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ABSTRACT 

 
In this paper, we prove a related fixed point theorem for single-valued mappings in two Menger spaces. 
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1. INTRODUCTION 

Professor Karl Menger introduced probabilistic metric 
spaces in his seminal paper [13] and studied their 
properties. The idea in his paper was that, instead of a 
single positive number, we should associate a 
distribution function with the point pairs. Since then the 
theory of PM-spaces has grown rapidly with the 
pioneering works of Schweizer and Sklar [17].  Sehgal 
and Bharucha-Reid [18] initiated the study of 
contraction mappings on PM- spaces (see also [5]). 
Fisher [7, 8] investigated the conditions for the 
existence of a relation connecting the fixed points of 
two mappings in two different metric spaces.  

Subsequently several other authors have extensively 
studied various related fixed point theorems in metric 
spaces [1, 2, 4, 6, 9, 10-12, 19]. Recently Pant [15] 
generalized the results of Fisher [7, 8] in the framework 
of probabilistic settings. Pant and Kumar [16] further 
proved a related fixed point theorem in two complete 
Menger spaces. In 2009, Aliouche et al. [3] utilized a 
class of implicit functions and proved related fixed 
point theorem in two complete fuzzy metric spaces. The 
aim of this paper is to prove a related fixed point 
theorem for single-valued mappings in two Menger 
spaces. Our results generalize several comparable 
results in the existing literature. 
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2. PRELIMINARIES 

Let �:	� → � be a mapping. A point � ∈ � is called a 
fixed point of � if � = ��. 

Definition 2.1[17] A mapping ∆: 
0,1� × 
0,1� → 
0,1� 
is called a triangular norm (briefly, t-norm) if 
thefollowing conditions are satisfied: for all �, �, �, � ∈
0,1� 

(1) ∆��, 1� = � for all � ∈ 
0,1�, 
(2) ∆��, �� = ∆��, ��, 
(3) ∆��, �� ≤ ∆��, �� for � ≤ �, � ≤ �, 
(4) ∆��, ∆��, ��� = ∆�∆��, ��, ��. 

Examples of continuous t-norms are: ∆��, �� =min��, ��, ∆��, �� = �� and ∆��, �� = max�� + � −1,0�. 
Definition 2.2[17] A mapping ":ℝ → ℝ$ is called a 
distribution function if it is non-decreasing, left 
continuous with inf&∈ℝ "�'� = 0 and sup&∈ℝ "�'� = 1. 

Let ℑ be the set of all distribution functions whereas , 
stands for the specific distribution function (also known 
as Heaviside function) defined by 

,�'� = -0, if	' ≤ 0;1, if	' > 0. 
If � is a non-empty set, ℱ: � × � → ℑ is called a 
probabilistic distance on � and the value of ℱ at ��, 2� ∈ � × � is represented by "3,4.

 
Definition 2.3[17] The ordered pair ��, ℱ� is called a 
PM-space if � is a non-empty set and ℱ is a 
probabilisticdistance satisfying the followingconditions: 
for all �, 2, 5 ∈ � and ', 6 > 0 

(1) "3,4�'� = ,�'� ⇔ � = 2, 
(2) "3,4�'� = "4,3�'�, 
(3) "3,4�'� = 1 and "4,8�6� = 1 ⇒ "3,8�' + 6� =1. 

Definition 2.4[17] A Menger space is a triplet �:,;, ∆� 
where �:,;� is a PM-space and t-norm∆ is such that 
the inequality 

<=,>�? + @� ≥ ∆ B<=,C�?�, <C,>�@�D, 
holds for all =, C, > ∈ : and ?, @ > E. 

Every metric space �:, F� can be realized as a PM-
space by taking ;:: × : → G defined by <=,C�?� =H�? − F�=, C�� for all =, C ∈ :. So PM-spaces offer a 
wider framework (than that of the metric spaces) and 
are general enough to cover even wider statistical 
situations. 

Definition 2.5[17] Let ��, ℱ, ∆� be a Menger space and ∆ be a continuous t-norm. A sequence ��I� in � is said 
to be (i) convergent to a point � in � iff for every J > 0 
and K > 0, there exists a positive integer L�J, K� such 
that "3M,3�J� > 1 − K for all N ≥ L�J, K�; (ii) Cauchy if 
for every J > 0 and K ∈ �0,1�, there exists a positive 
integer L�J, K� such that "3M,3O�J� > 1 − K for all N,P ≥ L�J, K�. 
A Menger space in which every Cauchy sequence is 
convergent is said to be complete. 

Lemma 2.1 [12] Let ��, ℱ, ∆� be a Menger space. If 
there exists a constant Q ∈ �0,1� such that "3,4�Q'� ≥ "3,4�'�, 
for all ' > 0 with fixed �, 2 ∈ � then � = 2. 

3. RESULTS 

Theorem 3.1 Let ��, ℱ, ∆� and �R, S, ∆� be two 
complete Menger spaces, where ∆ is a continuous t-
norm (i.e., min. t-norm). Let T, U be mappings from � 
into R and let V, � be mappings from R into � satisfying 
inequalities 

(3.1) "WX3,YZ3[�Q'� ≥ min \ "3,3[�'�, "3,WX3�'�,"3[,YZ3[�'�, ]X3,Z3[�'�^ 
(3.2) ]ZW4,XY4[�Q'� ≥ min \ ]4,4[�'�, ]4,ZW4�'�,]4[,XY4[�'�, "W4,Y4[�'�^ 
for all �, �_ ∈ �, 2, 2_ ∈ R, Q ∈ �0,1� and ' > 0. If one 
of the mappings T, U, V and � is continuous then VT and �U have a unique common fixed point 5 in � and UV 
and T� have a unique common fixed point ` in R. 
Further, T5 = U5 = ` and V` = �` = 5. 
Proof. Let �a be an arbitrary point in �. Define 
sequences ��I� and �2I� in � and R respectively as 
follows: T�a = 2b, V2b = �b, U�b = 2c,�2c = �c, T�c = 2d, 

and in general let V2cIeb = �cIeb, U�cIeb = 2cI, �2cI = �cI, T�cI = 2cI$b, 

For = 1,2,… . Using inequality (3.1), we get 

 "3hMij,3hM�Q'� = "WX3hM,YZ3hMkj�Q'� 
≥ min \ "3hM,3hMkj�'�, "3hM,WX3hM�'�,"3hMkj,YZ3hMkj�'�, ]X3hM,Z3hMkj�'�^= min \"3hM,3hMkj�'�, "3hM,3hMij�'�,"3hMkj,3hM�'�, , ]4hMij,4hM�'�^= minl"3hM,3hMkj�'�, "3hM,3hMij�'�, ]4hMij,4hM�'�m ≥ minl"3hM,3hMkj�'�, ]4hMij,4hM�'�m. (3.3) 

Using inequality (3.1) again, it follows similarly that "3hM,3hMkj�Q'� ≥ minl"3hMkj,3hMkh�'�, ]4hM,4hMkj�'�m. 
      (3.4) 

Similarly, using inequality (3.2), we have ]4hM,4hMij�Q'� ≥ minl"3hMkj,3hM�'�, ]4hMkj,4hM�'�m. (3.5) 

Again using inequality (3.2), we get ]4hMkj,4hM�Q'� ≥ minl"3hMkh,3hMkj�'�, ]4hMkh,4hMkj�'�m.
      (3.6) 

Using inequalities (3.3) and (3.5), we have "3hMij,3hM�Q'� ≥ minl"3hM,3hMkj�'�, ]4hMij,4hM�'�m 
≥ min n"3hM,3hMkj�'�, "3hMkj,3hM BopD ,]4hMkj,4hM BopD q, 
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since, "3hMkj,3hM BopD ≥ "3hMkj,3hM�'� and ]4hMkj,4hM BopD ≥]4hMkj,4hM�'�, hence "3hMij,3hM�Q'� ≥ minl"3hM,3hMkj�'�, ]4hMkj,4hM�'�m, 
or "3hMij,3hM�'� ≥ min r"3hM,3hMkj BopD , ]4hMkj,4hM BopDs(3.7) 

Similarly, using inequalities (3.4) and (3.6), we have "3hM,3hMkj�'� ≥ min r"3hMkj,3hMkh BopD , ]4hMkh,4hMkj BopDs.
      (3.8) 

It now follows from inequalities (3.5)-(3.8) that "3Mij,3M�'� ≥ min r"3j,3h B opMkjD , ]4j,4h B opMkjDs, ]4Mij,4M�'� ≥ min r"3j,3h B opMkjD , ]4j,4h B opMkjDs, 
for all N = 1,2,….Since "3j,3h B opMkjD → 1 and ]4j,4h B opMkjD → 1 as N → ∞, it follows that ��I� and �2I� are Cauchy sequences with limits 5 in � and ` in R. 

Suppose that T is continuous. Then limI→vT�cI = T5 = limI→v2cI$b = `, 

and so T5 = `. Using inequality (3.1), we have "Ww,3hM�Q'� = "WX8,YZ3hMkj�Q'� 
≥ min \ "8,3hMkj�'�, "8,WX8�'�,"3hMkj,YZ3hMkj�'�, ]X8,Z3hMkj�'�^. 
Taking limit N → ∞, we get 

 "Ww,8�Q'� ≥ min \"8,8�'�, "8,Ww�'�,"8,8�'�, ]w,w�'� ^, 
and so "Ww,8�Q'� ≥ minl1, "8,Ww�'�, 1,1m = "8,Ww�'�. 
On employing Lemma 2.1, we have 5 = V`. Now using 
inequality (3.2), we have ]Z8,4hMij�Q'� = ]ZWw,XY4hM�Q'� 
                       ≥ min \ ]w,4hM�'�, ]w,ZWw�'�,]4hM,XY4hM�'�, "Ww,Y4hM�'�^. 
Taking limit N → ∞, we get 

]Z8,w�Q'� ≥ min \]w,w�'�, ]w,Z8�'�,]w,w�'�, "8,8�'� ^= minl1, ]w,Z8�'�, 1,1m= ]w,Z8�'�. 
Appealing to Lemma 2.1, we have U5 = `. Using 
inequality (3.1), we have "8,Yw�Q'� = "WX8,YZ8�Q'� ≥ minl"8,8�'�, "8,WX8�'�, "8,YZ8�'�, ]X8,Z8�'�m = minl1,1, "8,Yw�'�, 1m = "8,Yw�'�. 

Owing to Lemma 2.1, we have 5 = �`. Therefore, VT�5� = V�`� = 5 = �` = �U�5� and UV�`� =U�5� = ` = T�5� = T��`�, which shows that VT and �U have a common fixed point 5 ∈ � and UV and T� 
have a common fixed point ` ∈ R. 

The proof is similar in case one of mappings U, V, � is 
continuous. 

Uniqueness: Suppose that �U has another fixed point 5_�≠ 5�. then using inequalities (3.1) and (3.2), we have "8,8[�Q'� = "WX8,YZ8[�Q'�≥ minl"8,8[�'�, "8,WX8�'�, "8[,YZ8[�'�, ]X8,Z8[�'�m= minl"8,8[�'�, "8,8�'�, "8[,8[�'�, ]X8,Z8[�'�m= minl"8,8[�'�, 1,1, ]X8,Z8[�'�m = minl"8,8[�'�, ]X8,Z8[�'�m. 
If we assume "8,8[�'� is minimum then by Lemma 2.1, 
the result follows. In case of ]X8,Z8[�'�, we have 

 "8,8[�Q'� ≥ ]X8,Z8[�'� = ]ZWw,XYZ8[�'� 
≥ miny ]w,Z8[ z'Q{ , ]w,ZWw z'Q{ ,]Z8[,XYZ8[ z'Q{ , "Ww,YZ8[ z'Q{|
= miny]X8,Z8[ z'Q{ , ]ZWw,ZWw z'Q{ ,]Z8[,Z8[ z'Q{ , "8,8[ z'Q{ |
= min -]X8,Z8[ z'Q{ , 1,1, "8,8[ z'Q{} 

              = min r]X8,Z8[ BopD , "8,8[ BopDs. 
It implies 

"8,8[�'� ≥ min -]X8,Z8[ z 'Qc{ , "8,8[ z 'Qc{} 
        ≥ min rmin r]X8,Z8[ B op~D , "8,8[ B op~Ds , "8,8[ B ophDs
 = min r]X8,Z8[ B op~D , "8,8[ B op~D , "8,8[ B ophDs 
        = min r]X8,Z8[ B op~D , "8,8[ B ophDs. 
By repeated application of above inequality, we get for 
each P ∈ �1,2,… � 
 "8,8[�'� ≥ min r]X8,Z8[ B ophOD , "8,8[ B ophDs. 
Thus since ]X8,Z8[ B ophOD → 1 as N → ∞, and so 

  "8,8[�'� ≥ "8,8[ B ophD, 
Again repeating this inequality, we have "8,8[�'� ≥ "8,8[ B ophD ≥ "8,8[ B op~D ≥ ⋯ ≥ "8,8[ B ophOD, 
since "8,8[ B ophOD → 1 as N → ∞, we get "8,8[�'� ≥ 1, 

for all ' > 0. Hence "8,8[�'� = 1, we have 5 = 5_. Thus 5 is the unique fixed point of �U. It follows similarly 
that 5 is the unique fixed point of VT and ` is the 
unique fixed point of UVand T�. 
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By setting � = R in Theorem 3.1, we deduce the 
following: 

Corollary 3.1 Let ��, ℱ, ∆� be a complete Menger 
spaces, where ∆ is a continuous t-norm (i.e., min. t-
norm). Let T, U, V and � be mappings from � into itself 
satisfying inequalities 

"WX3,YZ4�Q'� ≥ min \ "3,4�'�, "3,WX3�'�,"4,YZ4�'�, "X3,Z4�'�^ (3.9) 

"ZW3,XY4�Q'� ≥ min \ "3,4�'�, "3,ZW3�'�,"4,XY4�'�, "W3,Y4�'�^ (3.10) 

for all �, 2 ∈ �, Q ∈ �0,1� and ' > 0. If one of the 
mappings T, U, V and � is continuous then VT and �U 
have a unique common fixed point 5 in � and UV and T� have a unique common fixed point ` in R. Further, T5 = U5 = `and V` = �` = 5. 
Remark 3.1 Theorem 3.1 generalizes the result of 
Fisher and Murthy [9, Theorem 2] (as well as the 
references mentioned therein) in the framework of 
probabilistic settings. 
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