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ABSTRACT 

 

This manuscript is a study on various properties of Pre A*-functions. The concept of equivalent Pre A*-function has 

been introduced. It is shown that a Pre A*-expression in n variables is a Pre A*-expression on 𝟑𝑛and every Pre A*-

expression represents a unique Pre A*-function. The concepts of dual Pre A*-function, sum-of-products expansion 
and implicants of the Pre A*-function have been initiated. It is observed that, a min term of a Pre A*-variables is a 

product of n literals, which is one literal for each variable.  

 
Key words: Pre A*-algebra, Pre A*-function, Pre A*-variables, Pre A*-expressions, duality, Sum-of-Products 

expansion, Product-of-Sums expansion and implicants. 

 

1. INTRODUCTION     

             

Koteswara Rao [1] introduced the concept of A*-algebra 

(A, ∧, ∨, ∗, (−)∼, (−)𝜋, 0, 1, 2). He studied the 

equivalence of A*-algebra with Ada, C-algebra, Ada’s 

connection with 3-Ring, stone type representation and also 

introduced the concept of A*-clone, the If-Then-Else 

structure over A*-algebra and Ideal of A*-algebra.  

 

Venkateswara Rao [2] initiated the concept of Pre A*-

algebra (𝐴, ∨, ∧, (−)∼)  analogous to C-algebra as a 

reduct of A*-algebra. Venkateswara Rao and Srinivasa 

Rao [3] identified a congruence relation on Pre A*-

algebra. Venkateswara Rao  and Srinivasa Rao [4] 

obtained the well known Cayley’s theorem on centre of 

Pre A*-algebras. Further, Venkateswara Rao  and 

Srinivasa Rao [5] instigated a ternary operation on Pre-

A*-algebra. Venkateswara Rao et al. [6] a studied on Pre 

A* - functions.    

 

Based on the connection between Pre A*-algebras and 

Boolean algebras, analogous to Boolean functions, a Pre 

A*-function defined as a mapping  𝑓: 𝟑𝑛 → 𝟑 (where 3 = 

{0, 1, 2}). Furthermore, identified results on Pre A*-

functions such as the dominance property of 2 and the 

order relation ≤. Further, properties such as 

representations and implicants of Pre A*-functions are 

studied. 

      

This manuscript is divided into two sections. The first 

section is devoted to the introduction of Pre A*-functions 

(as mapping𝑓: 𝟑𝑛 → 𝟑) and various results of Pre A*-

functions.  

The second section is concerned with properties of Pre 

A*-functions. The duality property, representations (Sum-

of-Products expansion and Product-of-Sums expansion) 

and implicants of Pre A*-functions are studied and 

examples about these properties are specified. 
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2. INTRODUCTION TO PRE A*-FUNCTIONS 

 

This section deals with the basic definition of Pre A*-

Algebras and Pre A*-Functions. 

 

Definition 2.1: An algebra (𝐴, ∨, ∧, (−)~) where A is 

non-empty set with ∨, ∧ are binary operations and ∼ is a 

unary operation satisfying the following axioms: 

 

i) (𝑥∼)∼ = 𝑥 ∀𝑥 ∈ 𝐴,  

ii)  𝑥 ∧ 𝑥 = 𝑥 ∀𝑥 ∈ 𝐴,  

iii) 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥, ∀𝑥, 𝑦 ∈ 𝐴  

iv) (𝑥 ∧ 𝑦)∼ = 𝑥∼ ∨ 𝑦∼ , ∀𝑥, 𝑦 ∈ 𝐴   

v) 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧, ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 

vi) 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐴,  

vii) 𝑥 ∧ 𝑦 = 𝑥 ∧ (𝑥∼ ∨ 𝑦), ∀𝑥, 𝑦 ∈ 𝐴 

 

is called a Pre A*-algebra. 

 

Example 2.1: 𝟑 = {0, 1, 2} with operations ∧, ∨,
(−)~ defined as below is a Pre A*-algebra.  

 

   0 1 2       0 1 2         x   x  

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

 2 2 2 2  2 2 2 2  2 2 

 

Note 2.1: The elements 0, 1, 2 in the above example 

satisfy the following laws: 

 

(a) 2∼ = 2 (b) 1 ∧ 𝑥 = 𝑥  for all x in 3 (c)  0 ∨ 𝑥 = 𝑥  for 

all 𝑥 in 3  (d)  2 ∧ 𝑥 = 2 = 2 ∨ 𝑥  for all 𝑥 in 3. 

 

Example 2.2: 𝟐 = {0, 1} with operations ∧, ∨, (−)~  
defined below is a Pre A*-algebra.  

 

   0 1        0 1          x   x  

0 0 0   0 0 1   0 1 

1 0 1   1 1 1   1 0 

             

 

Note 2.2 (i) (𝟐, ∨, ∧, (−)~) is a Boolean algebra. So 

every Boolean algebra is a Pre A* algebra. 

 

(ii) Axioms (i) and (iv) imply that the varieties of Pre A*-

algebras satisfy all the dual statements of (i) to (vii).   

(iii) Here the binary operations juxta position, ,  

respectively  ,     considered as in Boolean algebra. 

 

Note 2.3[6]: A Pre A*-variable is a variable which 

assumes only the values 0, 1 and 2. That is, it takes value 

from the set 3. Two Pre A*-variables are said to be 

independent variables if they assume values from 𝟑 

independent of each other. 

 

Definition 2.2[6]: 1) A mapping 𝑓: 𝟑 → 𝟑 is called a Pre 

A*-function of one variable. 

2) A mapping f: 𝟑n → 𝟑 is said to be a Pre A*-function of 

n variables. 

Note that, by the counting principle of products, the total 

number of Pre A*-functions (f: 𝟑𝑛 → 𝟑) is 3(3𝑛).  

 

Theorem 2.1 (Dominance Property of 2) [6]: If any Pre 

A*-variable assumes the value 2 in its Pre A*-function 

(that is in its functional value), then the function has the 

value 2. 

 

Note 2.4[6]: Variables of a Boolean function can be taken 

as propositional variables. Because, Boolean algebra itself 

is the study of logic, and a proposition is a declarative 

sentence which has a truth value of true or false but not 

both.  Similarly, each Boolean variable has the value 0 or 

1 but not both and we can associate the truth value true by 

1 and the truth value false by 0. But a Pre A*-function is 

an extension of this function, and introduces another 

proposition with undefined truth value that can be 

represented by the value 2. 

 

3. PROPERTIES OF PRE A*-FUNCTIONS 

 

This section deals with some basic properties of Pre A*-

functions analogous to the basic properties of Boolean 

functions.  

 

Definition 3.1[6]:  
 

1. A Pre A*-expression in the variables 𝑥1, 𝑥2, … , 𝑥𝑛 are 

defined recursively as 0, 1, 2, 𝑥1, 𝑥2, … , 𝑥𝑛 are Pre A*-

expressions. 

2. If 𝐸1 and 𝐸2 are Pre A*-expressions in 𝑥1, 𝑥2, … , 𝑥𝑛 

variables then 𝐸1
~, (𝐸1 + 𝐸2) and (𝐸1𝐸2) are also Pre A*-

expressions in 𝑥1, 𝑥2, … , 𝑥𝑛 variables. 

3. Any Pre A*-expression is formed by finitely many 

applications of the rules (1) and (2) of this definition. 

 

Definition 3.2:  We say that two Pre A*-expressions 𝐸1 

and 𝐸2 are equivalent if they represent the same Pre A*-

function.When this is the case, we write 𝐸1 = 𝐸2. 

 

Example 3.1:  The Pre A*-expressions 𝐸1 = 𝑥𝑦𝑧 +
𝑥𝑦𝑥~𝑧 + 𝑥𝑦𝑧𝑦~ and 𝐸2 = 𝑥𝑦𝑧 are equivalent 

expressions.  

 

Since; 𝐸1 = 𝑥𝑦𝑧 + 𝑥𝑦𝑥~𝑧 + 𝑥𝑦𝑧𝑦~ = 𝑥𝑦𝑧 + 𝑥𝑥~𝑦𝑧 +
𝑥𝑦𝑦~𝑧  (since 𝑥𝑦 = 𝑦𝑥) 

                                    = (𝑥 + 𝑥𝑥~)𝑦𝑧 + 𝑥𝑦𝑦~𝑧 = 𝑥𝑦𝑧 +
𝑥𝑦𝑧𝑦~ (since 𝑥 + 𝑥𝑥~ = 𝑥) 

                                    = 𝑥(𝑦 + 𝑦𝑦~)𝑧  = 𝑥𝑦𝑧  

 

Therefore these two expression represent the same Pre 

A*-function. 
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Note 3.1: We also show that a Pre A*-expression in n 

variables, 𝑥1, 𝑥2, … , 𝑥𝑛 is a Pre A*-expression on 𝟑𝑛. 

Every Pre A*-expression 𝐸 represents a unique Pre A*-

function. 

 

Note 3.2.  There are 33𝑛
 Pre A*-functions of n variables, 

there are infinitely many Pre A*-expressions of n 

variables. These remarks motivate the distinction that we 

draw between Pre A*- functions and Pre A*-expressions. 

 

3.1. Duality of Pre A*-Functions 

 

With every Pre A*-function 𝑓, the following definition 

associates another Pre A*-function 𝑓𝑑 called the dual of 

𝑓. 

 

Definition 3.1.1[6]: The dual of a Pre A*-function 𝑓 

denoted by 𝑓𝑑 is  the function 𝑓𝑑 defined by;  𝑓𝑑(𝑋) =
[𝑓(𝑋~)]~ for all 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝟑𝑛, where  

 

𝑋~ = (𝑥1
~, 𝑥2

~, … , 𝑥𝑛
~). 

 

Note 3.1.1[6]: The dual of a Pre A*-function f is 

represented by a Pre A*-expression is a function 

represented by the dual of this expression. 

 

Definition 3.1.2[6]: The dual of a Pre A*-expression is 

obtained by interchanging Pre A*-sums and Pre A*-

products, interchanging 0’s and 1’s and interchanging of 2 

with itself. 

 

Example 3.1.1. [6]: The dual of the Pre A*-expression 

𝑥(𝑦 + 0) is 𝑥 + (𝑦 ∙ 1) which is also Pre A*-expression. 

The dual of 𝑥~ ∙ 2 + (𝑦~ + 𝑧) is 𝑥~ + 2 ∙ (𝑦~ ∙ 𝑧).  

 

Theorem 3.1.1[6]: If f and 𝑔 are two Pre A*-functions of 

n variables, then the following holds. 

 

a) (𝑓𝑑)𝑑 = 𝑓 (Involution: the dual of the dual is the 

function itself) 

b) (𝑓~)𝑑 = (𝑓𝑑)~ 

c) (𝑓 + 𝑔)𝑑 = 𝑓𝑑𝑔𝑑 

d) (𝑓𝑔)𝑑 = 𝑓𝑑 + 𝑔𝑑 

 

Theorem 3.1.2:  If the expression 𝐸 represents the Pre 

A*-function 𝑓, then 𝐸𝑑 represents the Pre A*-function 

𝑓𝑑. 

 

Proof: Let 𝑡 denotes the total number of Pre A*-sum (+), 

Pre A*-product (∙) and Pre A*-negation (~) operators in 

the Pre A*-expression 𝐸. We prove this theorem by 

induction on 𝑡. If 𝑡 = 0, then E is either a constant or a 

literal and the statement is easily seen to be hold. Assume 

that 𝑡 > 0. Then by the above definition 3.1, the Pre A*-

expression 𝐸 takes either the form 𝐸 = 𝐸1 + 𝐸2 or the 

form 𝐸 = 𝐸1𝐸2 or the form (𝐸1)~. Assume for instance 

that, 𝐸 = 𝐸1 + 𝐸2 (the other cases are similar). Then by 

definition 3.2, 𝐸𝑑 = 𝐸1
𝑑𝐸2

𝑑. Let 𝑔 be the function 

represented by 𝐸1 and let ℎ be the function represented by 

𝐸2. Then by the principle of induction, 𝐸1
𝑑  and 𝐸2

𝑑 

represent 𝑔𝑑 and ℎ𝑑 respectively. So, 𝐸𝑑 represents 𝑔𝑑ℎ𝑑 

which is equal to 𝑓𝑑 by theorem 3.1.1. 

 

Note 3.1.2: A literal of a Pre A*-function is a Pre A*-

variable 𝑥 or its Pre A*-complement 𝑥~. 

 

Corollary 3.1.1[6]: If we define the Pre A*-function 2 by 

2(𝑋) = 2, ∀𝑋 ∈ 𝟑𝑛,  

then (𝑓 + 2)𝑑 = 2 = (𝑓 ∙ 2)𝑑 . 

 

3.2. Representation of Pre A*-Functions: Sum of 

Product Expressions 

 

Definition 3.2.1: Min term of a Pre A*-variables 

𝑥1, 𝑥2, … , 𝑥𝑛 is a Pre A*-product 𝑦1𝑦2 … 𝑦𝑛 where 

𝑦𝑖 = 𝑥𝑖   or 𝑦𝑖 = 𝑥𝑖
~. 

Hence, a min term of a Pre A*-variables is a product of n 

literals, in which one literal for each variable. 

If one of the Pre A*-variables has the value 2, then the 

min term has the value 2. The min term has the value 1 for 

one and only one combination of values of its variables. 

More precisely, the min term 𝑦1, 𝑦2, … , 𝑦𝑛 is 1 if and only 

if each  𝑦𝑖 is 1 and this occurs if and only if 𝑥𝑖 = 1 when 

𝑦𝑖 = 𝑥𝑖 and 𝑥𝑖 = 0 when  𝑦𝑖 = 𝑥𝑖
~. 

 

Example 3.2.1: Find a min term that equals 1 if 𝑥1 =
𝑥3 = 0 𝑎𝑛𝑑 𝑥2 = 𝑥4 = 𝑥5 = 1 and equals 0 otherwise.  

 

Solution: The min term  𝑥1
~𝑥2𝑥3

~𝑥4𝑥5 has the correct 

set of values. Thus the min term   

𝑥1
~𝑥2𝑥3

~𝑥4𝑥5 has the value 1. 

 

Example 3.2.2:  The min term 𝑥𝑦𝑧𝑥~𝑦~ has the value 2 

if and only if any one of them these three Pre A*-variables 

has the value 2 otherwise it has the value 0. In other words 

this min term cannot have the value 1. 

 

By taking sum of distinct min terms we can build up a Pre 

A*-expression with a specified set of values. In particular, 

a Pre A*-sum of min terms has the value 2 when exactly 

one of the min terms in the sum has the value 2. If all the 

min terms in the sum has the value different from 2, then 

the Pre A*-sum of min terms has the value 1 when any 

one of the min terms has the value 1othewise it has the 

value 0. 

 

Definition 3.2.2:  The sum of min terms that represents a 

Pre A*-function is called the sum-of-products expansion 

(SPE) of the Pre A*-function. 

 

Theorem 3.2.1: If any one of the Pre A*-variables in any 

min term has the value 2, then the sum of min terms 

containing that min term has the value 2. 

 

Proof: Let the min term be 𝑦1𝑦2 … 𝑦𝑛 where 𝑦𝑖 =
𝑥𝑖   or 𝑦𝑖 = 𝑥𝑖

~. Let the Pre A*-variable 𝑥𝑖  for 𝑖 = 1,2, … 𝑛 

has the value 2 (that is 𝑥𝑖 = 2), then by the above remark, 

the min term 𝑦1𝑦2 … 𝑦𝑛 has the value 2 (since in Pre A*-
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algebra, 𝑥 + 2 = 2 = 𝑥 ∙ 2, ∀𝑥 ∈ 𝟑 and 2~ = 2). Also, by 

the above remark the sum of min terms has the value 2 if 

and only if  any one of the min terms has the value 2.  

 

Therefore if any one of the Pre A*-variables in any min 

term has the value 2, then the sum of min terms 

containing that min term has the value 2. 

 

Note 3.2.1: The min term 𝑦1𝑦2 … 𝑦𝑛 where 𝑦𝑖 =
𝑥𝑖   or 𝑦𝑖 = 𝑥𝑖 in Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 has the 

value 1 if and only if each  𝑦𝑖 is 1and this occurs if and 

only if 𝑥𝑖 = 1 when 𝑦𝑖 = 𝑥𝑖 and 𝑥𝑖 = 0 when  𝑦𝑖 = 𝑥𝑖 . 

Otherwise it has the value 0. Hence the above does not 

hold in case of Boolean variables. That is, the min term of 

Boolean variables may not have the value 1 whenever any 

one of the Boolean variables has the value 1. 

 

Note 3.2.1: It is also possible to find a Pre A*-expression 

that represents a Pre A*-function by taking a Pre A*-

product of Pre A*-sums. The resulting expansion is called 

the Product-of-Sums expansion (PSE) of the Pre A*-

function. These expansions can be found from Sum-of-

Products expansion by taking the duals. 

 

Theorem 3.2.2: Every Pre A*-function can be 

represented by a Sum-of-Products expansion (SPE) or by 

Products-of-sums expansion (PSE). 

 

Proof: Let 𝑓 be a Pre A*-function on 𝟑𝑛. 

 

Case 1: If 𝑓(𝑋) = 2 for all 𝑋 in 𝟑𝑛, then the proof is 

trivial. That is 𝑓 can be represented as SPE. Since, any Pre 

A*-function has the value 2 whenever any one of the Pre 

A*-variables takes the value 2 in its functional value. And 

hence it can be represented as Sum-of-Products expansion 

(SPE). And the same is for Product-of-Sums expansion 

(PSE), since PSE can be found from SPE by duality 

principle.  

 

Case 2: 𝑓(𝑋) ≠ 2, for all 𝑋 in 𝟑𝑛, clearly either 𝑓(𝑋) =
1 or 𝑓(𝑋) = 0 , for all 𝑋 in 𝟑𝑛. For simplicity of our 

notation, let us denote " + "  by " ∨ " (meet) and " ∙ "  by 

 " ∧ " (join). Let T be the set of value 1 of 𝑓, and consider 

SPE 

                            

𝐸𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 ) = ⋁ (⋀ 𝑥𝑖𝑖/𝑦𝑖=1 ⋀ 𝑥𝑗
~

𝑗/𝑦𝑗=0 )𝑌∈𝑇        (1) 

 

If we interprate 𝐸𝑓 as a Pre A*-function on 𝟑𝑛, then  𝐸𝑓 

has the value 1 at the point 𝑋∗ ∈ 𝟑𝑛 if and only if there 

exists  

 

𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛  ) ∈ 𝑇  such that  

 ⋀ 𝑥𝑖
∗

𝑖/𝑦𝑖=1 ⋀ 𝑥𝑗
∗~ = 1𝑗/𝑦𝑗=0                                           (2) 

 

But condition (2) simply means that 

𝑥𝑖
∗ = 1 whenever 𝑦𝑖 = 1 and 𝑥𝑖

∗ = 0 whenever 𝑦𝑖 = 0 . 
That is 𝑋∗ = 𝑌. 

Hence, 𝐸𝑓 has the value 1 at the point 𝑋∗ (that is  

𝐸𝑓(𝑋∗) = 1) if and only if 𝑋∗ ∈ 𝑇, and we conclude that 

𝐸𝑓 represents 𝑓. 

 

A similar reasoning establishes that 𝑓 can also represented 

by the SPE. Or simply this can be  done by the dual of the 

first part  (that is the proof of the above) of this theorem. 

 

3.3. Implicants of Pre A*-Functions 

 

Definition 3.3.1: Given two Pre A*-functions 𝑓 and 𝑔 on 

𝟑𝑛, we say that 𝑓 implies 𝑔 (or that 𝑓 is a minorant of 𝑔, 

or that 𝑔 is a majorant of 𝑓)  if 

 

𝑓(𝑋) = 2  implies 𝑔(𝑋) = 2 for all 𝑋 in 𝟑𝑛.  

 

When this is the case, we write 𝑓 ≤ 𝑔. 

 

This definition extends in a straightforward way to Pre 

A*-expressions, since every Pre A*-expression can be 

regarded as a Pre A*-function. 

 

Theorem 3.3.1[6]: Let 𝑓 𝑎𝑛𝑑 𝑔 be two Pre A*-functions 

on 𝟑𝑛, then the following holds. 

 

a)  𝑓 ≤ 𝑓 + 𝑔    b)  𝑓𝑔 ≤ 𝑓 

 

Note 3.3.1[6]:  From the above theorem 3.3.1, it is also 

true that 𝑔 ≤ 𝑓 + 𝑔 𝑎𝑛𝑑 𝑓𝑔 ≤ 𝑔. 

 

Theorem 3.3.2: For all Pre A*-functions 𝑓 and 𝑔 on 𝟑𝑛, 

the following statements are equivalent. 

 

1. 𝑓 ≤ 𝑔 
2. 𝑓 + 𝑔 = 𝑔 
3. 𝑓~ + 𝑔 = 𝑓 + 𝑔~ = 𝑓 + 𝑔 
4. 𝑓𝑔 = 𝑓 
 

Proof:  (1) implies (2). 

 

Let  𝑓 ≤ 𝑔. Then 𝑓(𝑋) = 2 implies that  𝑔(𝑋) = 2 for all 

𝑋 in 𝟑𝑛.  

 

Then 𝑓(𝑋) + 𝑔(𝑋) = 2 + 2 = 2, which implies that 

𝑓 + 𝑔 = 2  for all 𝑋 in  𝟑𝑛 .  
 

This implies that, 𝑓 + 𝑔 = 2 implies that 𝑔 = 2. That is 

𝑓 + 𝑔 ≤ 𝑔.                (I) 

 

Conversely, suppose that 𝑔(𝑋) = 2 for all 𝑋 in 𝟑𝑛 

 

Since by condition (1), 𝑓 ≤ 𝑔, then 

 

𝑓 + 𝑔(𝑋) = 𝑓(𝑋) + 𝑔(𝑋) = 2 + 2 = 2 

 

This means that, 𝑔 = 2. This leads to 𝑓 + 𝑔 = 2. That is 

𝑔 ≤ 𝑓 + 𝑔.               (II) 

 

Therefore, from (I) and (II) we have 𝑓 + 𝑔 = 𝑔. 
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Similar reasoning proves the remaining conditions. 

 

Properties of implicants  

 

Theorem 3.3.3: For all Pre A*-functions𝑓, 𝑔 and ℎ on 𝟑𝑛, 

we have the following. 

 

i. 0 ≤ 𝑓 ≤ 2 

ii. 𝑓𝑔 ≤ 𝑓 ≤ 𝑓 + 𝑔 

iii. 𝑓 = 𝑔  if and only if  𝑓 ≤ 𝑔  and  𝑔 ≤ 𝑓 

iv. 𝑓 ≤ ℎ  and  𝑔 ≤ ℎ  if and only if  𝑓 + 𝑔 ≤ ℎ 

v. 𝑓 ≤ 𝑔  and  𝑓 ≤ ℎ  if and only if  𝑓 ≤ 𝑔ℎ 

vi. If  𝑓 ≤ 𝑔  then  𝑓ℎ ≤ 𝑔ℎ 

vii. If  𝑓 ≤ 𝑔  then  𝑓 + ℎ ≤ 𝑔 + ℎ. 

 

Proof: All these properties can be easily verified from the 

definition of implicants.  

 

To see that, let us prove the fifth property. Let 𝑓 ≤ 𝑔  and 

 𝑓 ≤ ℎ , 𝑓 = 2  implies that  𝑔 = 2  and  ℎ = 2  for all 𝑋 

in 𝟑𝑛. Then, 𝑔ℎ = 2 ∙ 2 = 2. That is 𝑓 = 2 implies that  

𝑔ℎ = 2 and hence  𝑓 ≤ 𝑔ℎ. 

Conversely, suppose that 𝑓 ≤ 𝑔ℎ. Then 𝑓 = 2  implies 

that  𝑔ℎ = 2. And hence, 

𝑔ℎ = 2 implies that either 𝑔 = 2 of ℎ = 2 or both equals 

2. Therefore, 𝑓 ≤ 𝑔ℎ implies that 𝑓 ≤ 𝑔  and  𝑓 ≤ ℎ  and 

hence the proof. 

 

Definition 3.3.2: Let 𝑓 be a Pre A*-function and 𝐶 be an 

elementary join. We say that 𝐶 is an implicant of 𝑓 if 𝐶 

implies 𝑓. 

 

Example 3.3.1: Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑥𝑦~𝑧 + 𝑥~𝑦𝑧~ be 

a Pre A*-function. Then the elementary joins 𝑥𝑦, 𝑥𝑦~𝑧,
𝑥~𝑦𝑧~ are implicants of 𝑓. Since, if any one of these 

elementary joins (min terms) has the value 2, then 

automatically 𝑓 will have the value 2.  

 

Theorem 3.3.4: If 𝐸 is a Sum-of-Products (SPE) 

representation of the Pre A*-function 𝑓, then every term 

of 𝐸 is an implicant of 𝑓. Moreover, if 𝐶 is an imlicant of 

𝑓, then the SPE 𝐸 + 𝐶 also represents 𝑓. 

 

Proof: For the first statement, notice that, if any term of 𝐸 

takes the value 2, then 𝐸, and hence 𝑓, take the value 2.  

 

For the second part of this theorem, we just successively 

check that 

 

𝐸 + 𝐶 ≤ 𝑓 and 𝑓 ≤ 𝐸 ≤ 𝐸 + 𝐶. 

 

To do this, suppose that 𝐸 + 𝐶 = 2 then either 𝐸  or  𝐶 or  

both equals 2. Since 𝐸 is the SPE representation of 𝑓 and 

𝐶 is an implicant of 𝑓, then clearly 𝑓 has the value 2. That 

is, 

 

𝐸 + 𝐶 = 2 implies that 𝑓 = 2. 

Therefore 𝐸 + 𝐶 ≤ 𝑓. And let 𝑓 = 2. Since 𝐸 is the SPE 

representation of 𝑓, then 𝐸 = 2. Which means that 𝑓 ≤ 𝐸 

and 𝑓 = 2 also implies 𝐸 + 𝐶 = 2. That is 𝑓 ≤ 𝐸 + 𝐶.  

 

Hence the SPE 𝐸 + 𝐶 represents 𝑓. 

 

Example 3.3.2: By the above theorem, the Pre A*-

function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 + 𝑥𝑧~ admits the Sum-of-

Products expansion 𝑥𝑦𝑧𝑧 + 𝑥𝑦𝑧~𝑧 + 𝑥𝑦𝑧𝑦~ + 𝑥𝑧~.  

So 𝑥𝑦𝑧𝑧 + 𝑥𝑦𝑧~𝑧 + 𝑥𝑦𝑧𝑦~ + 𝑥𝑧~ = 𝑥𝑦𝑧 + 𝑥𝑦𝑧𝑧~ +
𝑥𝑦𝑦~𝑧 + 𝑥𝑧~ (since 𝑧𝑧 = 𝑧) 

                          = 𝑥𝑦(𝑧 + 𝑧𝑧~) + 𝑥𝑦𝑦~𝑧 + 𝑥𝑧~  =
𝑥𝑦𝑧 + 𝑥𝑦𝑦~𝑧 + 𝑥𝑧~ (as 𝑧 + 𝑧𝑧~ = 𝑧) 

                           = 𝑥(𝑦 + 𝑦𝑦~)𝑧 + 𝑥𝑧~  = 𝑥𝑦𝑧 + 𝑥𝑧~ (as 

𝑦 + 𝑦𝑦~ = 𝑦) 

 

Definition 3.3.3: Let 𝑓 be a Pre A*-function and 𝐶1, 𝐶2 be 

implicants of 𝑓. We say that 𝐶1 absorbs 𝐶2 if 𝐶1 + 𝐶2 =
𝐶1  or equivalently 𝐶2 ≤  𝐶1. 

 

Note 3.3.2: In the case of Pre A*-functions, a Pre A*-

variable can be implicant of a Pre A*-function because, if 

a Pre A*-variable has the value 2 in its functional value, 

then immediately the Pre A*-function will have the value 

2. But this is not generally true in the case of Boolean 

functions. 

 

4. CONCLUSION 
 

In this manuscript, it is noticed that, the total number of 

Pre A*-functions 𝑓: 𝟑𝑛 → 𝟑  is  3(3𝑛). It is also observed 

that if any Pre A*-variable assumes the value 2 in its Pre 

A*-function, then the function has the value 2 (the 

dominance property of 2). The principle of duality and its 

properties of Pre A*-functions is identified. The min term 

of a Pre A*-variables 𝑥1, 𝑥2, … , 𝑥𝑛 is obtained as a Pre 

A*-product 𝑦1𝑦2 … 𝑦𝑛 where 𝑦𝑖 = 𝑥𝑖   or 𝑦𝑖 = 𝑥𝑖
~. It is 

also noticed that, if any one of the Pre A*-variables in any 

min term has the value 2, then the sum of min terms 

containing that min term has the value 2. Every Pre A*-

function can be represented by a Sum-of-Products 

expansion (SPE) or by Sum-of-Products expansion (PSE). 

It is observed that, a Pre A*-variable can be an implicant 

of a Pre A*-function but this is not generally true in the 

case of Boolean functions. 

      In general one can observe that, many common 

properties are obeyed by both Pre A*-functions and 

Boolean functions. 
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