

A Related Fixed Point Theorem in Two Menger Spaces

Sunny CHAUHAN^{1,▲}, Ismat BEG², B. D. PANT³

¹Near Nehru Training Centre, H. No. 274, Nai Basti B-14, Bijnor-246701, Uttar Pradesh, India ²Centre of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore-53200, Pakistan ³Government Degree College, Champawat-262523, Uttarakhand, India

Received: 16.05.2013, Accepted: 29.11.2013

ABSTRACT

In this paper, we prove a related fixed point theorem for single-valued mappings in two Menger spaces.

Key words: t-norm, Menger space, fixed point.

2010 Mathematics Subject Classification: Primary 47H10, Secondary 54H25.

1. INTRODUCTION

Professor Karl Menger introduced probabilistic metric spaces in his seminal paper [13] and studied their properties. The idea in his paper was that, instead of a single positive number, we should associate a distribution function with the point pairs. Since then the theory of PM-spaces has grown rapidly with the pioneering works of Schweizer and Sklar [17]. Sehgal and Bharucha-Reid [18] initiated the study of contraction mappings on PM- spaces (see also [5]). Fisher [7, 8] investigated the conditions for the existence of a relation connecting the fixed points of two mappings in two different metric spaces.

Subsequently several other authors have extensively studied various related fixed point theorems in metric spaces [1, 2, 4, 6, 9, 10-12, 19]. Recently Pant [15] generalized the results of Fisher [7, 8] in the framework of probabilistic settings. Pant and Kumar [16] further proved a related fixed point theorem in two complete Menger spaces. In 2009, Aliouche et al. [3] utilized a class of implicit functions and proved related fixed point theorem in two complete fuzzy metric spaces. The aim of this paper is to prove a related fixed point theorem for single-valued mappings in two Menger spaces. Our results generalize several comparable results in the existing literature.

^{*}Corresponding author, e-mail:sun.gkv@gmail.com

2. PRELIMINARIES

Let $T: X \to X$ be a mapping. A point $x \in X$ is called a fixed point of T if x = Tx.

Definition 2.1[17] A mapping $\Delta: [0,1] \times [0,1] \rightarrow [0,1]$ is called a triangular norm (briefly, t-norm) if the following conditions are satisfied: for all $a, b, c, d \in$ [0,1]

(1) $\Delta(a, 1) = a$ for all $a \in [0, 1]$,

(2) $\Delta(a,b) = \Delta(b,a),$

- (3) $\Delta(a,b) \leq \Delta(c,d)$ for $a \leq c, b \leq d$,
- (4) $\Delta(a, \Delta(b, c)) = \Delta(\Delta(a, b), c).$

Examples of continuous t-norms are: $\Delta(a, b) =$ $\min\{a, b\}, \Delta(a, b) = ab$ and $\Delta(a, b) = \max\{a + b - b\}$ 1,0}.

Definition 2.2[17] A mapping $F: \mathbb{R} \to \mathbb{R}^+$ is called a distribution function if it is non-decreasing, left continuous with $\inf_{t \in \mathbb{R}} F(t) = 0$ and $\sup_{t \in \mathbb{R}} F(t) = 1$.

Let \Im be the set of all distribution functions whereas *H* stands for the specific distribution function (also known as Heaviside function) defined by

$$H(t) = \begin{cases} 0, \text{ if } t \le 0; \\ 1, \text{ if } t > 0. \end{cases}$$

If X is a non-empty set, $\mathcal{F}: X \times X \to \mathfrak{I}$ is called a probabilistic distance on X and the value of \mathcal{F} at $(x, y) \in X \times X$ is represented by $F_{x,y}$.

Definition 2.3[17] The ordered pair (X, \mathcal{F}) is called a PM-space if X is a non-empty set and \mathcal{F} is a probabilistic distance satisfying the following conditions: for all $x, y, z \in X$ and t, s > 0

- (1) $F_{x,y}(t) = H(t) \Leftrightarrow x = y$,
- (2) $F_{x,y}(t) = F_{y,x}(t),$ (3) $F_{x,y}(t) = 1$ and $F_{y,z}(s) = 1 \Rightarrow F_{x,z}(t+s) =$

Definition 2.4[17] A Menger space is a triplet (X, \mathcal{F}, Δ) where (X, \mathcal{F}) is a PM-space and t-norm Δ is such that the inequality

$$F_{x,z}(t+s) \geq \Delta \left(F_{x,y}(t), F_{y,z}(s) \right),$$

holds for all $x, y, z \in X$ and t, s > 0.

Every metric space (X, d) can be realized as a PMspace by taking $\mathcal{F}: X \times X \to \mathfrak{F}$ defined by $F_{x,y}(t) =$ H(t - d(x, y)) for all $x, y \in X$. So PM-spaces offer a wider framework (than that of the metric spaces) and are general enough to cover even wider statistical situations.

Definition 2.5[17] Let (X, \mathcal{F}, Δ) be a Menger space and Δ be a continuous t-norm. A sequence $\{x_n\}$ in X is said to be (i) convergent to a point x in X iff for every $\varepsilon > 0$ and $\lambda > 0$, there exists a positive integer $N(\varepsilon, \lambda)$ such that $F_{x_n,x}(\varepsilon) > 1 - \lambda$ for all $n \ge N(\varepsilon, \lambda)$; (ii) Cauchy if for every $\varepsilon > 0$ and $\lambda \in (0,1)$, there exists a positive integer $N(\varepsilon, \lambda)$ such that $F_{x_n, x_m}(\varepsilon) > 1 - \lambda$ for all $n, m \geq N(\varepsilon, \lambda).$

A Menger space in which every Cauchy sequence is convergent is said to be complete.

Lemma 2.1 [12] Let (X, \mathcal{F}, Δ) be a Menger space. If there exists a constant $k \in (0,1)$ such that

$$F_{x,y}(kt) \ge F_{x,y}(t)$$

for all t > 0 with fixed $x, y \in X$ then x = y.

3. RESULTS

Theorem 3.1 Let (X, \mathcal{F}, Δ) and (Y, \mathcal{G}, Δ) be two complete Menger spaces, where Δ is a continuous tnorm (i.e., min. t-norm). Let A, B be mappings from X into Y and let S, T be mappings from Y into X satisfying inequalities

$$(3.1) F_{SAx,TBx'}(kt) \ge \min \begin{cases} F_{x,x'}(t), F_{x,SAx}(t), \\ F_{x',TBx'}(t), G_{Ax,Bx'}(t) \end{cases}$$
$$(3.2) G_{BSy,ATy'}(kt) \ge \min \begin{cases} G_{y,y'}(t), G_{y,BSy}(t), \\ G_{y',ATy'}(t), F_{Sy,Ty'}(t) \end{cases}$$

for all $x, x' \in X$, $y, y' \in Y$, $k \in (0,1)$ and t > 0. If one of the mappings A, B, S and T is continuous then SA and TB have a unique common fixed point z in X and BSand AT have a unique common fixed point w in Y. Further, Az = Bz = w and Sw = Tw = z.

Proof. Let x_0 be an arbitrary point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X and Y respectively as follows

 $Ax_0 = y_1, Sy_1 = x_1, Bx_1 = y_2, Ty_2 = x_2, Ax_2 = y_3,$

and in general let

$$Sy_{2n-1} = x_{2n-1}, Bx_{2n-1} = y_{2n},$$

$$Ty_{2n} = x_{2n}, Ax_{2n} = y_{2n+1},$$

For $= 1, 2, \dots$. Using inequality (3.1), we get

$$\begin{aligned} F_{x_{2n+1},x_{2n}}(kt) &= F_{SAx_{2n},TBx_{2n-1}}(kt) \\ &\geq \min \left\{ \begin{matrix} F_{x_{2n},x_{2n-1}}(t), F_{x_{2n},SAx_{2n}}(t), \\ F_{x_{2n-1},TBx_{2n-1}}(t), G_{Ax_{2n},Bx_{2n-1}}(t) \end{matrix} \right\} \\ &= \min \left\{ \begin{matrix} F_{x_{2n},x_{2n-1}}(t), F_{x_{2n},x_{2n+1}}(t), \\ F_{x_{2n-1},x_{2n}}(t), G_{y_{2n+1},y_{2n}}(t) \end{matrix} \right\} \\ &= \min \{F_{x_{2n},x_{2n-1}}(t), F_{x_{2n},x_{2n+1}}(t), G_{y_{2n+1},y_{2n}}(t) \} \end{aligned}$$

 $\geq \min\{F_{x_{2n},x_{2n-1}}(t), G_{y_{2n+1},y_{2n}}(t)\}. (3.3)$

Using inequality (3.1) again, it follows similarly that

$$F_{x_{2n},x_{2n-1}}(kt) \ge \min\{F_{x_{2n-1},x_{2n-2}}(t),G_{y_{2n},y_{2n-1}}(t)\}.$$
(3.4)

Similarly, using inequality (3.2), we have

$$G_{y_{2n},y_{2n+1}}(kt) \ge \min\{F_{x_{2n-1},x_{2n}}(t), G_{y_{2n-1},y_{2n}}(t)\}.$$
 (3.5)
Again using inequality (3.2), we get

$$G_{y_{2n-1},y_{2n}}(kt) \ge \min\{F_{x_{2n-2},x_{2n-1}}(t),G_{y_{2n-2},y_{2n-1}}(t)\}.$$
(3.6)

Using inequalities (3.3) and (3.5), we have

$$F_{x_{2n+1},x_{2n}}(kt) \ge \min\{F_{x_{2n},x_{2n-1}}(t), G_{y_{2n+1},y_{2n}}(t)\}$$
$$\ge \min\begin{cases}F_{x_{2n},x_{2n-1}}(t), F_{x_{2n-1},x_{2n}}\left(\frac{t}{k}\right),\\G_{y_{2n-1},y_{2n}}\left(\frac{t}{k}\right)\end{cases},$$

since,
$$F_{x_{2n-1},x_{2n}}\left(\frac{t}{k}\right) \ge F_{x_{2n-1},x_{2n}}(t)$$
 and $G_{y_{2n-1},y_{2n}}\left(\frac{t}{k}\right) \ge G_{y_{2n-1},y_{2n}}(t)$, hence

$$F_{x_{2n+1},x_{2n}}(kt) \ge \min\{F_{x_{2n},x_{2n-1}}(t), G_{y_{2n-1},y_{2n}}(t)\},$$

or

$$F_{x_{2n+1},x_{2n}}(t) \ge \min\left\{F_{x_{2n},x_{2n-1}}\left(\frac{t}{k}\right), G_{y_{2n-1},y_{2n}}\left(\frac{t}{k}\right)\right\}(3.7)$$

Similarly, using inequalities (3.4) and (3.6), we have

$$F_{x_{2n},x_{2n-1}}(t) \ge \min\left\{F_{x_{2n-1},x_{2n-2}}\left(\frac{t}{k}\right), G_{y_{2n-2},y_{2n-1}}\left(\frac{t}{k}\right)\right\}$$
(3.8)

It now follows from inequalities (3.5)-(3.8) that

$$F_{x_{n+1},x_n}(t) \ge \min\left\{F_{x_1,x_2}\left(\frac{t}{k^{n-1}}\right), G_{y_1,y_2}\left(\frac{t}{k^{n-1}}\right)\right\},\$$

$$G_{y_{n+1},y_n}(t) \ge \min\left\{F_{x_1,x_2}\left(\frac{t}{k^{n-1}}\right), G_{y_1,y_2}\left(\frac{t}{k^{n-1}}\right)\right\},\$$

for all $n = 1, 2, \dots$ Since $F_{\chi_1, \chi_2}\left(\frac{t}{k^{n-1}}\right) \to 1$ and $G_{y_1,y_2}\left(\frac{t}{k^{n-1}}\right) \to 1$ as $n \to \infty$, it follows that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences with limits z in X and w in Y

Suppose that A is continuous. Then

$$\lim_{n \to \infty} Ax_{2n} = Az = \lim_{n \to \infty} y_{2n+1} = w,$$

and so Az = w. Using inequality (3.1), we have

$$F_{Sw,x_{2n}}(kt) = F_{SAZ,TBx_{2n-1}}(kt)$$

$$\geq \min \left\{ \begin{matrix} F_{z,x_{2n-1}}(t), F_{z,SAZ}(t), \\ F_{x_{2n-1},TBx_{2n-1}}(t), G_{Az,Bx_{2n-1}}(t) \end{matrix} \right\}$$

Taking limit $n \to \infty$, we get

$$F_{Sw,z}(kt) \ge \min \begin{cases} F_{z,z}(t), F_{z,Sw}(t), \\ F_{z,z}(t), G_{w,w}(t) \end{cases}$$

and so

$$F_{Sw,z}(kt) \ge \min\{1, F_{z,Sw}(t), 1, 1\} = F_{z,Sw}(t)$$

On employing Lemma 2.1, we have z = Sw. Now using inequality (3.2), we have

 $G_{Bz,y_{2n+1}}(kt) = G_{BSw,ATy_{2n}}(kt)$

$$\geq \min \left\{ \begin{matrix} G_{w,y_{2n}}(t), G_{w,BSw}(t), \\ G_{y_{2n},ATy_{2n}}(t), F_{Sw,Ty_{2n}}(t) \end{matrix} \right\}.$$

Taking limit $n \to \infty$, we get

$$G_{BZ,W}(kt) \ge \min \begin{cases} G_{W,W}(t), G_{W,BZ}(t), \\ G_{W,W}(t), F_{Z,Z}(t) \end{cases} \\ = \min\{1, G_{W,BZ}(t), 1, 1\} \\ = G_{W,BZ}(t). \end{cases}$$

Appealing to Lemma 2.1, we have Bz = w. Using inequality (3.1), we have

$$F_{z,Tw}(kt) = F_{SAz,TBz}(kt)$$

$$\geq \min\{F_{z,z}(t), F_{z,SAz}(t), F_{z,TBz}(t), G_{Az,Bz}(t)\}$$

$$= \min\{1, 1, F_{z,Tw}(t), 1\} = F_{z,Tw}(t).$$

Owing to Lemma 2.1, we have z = Tw. Therefore, SA(z) = S(w) = z = Tw = TB(z) and BS(w) =B(z) = w = A(z) = AT(w), which shows that SA and TB have a common fixed point $z \in X$ and BS and AT have a common fixed point $w \in Y$.

The proof is similar in case one of mappings B, S, T is continuous.

Uniqueness: Suppose that TB has another fixed point $z' \neq z$). then using inequalities (3.1) and (3.2), we have

$$F_{z,z'}(kt) = F_{SAz,TBz'}(kt)$$

$$\geq \min\{F_{z,z'}(t), F_{z,SAz}(t), F_{z',TBz'}(t), G_{Az,Bz'}(t)\}$$

$$= \min\{F_{z,z'}(t), F_{z,z}(t), F_{z',z'}(t), G_{Az,Bz'}(t)\}$$

$$= \min\{F_{z,z'}(t), 1, 1, G_{Az,Bz'}(t)\}$$

 $= \min\{F_{z,z'}(t), G_{Az,Bz'}(t)\}.$

If we assume $F_{z,z'}(t)$ is minimum then by Lemma 2.1, the result follows. In case of $G_{Az,Bz'}(t)$, we have

0

$$\begin{split} F_{z,z'}(kt) &\geq G_{Az,Bz'}(t) = G_{BSW,ATBz'}(t) \\ &\geq \min \begin{cases} G_{w,Bz'}\left(\frac{t}{k}\right), G_{w,BSw}\left(\frac{t}{k}\right), \\ G_{Bz',ATBz'}\left(\frac{t}{k}\right), F_{Sw,TBz'}\left(\frac{t}{k}\right) \end{cases} \\ &= \min \begin{cases} G_{Az,Bz'}\left(\frac{t}{k}\right), G_{BSw,BSw}\left(\frac{t}{k}\right), \\ G_{Bz',Bz'}\left(\frac{t}{k}\right), F_{z,z'}\left(\frac{t}{k}\right) \end{cases} \\ &= \min \left\{ G_{Az,Bz'}\left(\frac{t}{k}\right), 1, 1, F_{z,z'}\left(\frac{t}{k}\right) \right\} \\ &= \min \left\{ G_{Az,Bz'}\left(\frac{t}{k}\right), F_{z,z'}\left(\frac{t}{k}\right) \right\}. \end{split}$$

It implies

=

$$F_{z,z'}(t) \ge \min\left\{G_{Az,Bz'}\left(\frac{t}{k^2}\right), F_{z,z'}\left(\frac{t}{k^2}\right)\right\}$$

$$\ge \min\left\{\min\left\{G_{Az,Bz'}\left(\frac{t}{k^4}\right), F_{z,z'}\left(\frac{t}{k^4}\right)\right\}, F_{z,z'}\left(\frac{t}{k^2}\right)\right\}$$

$$= \min\left\{G_{Az,Bz'}\left(\frac{t}{k^4}\right), F_{z,z'}\left(\frac{t}{k^4}\right), F_{z,z'}\left(\frac{t}{k^2}\right)\right\}$$

$$= \min\left\{G_{Az,Bz'}\left(\frac{t}{k^4}\right), F_{z,z'}\left(\frac{t}{k^2}\right)\right\}.$$

By repeated application of above inequality, we get for each $m \in \{1, 2, ...\}$

$$F_{z,z'}(t) \ge \min\left\{G_{Az,Bz'}\left(\frac{t}{k^{2m}}\right), F_{z,z'}\left(\frac{t}{k^{2}}\right)\right\}$$

Thus since $G_{Az,Bz'}\left(\frac{t}{k^{2m}}\right) \to 1$ as $n \to \infty$, and so

$$F_{z,z'}(t) \ge F_{z,z'}\left(\frac{t}{k^2}\right),$$

Again repeating this inequality, we have

$$F_{z,z'}(t) \ge F_{z,z'}\left(\frac{t}{k^2}\right) \ge F_{z,z'}\left(\frac{t}{k^4}\right) \ge \dots \ge F_{z,z'}\left(\frac{t}{k^{2m}}\right)$$

since $F_{z,z'}\left(\frac{t}{k^{2m}}\right) \to 1$ as $n \to \infty$, we get $F_{z,z'}(t) \ge 1$, for all t > 0. Hence $F_{z,z'}(t) = 1$, we have z = z'. Thus z is the unique fixed point of TB. It follows similarly that z is the unique fixed point of SA and w is the unique fixed point of BS and AT.

By setting X = Y in Theorem 3.1, we deduce the following:

Corollary 3.1 Let (X, \mathcal{F}, Δ) be a complete Menger spaces, where Δ is a continuous t-norm (i.e., min. t-norm). Let *A*, *B*, *S* and *T* be mappings from *X* into itself satisfying inequalities

$$F_{SAx,TBy}(kt) \ge \min \begin{cases} F_{x,y}(t), F_{x,SAx}(t), \\ F_{y,TBy}(t), F_{Ax,By}(t) \end{cases} (3.9)$$

$$F_{BSx,ATy}(kt) \ge \min \begin{cases} F_{x,y}(t), F_{x,BSx}(t), \\ F_{y,ATy}(t), F_{Sx,Ty}(t) \end{cases} (3.10)$$

for all $x, y \in X$, $k \in (0,1)$ and t > 0. If one of the mappings A, B, S and T is continuous then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y. Further, Az = Bz = w and Sw = Tw = z.

Remark 3.1 Theorem 3.1 generalizes the result of Fisher and Murthy [9, Theorem 2] (as well as the references mentioned therein) in the framework of probabilistic settings.

ACKNOWLEDGEMENTS

The authors are thankful to the referee for his useful comments. We are also very grateful to Professor Duran $T\dot{U}RKO\check{G}LU$ and the editorial board of "Gazi University Journal of Science" for supporting this research work.

REFERENCES

- C. Alaca, "A related fixed point theorem on two metric spaces satisfying a general contractive condition of integral type", J. Comput. Anal. Appl., 11(2):263-270 (2009).
- [2] A. Aliouche and B. Fisher, "Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces", Applied Math. Mech. (English Ed.), 27(9):1217-1222 (2006).
- [3] A. Aliouche, F. Merghadi and A. Djoudi, "A related fixed point theorem in two fuzzy metric spaces", J. Nonlinear Sci. Appl., 2(1):19-24 (2009).
- [4] I. Beg and S. Chauhan, "Related fixed point of set-valued mappings in three Menger spaces", *Int. J. Anal.*, Art. ID 736451, 6 pages (2013).

- [5] A. T. Bharucha-Reid, "Fixed point theorems in probabilistic analysis", *Bull. Amer. Math. Soc.*, 82(5):641-657 (1976).
- [6] V. K. Chourasia and Brian Fisher, "Related fixed points for two pairs of set valued mappings on two metric spaces", *Hacet. J. Math. Stat.*, 32:27-32 (2003).
- [7] B. Fisher, "Fixed point on two metric spaces", *Glasnik Mat*, 16(36):333-337 (1981).
- [8] B. Fisher, "Related fixed point on two metric spaces", *Math. Sem. Notes Kobe Univ.*, 10(1):17-26 (1982).
- [9] B. Fisher and P. P. Murthy, "Related fixed point theorems for two pairs of mappings on two metric spaces", *Kyungpook Math. J.*,37(2):343-347 (1997).
- [10] B. Fisher and D. Türkoğlu, "Related fixed points for mappings on complete and compact metric spaces", *Nonlinear Anal. Forum*, 6:113-118 (2001).
- [11] B. Fisher and D. Türkoğlu, "Related fixed points for two pairs of set valued mappings on two metric spaces", *Fixed Point Theory and Appl.*, 3:63-70 (2002).
- [12] S. N. Mishra, "Common fixed points of compatible mappings in PM-spaces", *Math. Japon.*,36(2):283-289 (1991).
- [13] K. Menger, "Statistical metrics", Proc. Nat. Acad. Sci. U.S.A., 28:535-537 (1942).
- [14] R. K. Namdeo, S. Jain and B. Fisher, "A related fixed point theorem for two pairs of mappings on two complete metric spaces", *Hacet. J. Math. Stat.*,32:7-11 (2003).
- [15] B.D. Pant, "Relation between fixed points in Menger spaces", J. Indian Acad. Math., 24(1):135-142 (2002).
- [16] B. D. Pant and S. Kumar, "A related fixed point theorem for two pairs of mappings in two Menger spaces", *Varāhmihir J. Math. Sci.*,6(2):471-476 (2006).
- [17] B. Schweizer and A. Sklar, "Probabilistic Metric Spaces", North-Holland Series in Probability and Applied MathematicsNorth-Holland Publishing Co., New York, (1983).
- [18] V. M. Sehgal and A. T. Bharucha-Reid, "Fixed points of contraction mappings on probabilistic metric spaces", *Math. Systems Theory*, 6:97-102 (1972).
- [19] D. Türkoğlu and B. Fisher, "A generalization of afixed point theorem of Ćirić", *Novi Sad J. Math.*, 29(1):117-121 (1999).