaş ve Fenercioğlu 1984, Canbaş ve Deryaoğlu 1993). Diğer hammaddeleerden geçen sodyum miktarı hariç, ırdiği tuz miktarına bağlı olarak, şalgam suyunu 4.8-8.1 g/l arasında da sodyum bulunmaktadır. Bu özelliği ile şalgam suyu, tüketim miktarına bağlı olarak, günlük diyette önemli bir sodyum kaynağı durumundadır.

1E-posta: aderyao glu@harran.edu.tr


Bu çalışmada, şalgam suyunda sodiyum miktarını azaltmak amacıyla, NaCl (sofra tuzu) yerine skim veya tamamen KCl'nin kullanılabilme olanakları araştırılmıştır.

MATERYAL VE YÖNTEM

Materyal

Denemelerde siyah havuç, bulgur unu, ekmekli hamur, NaCl (sofra tuzu), KCl, (Merck, 04935) kullanılmıştır. Siyah havuç, bulgur unu, ekmekli hamur ve sofra tuzu Şanlıurfa piyasasından sağlanmıştır. Fermentasyonlar 5.15 litre hacimli pet kaplarda gerçekleştilmiştir.

Yöntem

Şalgam suyu üretimi

Şalgam suyu üretiminde, tuzlar ve karışım oranları değişik olarak ele alınmıştır. Bu amaçla, denemelerde NaCl (A, Tank), NaCl/KCl karışımını (3:1; B; 1.1; C; 1.3, D; w/v) ve KCl (E) olmak üzere beş farklı şalgam suyu üretimini. Şalgam suyu üretimleri hem birinci fermentasyonda, hem de ikinci fermentasyonda, tuzlar ve karışım oranları düşündü, aynı şekilde gerçekleştirilmişdir.

Şalgam suyu üretimi, birinci ve ikinci fermentasyon bölümde kısaca presentasyon (Canbaş ve Fenercioğlu 1984, Canbaş ve Deryaoğlu 1993) Denemelerde kullanılan hamadde miktarlar, ikinci fermentasyonda kullanılan kap hacmi üzerinden % (w/v) olarak ifade edilmiştir. Şalgam suyu üretimi için ilk aşamada, kap hacminin (ikinci fermentasyon) % 5'i oranında bulgur unu, % 0.5'i oranında ekşi hamur (ekmekli
hamurun, sıcaklığı 28±2 °C olan bir etv trong içerisinde 6 saat fermentasyonuya elde edilmiştir) ve % 0.5'i oranında tuz karştırılmıştır, üzerine su ilave edilerek yoğun ve sulu hamur kivama getirilmiştir. Hamur, 5.15 litre hacimli pet kap içerisinde 23±2°C'de 4 gün süreyle fermentasyona bırakılmıştır (birinci fermentasyon). Sıra sonunda, hamurun üzerine su ilave edilerek ikinci ekstraksyon uygulanan ve ikinci ekstraksyonundan elde edilen yaklaşık 4.25 l ekstrakt, ikinci fermentasyona yapılacağı 5.15 litre hacimli bir kapta toplanmıştır. İkinci aşamada ise 4.25 litre ekstrakt üzerine, kap hacminin % 17'i oranında dilimlenmiş siyah havuç ve % 1.2'i oranında tuz ilave edilip karştırılmış ve karışım 23±2 °C'de 6 gün süreyle fermentasyona bırakılmıştır (ikinci fermentasyon). Sıra sonunda havuçlarından ayrılan şalgam suyu analizleri yapılarak bazı dolabın muhafaza edilmiştir.

Analiz Yöntemleri


SONUÇ VE TARTIŞMA

Kimyasal Özellikler

NaCl ve NaCl yerine kısmen ve tamamen KCl kullanılarak üretilen KCl ve NaCl'ın KCl ile karşılananın üretilen şalgam sularının bileşimleri Çizelge 1'de verilmiştir.


Laktik asit fermentasyonunünü gerçekleştiren olan şalga suyunda, laktik asit yanında, asetik asit bileşenlerin de bulunmaktadır ve asit asit olarak ifade edilebilmektedir (Canbaş ve Deryaoğlu 1993). Şalga suyu örneklerinde 0.67-0.76 g/l arasında değişen asit miktarlar birbirlerine oldukça yakındır. Örneklerin uçar asit miktarları, diğer bir araştırmada belirlenen sınırlar içerisinde (Canbaş ve Deryaoğlu 1993).


Örneklerde toplam kuru madde miktarları, 26.0-26.6 g/l arasında değişmiştir. KCl ve NaCl/KCl karışmaları ile üretilen şalgame suyunun kuru madde miktarları tanıga göre, biraz yüksektir. Örneklerde kuru madde miktarı, Canbaş ve KCl/KK karışımına (1993) tarafından 22.9-29.7 g/l olarak bildirilen değerler arasındadır.


Örneklerde potasyum miktarı 1197-9492 mg/l arasında değişmiştir. En düşük potasyum miktarı NaCl (sofra tuzu) ile üretilen tanıkta (A) 1197 mg/l olarak belirlenmiştir. Canbaş ve Deryaoğlu (1993), şalgame suyunun potasyum miktarını 300-1000 mg/l arasında saptamışlardır ve araştırmalar, şalgame suyunun mineral madde içeriğindeki farklılıklarını, üretiminde kullanılan sodyum suyunun ve diğer hammaddelerin bileşimi ile ilgili olduğu açıklanmıştır. KCl ve NaCl/KCl karışımı ile üretilen şalgame sularında, karışımın KCl oranı arttıkça, potasyum miktarı da artmıştır. En fazla potasyum miktarı 9492 mg/l olarak, KCl ile üretilen E örnekinde belirlenmiştir. KCl ve NaCl/KCl karışımı ile üretilen şalgame suyunda tanıga göre 3-8 kat daha fazla potasyum içermektedir.

Örneklerde Na/K değer 0.02-5.70 arasında değişmiştir. En düşük Na/K oranı E örneğinde, en yüksek Na/K oran tanıkta (A örneği) saptanmıştır.

Denumelerde üretilen şalgame sularında antosiyanin miktarları 174-223 mg/l ve toplam fenol bileşikleri miktarları 629-726 mg/l arasında değişmiştir. Antosiyanin miktarları yüksek olan örneklerde, toplam fenol bileşikleri miktarları yüksek bulunmuştur B örneğindeki antosiyanın ve toplam fenol bileşikleri miktarları, tank olan
A. DERYAOĞLU

A örneğine göre daha yüksektir. C, D ve E örneklerindeki antosiyanin ve toplam fenol bileşikleri miktarları ise tanışa göre, daha düşük bulunmuştur (Çizelge 1). Salgam sularının antosiyanin ve toplam fenol bileşikleri miktarları arasındaki farklıklar, havuçlardaki fenol bileşiklerinin çözünürlüklerine tuzlar ve karışımının farklı etkisiyle ilgili olabileceği gibi, havuçların bileşimleri ile de ilgili olabilir.


Duyusal Özellikler

NaCl, KCl ve NaCl/KCl karışımları ile üretilen salgam sularının duysal değerlendirmeyealdıkları puanlar Çizelge 2’de verilmiştir. Örneklerin duysal özellikleri, 1-9 arasında değişen puanlarla değerlendirilmiştir.

Çizelge 2. NaCl, KCl ve NaCl/KCl karışımları ile üretilen salgam sularının duysal özellikleri

<table>
<thead>
<tr>
<th>Örnekler</th>
<th>Renk ve Görünüş*</th>
<th>Koku*</th>
<th>Tat*</th>
<th>Genel İzlenim*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (NaCl)</td>
<td>7.37a</td>
<td>7.88a</td>
<td>6.63a</td>
<td>7.26a</td>
</tr>
<tr>
<td>B (NaCl/KCl, 3:1)</td>
<td>7.32b</td>
<td>6.26bc</td>
<td>7.11a</td>
<td>7.00a</td>
</tr>
<tr>
<td>C (NaCl/KCl, 1:1)</td>
<td>7.16b</td>
<td>6.79b</td>
<td>6.79a</td>
<td>7.00a</td>
</tr>
<tr>
<td>D (NaCl/KCl, 1:3)</td>
<td>7.16a</td>
<td>6.63b</td>
<td>5.53b</td>
<td>5.84b</td>
</tr>
<tr>
<td>E (KCl)</td>
<td>7.32a</td>
<td>5.58c</td>
<td>2.68c</td>
<td>3.21c</td>
</tr>
</tbody>
</table>

* Aynı sütunda değişik harflerle gösterilen değerleri arasındaki fark önemlidir (P<0.05).

Salgam sularının renk ve görünüş puanları 7.16-7.37 arasında değişmiştir. Salgam suyu üretiminde NaCl, KCl ve NaCl/KCl (3:1, 1:1, 1:1, w/w) karışımının kullanılması renk ve görünüşü etkilememiştir (P>0.05).

Salgam sularının koku puanları 5.58-7.89 arasında değişmiştir. Koku bakımından en çok beğenilen tank (A), diğerlerinden önemli düzeyde farklı bulunmuştur (P<0.05). Koku puanları 6.29-6.79 arasında değişen A, B ve C salgam suyu aynı derecede beğenilmiştir (P>0.05). En düşük koku puanı verilen E örneği ise B örneği dışında diğerlerinden önemli düzeyde farklı bulunmuştur (P<0.05). Salgam suyu üretiminde NaCl yerine, KCl veya NaCl/KCl (3:1, 1:1 ve 1:3) karışımların kullanılması kokuyla olumsuz etkilemiştir. Güven vd. (2001), NaCl/KCl’ın 1:1 karışımı ile tuzlanan beyaz peynirlerde, KCl’nin kokusu olumsuz etkilediğini bildirmişlerdir.


Ayrıca, B ve C örneklerinin, tanışa göre biraz daha yükseğ tıtları puanları alması, bu örneklerin asit miktarındaki yüksekliğinin etkisile açıklanabilir. Canbaz ve Fenércioğlu (1984), salgam suyunun tadında asitliğin önemli olduğunu ve asit miktarındaki artışa bağlı olarak tadin daha çok beğenildiğini bildirmişlerdir. Diğer taraftan, en az beğenilen ve KCl ile üretilen E örneği ve NaCl/KCl (1:3) ile üretilen D örneği hem birbirlerinden hem de diğerlerinden önemli ölçüde farklı bulunmuştur (P<0.05). Ancak, D örneği 5.53 puan, kabul edilebilir olayarak ve E örneği ise 2.63 puanla kabul edilemez olarak değerlendirilmiştir. Potasyum klorür, D örneğinde kis-


Şalgam suyu üretiminde NaCl yeresine KCl kullanılarak sodum miktarının azaltılması olanaklarının ele alınışı bu çalışmada elde edilen bulgulara göre, şalgam suyu üretiminde NaCl yeresine, bileşimi olumsuz etkilemeden, NaCl/KCl karışımının kullanılabilmesi, ancak sadece KCl'nin kullanımının mümkün olamayacağı belirlenmiştir. NaCl/KCl karışımı içerisinde, NaCl yeresine NaCl/KCl'ın 3:1 ve 1:1 karışımını kullanılarak, NaCl ile üretilen kadar beğenilen kalıtlede ve NaCl/KCl'ın 1:3 karışımı kullanılarak NaCl ile üretilene göre daha az beğenilen, ancak kabul edilebilir kalıtlede şalgam suyu üretilebcek ve böylece şalgam suyu endeksi sodyum miktarı % 70'e varan oranlarda azaltılabilir.


Tassou CC, Panagou EZ and Katsabakakis KZ. 2002. Microbiological and physicochemical chances of naturally black olives fermented at different temperatures and NaCl levels in the brine. Food Microbiology, 19: 605-615.

