Determinants of Circulant Matrices with Some Certain Sequences

Ercan ALTINIȘIK ${ }^{1, \star}$, Șerife BÜYÜKKÖSE ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Gazi University, 06500 Teknikokullar - Ankara, Turkey

Received:06/09/2014 Accepted:01/12/2014

Abstract

Let $\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}$ be a sequence of real numbers defined by an \boldsymbol{m} th order linear homogenous recurrence relation. In this paper we obtain a determinant formula for the circulant matrix $\boldsymbol{A}=\boldsymbol{\operatorname { c i r c }}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{\boldsymbol{n}}\right)$, providing a generalization of determinantal results in papers of Bozkurt [2], Bozkurt and Tam [3], and Shen, et al. [8].

Keywords: circulant matrix, determinant, Fibonacci sequence, Lucas sequence, tribonacci sequence.
2010 MSC: 15A15, 05B20, 11B39.

1. INTRODUCTION

The circulant matrix $V=\operatorname{circ}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ associated to real numbers $v_{1}, v_{2}, \ldots, v_{n}$ is the $n \times n$ matrix

$$
V=\left(\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{n} \\
v_{n} & v_{1} & \cdots & v_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
v_{2} & v_{3} & \cdots & v_{1}
\end{array}\right) .
$$

Circulant matrices are one of the most interesting members of matrices. They have elegant algebraic properties. For example, $\operatorname{Circ}(n)$ is an algebra on \mathbb{C}. Let ϵ be a primitive $n^{\text {th }}$ root of unity. For each $0 \leq k \leq n-1, \lambda_{k}=\sum_{j=1}^{n} v_{j} \epsilon^{k(j-1)}$ is an eigenvalue of $V=\operatorname{circ}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and the corresponding eigenvector is $x_{k}=\frac{1}{\sqrt{n}}\left(1, \epsilon^{k}, \epsilon^{2 k}, \ldots, \epsilon^{(n-1) k}\right) \in \mathbb{C}^{n}$. Indeed, all circulant matrices have the same ordered set of orthonormal eigenvectors $\left\{x_{k}\right\}$. Besides, det $V=$ $\prod_{k=0}^{n-1}\left(\sum_{j=0}^{n-1} v_{j} \epsilon^{k j}\right)$. The reader can consult the text of Davis [4] for further properties of circulant matrices. On the other hand, circulant matrices have a widespread applications in many parts of mathematics. The excellent survey paper [6] includes many applications of circulant matrices in various areas of mathematics. Also, they
have applications in signal processing, the study of cyclic codes for error corrections [5] and in quantum mechanics [1].

Recently, many authors have investigated some properties of circulant matrices associated to so famous integer sequences, for example, the Fibonacci sequence and the Lucas sequence. Let $a, b, p, q \in \mathbb{Z}$. Define a sequence (U_{n}) by the second order recurrence relation

$$
\begin{equation*}
U_{n}=p U_{n-1}+q U_{n-2} \tag{1}
\end{equation*}
$$

($n \geq 3$) with initial conditions $U_{1}=a$ and $U_{2}=b$. Taking $(p, q, a, b)=(1,1,1,1),(1,1,1,3),(1,2,1,1)$ and $(1,2,1,3),\left(U_{n}\right)$ becomes the Fibonacci sequence (F_{n}), the Lucas sequence (L_{n}), the Jacobsthal sequence $\left(J_{n}\right)$ and the Jacobsthal-Lucas sequence (j_{n}), respectively. In 1970 Lind [7] obtained a formula for the determinant of $F=\operatorname{circ}\left(F_{r}, F_{r+1}, \ldots, F_{r+n-1}\right)(r \geq 1)$. In 2005 Solak [9] investigated matrix norms of $F=$ $\operatorname{circ}\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ and $L=\operatorname{circ}\left(L_{1}, L_{2}, \ldots, L_{n}\right)$. In 2011 Shen, Cen and Hao [8] showed that

$$
\operatorname{det}(F)=\left(1-F_{n+1}\right)^{n-1}+F_{n}^{n-2} \sum_{k=1}^{n-1} F_{k}\left(\frac{1-F_{n+1}}{F_{n}}\right)^{k-1}
$$

and

$$
\operatorname{det}(L)=\left(1-L_{n+1}\right)^{n-1}+\left(L_{n}-2\right)^{n-2} \sum_{k=1}^{n-1}\left(L_{k+2}-3 L_{k+1}\right)\left(\frac{1-L_{n+1}}{L_{n}-2}\right)^{k-1} .
$$

Recently, Bozkurt and Tam [3] have obtained determinant formulae for

$$
J=\operatorname{circ}\left(J_{1}, J_{2}, \ldots, J_{n}\right) \text { and } \mathbb{J}=\operatorname{circ}\left(j_{1}, j_{2}, \ldots, j_{n}\right)
$$

using the same method. Then Bozkurt [2] has given a generalization of these determinant formulae as

$$
\begin{equation*}
\operatorname{det}(U)=\left(a^{2}-b U_{n}\right)\left(a-U_{n+1}\right)^{n-2}+\sum_{k=2}^{n-1}\left(a U_{k+1}-b U_{k}\right)\left(a-U_{n+1}\right)^{k-2}\left(q U_{n}-b+q a\right)^{n-k}, \tag{2}
\end{equation*}
$$

where $\left\{U_{k}\right\}$ is the sequence in (1).
In all of the above-mentioned papers authors calculated determinants of circulant matrices associated to a sequence defined by a second order recurrence relation by using the same method. In this paper we generalize determinantal results of these papers for certain sequences defined by a recurrence relation of order $m \geq 1$.

2. THE MAIN RESULT

Let $c_{1}, c_{2}, \ldots, c_{m}$ be real numbers and $c_{m} \neq 0$. Consider the sequence $\left\{a_{k}\right\}$ defined by the m th order linear homogenous recurrence relation

$$
\begin{equation*}
a_{k}=c_{1} a_{k-1}+c_{2} a_{k-1}+\cdots+c_{m} a_{k-m} \quad(k \geq m+1) \tag{3}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
a_{1}, a_{2}, \ldots, a_{m} \tag{4}
\end{equation*}
$$

which are given real numbers. Let $n>m$ and $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Let $A_{i j}$ be the $i j-$ entry of A. It is clear that $A_{i j}=a_{j-i+1}$ if $j \geq i$ and $a_{n+j-i+1}$ otherwise. On the other hand, for simplicity, we write $A_{i j}=a_{(j-i+1)}$ in both case. Our main goal is to reduce the order n of the determinant of A and to calculate it in a simpler way. In order to perform this, first we define an $n \times n$ matrix $P=\left(P_{i j}\right)$, where

$$
P_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j=1 \text { or } i+j=n+2, \\
-c_{m} & \text { if } i=m+1 \text { and } j=1, \\
-c_{t} & \text { if } i+j-t=n+2 \text { and } i \geq m+1 \text { and } 1 \leq t \leq m, \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then the $i j$-entry of the product of P and A is

$$
(P A)_{i j}=\left\{\begin{array}{cl}
A_{1 j} & \text { if } i=1 \\
A_{n-i+2, j} & \text { if } 2 \leq i \leq m, \\
\alpha_{t} & \text { if } i+j=n+t+1 \text { and } 1 \leq t \leq m, \\
0 & \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{equation*}
\alpha_{t}=A_{n-m+1, n-m+t}-c_{1} A_{n-m+2, n-m+t}-\cdots-c_{m-1} A_{n, n-m+t}-c_{m} A_{1, n-m+t} . \tag{5}
\end{equation*}
$$

Now, we define a sequence $\left\{b_{s}^{(r)}\right\}$ for every $r=1,2, \ldots, m-1$ by the recurrence relation

$$
\begin{equation*}
b_{s}^{(r)}=-\frac{\alpha_{2}}{\alpha_{1}} b_{s-1}^{(r)}-\frac{\alpha_{3}}{\alpha_{1}} b_{s-2}^{(r)}-\cdots-\frac{\alpha_{m}}{\alpha_{1}} b_{s-m+1}^{(r)} \quad(s \geq m) \tag{6}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
b_{i}^{(r)}=\delta_{i, r}, \tag{7}
\end{equation*}
$$

the Kronecker delta, for $i=1,2, \ldots, m-1$. We form another $n \times n$ matrix $Q=\left(Q_{i j}\right)$ such that

$$
Q_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j=1 \text { or } i+j=n+2 \\
b_{n-i+1}^{(j-1)} & \text { if } 2 \leq i \leq n-m+1 \text { and } 2 \leq j \leq m \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, we have

$$
(P A Q)_{i j}=\left\{\begin{array}{cl}
A_{1,1} & \text { if } i=j=1, \\
A_{n-i+2,1} & \text { if } 2 \leq i \leq m \text { and } j=1, \\
\sum_{k=2}^{n} A_{1 k} b_{n-k+1}^{(j-1)} & \text { if } i=1 \text { and } 2 \leq j \leq m, \\
\sum_{k=2}^{n} A_{n-i+2, k} b_{n-k+1}^{(j-1)} & \text { if } 2 \leq i, j \leq m, \\
\alpha_{k} & \text { if } i, j>m \text { and } 1 \leq k \leq m \text { and } i-j=k-1, \\
0 & \text { otherwise. }
\end{array}\right.
$$

Recall that $A_{i j}=a_{j-i+1}$ if $j \geq i$ and $a_{n+j-i+1}$ otherwise and that we write $A_{i, j}=a_{(j-i+1)}$ for simplicity. Also, it is clear that $\operatorname{det} P=\operatorname{det} Q=(-1)^{\frac{n(n+1)}{2}-1}$ and $\alpha_{1}=a_{1}-a_{n+1}$. Finally, we get the following lemma.

Lemma 1. Let $\left\{a_{k}\right\}$ be the sequence defined by the recurrence relation in (3) with initial conditions in (4), $n>m$ and $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Then

$$
\operatorname{det} A=\left(a_{1}-a_{n+1}\right)^{n-m} \times \sum_{k_{1}=2}^{n} \cdots \sum_{k_{m-1}=2}^{n}\left|\begin{array}{cccc}
a_{1} & a_{\left(k_{1}\right)} & \cdots & a_{\left(k_{m-1}\right)} \tag{8}\\
a_{2} & a_{\left(k_{1}+1\right)} & \cdots & a_{\left(k_{m-1}+1\right)} \\
\vdots & \vdots & & \vdots \\
a_{m} & a_{\left(k_{1}+m-1\right)} & \cdots & a_{\left(k_{m-1}+m-1\right)}
\end{array}\right| \prod_{i=1}^{m-1} b_{n-k_{i}+1}^{(i)},
$$

where sequences $\left\{b_{s}^{(r)}\right\}$ are defined by the recurrence relation in (6) with initial conditions in (7).
Indeed, the determinant formula for $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in Lemma 1 is not effective but we obtain it by generalizing the common method of papers [8,3,2] for the sequence $\left\{a_{k}\right\}$ defined by a recurrence relation of order $m \geq 1$. To illustrate our goal we consider the well-known tribonacci sequence. The tribonacci sequence $\left\{a_{k}\right\}$ is defined by the recurrence relation

$$
a_{k}=a_{k-1}+a_{k-2}+a_{k-3} \quad(k \geq 4)
$$

with initial conditions $a_{1}=1, a_{2}=1, a_{3}=2$. For convenience, we take $a_{0}=0$.
Corollary 1. Let $\left\{a_{k}\right\}$ be the tribonacci sequence, $n>3$ and $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Then

$$
\begin{aligned}
& \operatorname{det}(A)=\left(1-a_{n+1}\right)^{n-3}\left(\sum_{i=2}^{n-3} \sum_{j=i+1}^{n-2}\left(a_{i-2} a_{j-1}-a_{i-1} a_{j-2}\right)\left(\frac{\alpha_{3}}{\alpha_{1}}\right)^{n-j-1} b_{j-i+2}^{(1)}\right. \\
& +\sum_{i=2}^{n-2}\left(\left(a_{i-2}+a_{i-1}\right)+a_{n-1}\left(a_{i+2}-2 a_{i+1}\right)+a_{n}\left(2 a_{i}-a_{i+2}\right)\right) b_{n-i+1}^{(1)} \\
& \left.+\sum_{i=2}^{n-2}\left(-a_{i-1}+a_{n}\left(a_{i+2}-2 a_{i+1}\right)\right) \frac{\alpha_{1}}{\alpha_{3}} b_{n-i+2}^{(1)}+\left(2 a_{n}^{2}-2 a_{n}-a_{n-1}+1\right)\right) .
\end{aligned}
$$

Proof. Let $\left\{a_{k}\right\}$ in Lemma 1 be the tribonacci sequence. Then clearly $m=3, a_{1}=a_{2}=1, a_{3}=2, \alpha_{1}=1-a_{n+1}$ and by Lemma 1, we have

$$
\operatorname{det}(A)=\left(1-a_{n+1}\right)^{n-3} \sum_{i=2}^{n} \sum_{j=2}^{n}\left|\begin{array}{ccc}
1 & a_{(i)} & a_{(j)} \\
1 & a_{(i+1)} & a_{(j+1)} \\
2 & a_{(i+2)} & a_{(j+2)}
\end{array}\right| b_{n-i+1}^{(1)} b_{n-j+1}^{(2)} .
$$

We denote the 3×3 determinant in the summation by $\Delta((i),(j))$. It is clear that $\Delta((i),(i))=0$ and $\Delta(j),(i))=$ $-\Delta((i),(j))$. Also, we have $\Delta((i),(j))=\Delta(i, j)$ if $1 \leq i, j \leq n-3$. Thus

$$
\operatorname{det}(A)=\left(1-a_{n+1}\right)^{n-3} \sum_{i=2}^{n-1} \sum_{j=i+1}^{n} \Delta((i),(j))\left(b_{n-i+1}^{(1)} b_{n-j+1}^{(2)}-b_{n-j+1}^{(1)} b_{n-i+1}^{(2)}\right) .
$$

Now, sequences $\left\{b_{k}^{(1)}\right\}$ and $\left\{b_{k}^{(2)}\right\}$ are generated by the recurrence relation in (6) with different initial conditions, all of which are given in (7). The characteristic equation of the recurrence relation in (6) is $\alpha_{1} r^{2}+\alpha_{2} r+\alpha_{3}=0$, where $\alpha_{1}=1-a_{n+1}, \alpha_{2}=-a_{n}-a_{n-1}$ and $\alpha_{3}=-a_{n}$. Since $\alpha_{2}^{2}-4 \alpha_{1} \alpha_{3}<\left(-a_{n}+a_{n-1}\right)\left(3 a_{n}+a_{n-1}\right)<0$ for all $n \geq$ 1, the characteristic equation has two distinct complex roots, say λ and μ. Finally, Binet's formula for sequences $b_{k}^{(1)}$ and $b_{k}^{(2)}$ are $b_{k}^{(1)}=\frac{\lambda \mu}{\mu-\lambda}\left(\lambda^{k-2}-\mu^{k-2}\right)$ and $b_{k}^{(2)}=\frac{1}{\lambda-\mu}\left(\lambda^{k-1}-\mu^{k-1}\right)$, respectively. Using Binet's formulae we have the identity

$$
b_{k}^{(1)} b_{t}^{(2)}-b_{t}^{(1)} b_{k}^{(2)}=\left(\frac{\alpha_{3}}{\alpha_{1}}\right)^{t-2} b_{k-t+2^{\prime}}^{(1)}
$$

where $k \geq t$. Thus, we have

$$
\begin{aligned}
\operatorname{det}(A) & =\left(1-a_{n+1}\right)^{n-3}\left(\sum_{i=2}^{n-3} \sum_{j=i+1}^{n-2} \Delta(i, j)\left(\frac{\alpha_{3}}{\alpha_{1}}\right)^{n-j-1} b_{j-i+2}^{(1)}\right. \\
& \left.+\sum_{i=2}^{n-2} \Delta(i,(n-1)) b_{n-i+1}^{(1)}+\sum_{i=2}^{n-2} \Delta(i,(n)) \frac{\alpha_{1}}{\alpha_{3}} b_{n-i+2}^{(1)}+\Delta((n-1),(n)) \frac{\alpha_{1}}{\alpha_{3}} b_{3}^{(1)}\right)
\end{aligned}
$$

The proof follows from equalities

$$
\begin{gathered}
\Delta(i, j)=a_{i-2} a_{j-1}-a_{i-1} a_{j-2}, \\
\Delta(i,(n-1))=\left(2 a_{n}-1\right) a_{i}+\left(1-2 a_{n-1}\right) a_{i+1}+\left(a_{n-1}-a_{n}\right) a_{i+2}, \\
\Delta(i,(n))=a_{i}+\left(1-2 a_{n}\right) a_{i+1}+a_{n-1} a_{i+2}, \\
\Delta((n-1),(n)) \frac{\alpha_{1}}{\alpha_{3}} b_{3}^{(1)}=2 a_{n}^{2}-2 a_{n}-a_{n-1}+1 .
\end{gathered}
$$

We cannot state that the determinant formula in Corollary 1 is elegant but it reduces an $n \times n$ determinant to a double sum.
Corollary 2. ([2], Theorem 1) Let $\left\{U_{k}\right\}$ be the sequence defined by the recurrence relation given in (1) with initial conditions $U_{1}=a, U_{2}=b, n>3$ and $A=\operatorname{circ}\left(U_{1}, U_{2}, \ldots, U_{n}\right)$. Then

$$
\operatorname{det}(U)=\left(a^{2}-b U_{n}\right)\left(a-U_{n+1}\right)^{n-2}+\sum_{k=2}^{n-1}\left(a U_{k+1}-b U_{k}\right)\left(a-U_{n+1}\right)^{k-2}\left(q U_{n}-b p a\right)^{n-k}
$$

Proof. Let $\left\{a_{k}\right\}$ in Lemma 1 be the sequence $\left\{U_{k}\right\}$ given in (1) with initial conditions $U_{1}=a$ and $U_{2}=b$. Then $\alpha_{1}=a-U_{n+1}, \alpha_{2}=b-p U_{1}-q U_{n}$ and hence $b_{i}^{(1)}=\left(-\alpha_{2} / \alpha_{1}\right)^{i-1}$. Thus, by Lemma 1, we have

$$
\begin{aligned}
\operatorname{det}(A) & =\left(a-U_{n+1}\right)^{n-2} \sum_{k=2}^{n}\left|\begin{array}{cc}
a & U_{(k)} \\
b & U_{(k+1)}
\end{array}\right| b_{n-k+1}^{(1)} \\
& =\left(a-U_{n+1}\right)^{n-2}\left[\left(a^{2}-U_{n} b\right)+\sum_{\substack{k=2 \\
n-1}}^{a} c c\left|\begin{array}{cc}
a & U_{k} \\
b & U_{k+1}
\end{array}\right| b_{n-k+1}^{(1)}\right] \\
& =\left(a-U_{n+1}\right)^{n-2}\left[\left(a^{2}-b U_{n}\right)+\sum_{k=2}^{n-1}\left(a U_{k+1}-b U_{k}\right)\left(-\frac{q U_{n}-b+p a}{a-U_{n+1}}\right)^{n-k}\right] .
\end{aligned}
$$

A simple calculation completes the proof.
Renaming terms of sequence $\left\{U_{k}\right\}$ as $\left\{W_{k-1}\right\}$ we obtain the same formula in Theorem 1 of Bozkurt's paper [2]. Also, by choosing convenient values for p, q, a and b in Corollary 1 we can obtain all determinant formulae in [3,8]. Taking $(p, q, a, b)=(1,1,1,1),(1,1,1,3),(1,2,1,1)$ and $(1,2,1,3)$, we have Theorems 2.1 and 3.1 of $[8]$ and Theorems 2.1 and 2.2 of [3], respectively. Also, by Lemma 1, we can easily evaluate the determinant of $A=\operatorname{circ}\left(a, a^{2}, a^{3}, \ldots, a^{n}\right)$, where a is a nonzero real number, as $\operatorname{det}(A)=a^{n}\left(1-a^{n}\right)^{n-1}$.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Aldrovandi, R: Mathematical Physics: Stochastic, Circulant and Bell Matrices. World Scientific, New York (2001)
[2] Bozkurt, D, Tam, TY: Determinants and inverses of r-circulant matrices associated with a number sequence. Linear and Multilinear Algebra. DOI:10.1080/03081087.2014.941291 (2014)
[3] Bozkurt, D, Tam, TY: Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers. Appl. Math. Comput. 219, 544-551 (2012)
[4] Davis, PJ: Circulant Matrices. Wiley, New York (1979)
[5] Gray, RM: Toeplitz and Circulant Matrices: A review. Now Publishers Inc., Hanover (2005)
[6] Kra, I, Simanca, SR: On Circulant matrices: Notices of the AMS 59, 368-377 (2012)
[7] Lind, DA: A Fibonacci Circulant. Fibonacci Quart. 8, 449-455 (1970)
[8] Shen, SQ, Cen JM, Hao, Y: On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers. Appl. Math. Comput. 217, 9790-9797 (2011)
[9] Solak, S: On the norms of circulant matrices with Fibonacci and Lucas numbers. Appl. Math. Comput. 160, 125-132 (2005)

