Improved Bounds for the Extremal Non-Trivial Laplacian Eigenvalues

Şerife BÜYÜKKÖSE ${ }^{1, \star}$, Ercan ALTINIŞIK ${ }^{1}$, Feyza YALÇIN ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar-Ankara, Turkey
2Department of Mathematics, Faculty of Arts and Sciences, Harran University, 63050 Şanliurfa, Turkey

Received:12/09/2014 Revised:04/11/2014 Accepted:05/11/2014

Abstract

Let G be a simple connected graph and its Laplacian eigenvalues be $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}=0$. In this paper, we present an upper bound for the algebraic connectivity μ_{n-1} of G and a lower bound for the largest eigenvalue μ_{1} of G in terms of the degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ of G and the number $\left|N_{i} \cap N_{j}\right|$ of common vertices of i and j ($1 \leq i<j \leq n$) and hence we improve bounds of Maden and Büyükköse [14].

Keywords: Laplacian eigenvalues, upper bounds, lower bounds, eigenvalue inequalities.
2010 MSC: 05C50, 15A18.

1. INTRODUCTION

Let $G=(V, E)$ be a simple graph with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E. We use $i \sim j$ to denote that $v_{i} v_{j}$ is an edge of G and N_{i} to denote that the set of neighbours of v_{i}. For $v_{i} \in V$, the degree of v_{i} and the average of the degrees of the vertices adjacent to v_{i} are denoted by d_{i} and m_{i}, respectively. We assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ without lost of generality and we call $d_{1}, d_{2}, \ldots, d_{n}$ the degree sequence of G. Let $A(G)$ be the adjacency matrix of G and let $D(G)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is $L(G)=D(G)-A(G)$. For the simplicity of notation, we write $L(G)=L$. Clearly, L is a real symmetric matrix. From this fact and Geršgorin's Theorem, it follows that its eigenvalues are nonnegative real numbers. Morever, since the sum of rows is 0 , it is obvious that 0 is the smallest eigenvalue of L with the all ones vector as an eigenvector. The Laplacian
eigenvalues of G are the eigenvalues of the Laplacian matrix L of G. Throughout this paper, the Laplacian eigenvalues of G are denoted by

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}=0 .
$$

In addition, by the extremal non-trivial Laplacian eigenvalues, we shall mean μ_{n-1} and μ_{1}. It is easy to show that $\mu_{n-1}(G)=0$ if and only if G is not connected. Thus, μ_{n-1} is called the algebraic connectivity of the graph G [5]. In [1] it is proved that if μ is an eigenvalue of L then $\mu \leq n$ and that the multiplicity of 0 equals the number of components of G. Thus, G is a connected graph if and only if $\mu_{n-1}>$ 0 .

The Laplacian eigenvalues of a graph are important in the graph theory because they have a relation to numerous graph invariants, including connectivity, expanding property, isoperimetric number, maximum
cut, independence number, genus, diameter, mean distance and bandwidth-type parameters of a graph. In many application one needs good lower bound and upper bound of extremal non-trivial Laplacian eigenvalues (see [1], [3], [4], [6], [7], [9], [10], [11], [12], [14]).

In this paper, our aim is to improve the upper bound for the algebraic connectivity μ_{n-1} of G and the lower bound for μ_{1} of G given by Maden and Büyükköse [14]. We use Theorem 1 [13] and modify the technique of the proof of Lemma 3 [13], we give an upper bound for the algebraic connectivity μ_{n-1} of G and a lower bound of the largest eigenvalue μ_{1} of G in terms of the degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ of G and the number $\left|N_{i} \cap N_{j}\right|$ of common vertices of i and $j(1 \leq i<j \leq$ n).

We always assume that G is a simple connected graph of order n. The known upper and lower bounds which we used in proof of our main theorem are following:

1. Grone and Merris' bound [15]:

$$
\begin{equation*}
\mu_{1} \geq d_{1}+1 \tag{1}
\end{equation*}
$$

where d_{1} is the largest degree of G.
2. Li and Pan's bound [16]:

$$
\begin{equation*}
\mu_{2} \geq d_{2}, \tag{2}
\end{equation*}
$$

where d_{2} and μ_{2} are the second largest degree and the second largest Laplacian eigenvalue of G, respectively.
3. Fidler's bound [5]: Let G be a graph different from K_{n} and let d_{n} be its minimum degree. Then

$$
\begin{equation*}
\mu_{n-1} \leq d_{n} . \tag{3}
\end{equation*}
$$

2. THE MAIN RESULT

Firstly we summarize the results of Wolkowicz and Styan on the eigenvalue inequalities which are our fundamental tools in this paper.

Theorem 1. (Theorem 2.1 [13]) Let A be an $n \times n$ complex matrix with real eigenvalues $\lambda(A)$ and let $m=\frac{\operatorname{tr} A}{n}$, $s=\sqrt{\frac{\text { tr } A^{2}}{n}-m^{2}}$. Then

$$
\begin{align*}
& m-s \sqrt{n-1} \leq \lambda_{\min }(A) \leq m-\frac{s}{\sqrt{n-1}} \tag{4}\\
& m+\frac{s}{\sqrt{n-1}} \leq \lambda_{\max }(A) \leq m+s \sqrt{n-1} \tag{5}
\end{align*}
$$

Equality holds on the left (right) of (4) if and only if equality holds on the left (right) of (5) if and only if the $n-1$ largest (smallest) eigenvalues are equal.

In [13] Wolkowicz and Styan proved Theorem 1 by using the following lemmas.
Lemma 2. (Lemma 2.1 [13]) Let $C=I_{n}-\frac{e e^{T}}{n}, m=\frac{\lambda^{T} e}{n}, s^{2}=\frac{\lambda^{T} C \lambda}{n}$ where W and $\lambda=\left(\lambda_{j}\right) \in \mathbb{R}^{n}$ are column vectors, and $e=(1,1, \ldots, 1)^{T}$. Then

$$
\begin{equation*}
-s \sqrt{n W^{T} C W} \leq W^{T} \lambda-m W^{T} e=W^{T} C \lambda \leq s n W^{T} C W . \tag{6}
\end{equation*}
$$

Equality holds on the left (right) of (1) if and only if $\lambda=a w+$ be for some scalars a and b, where $a<0(a>0)$.
It should be noted that m and s^{2} defined in Theorem 1 and Lemma 2 are equivalent [13].
Lemma 3. (Lemma 2.2 [13]) Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), m$ and s be defined as in Lemma 2 and $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Then

$$
\begin{equation*}
\lambda_{n} \leq m-\frac{s}{\sqrt{n-1}} \leq m+\frac{s}{\sqrt{n-1}} \leq \lambda_{1} \tag{7}
\end{equation*}
$$

Using Theorem 1 Maden and Büyükköse [14] gave upper and lower bounds for μ_{n-1} and μ_{1}.
Theorem 4. (Theorem 3 and Corollary 5 [14]) Let G be a simple graph. Then

$$
\begin{equation*}
\sqrt{m-s \sqrt{\frac{n-2}{2}}} \leq \mu_{n-1} \leq \sqrt{m-s \sqrt{\frac{1}{n-1}}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{m+\frac{s}{\sqrt{n-1}}} \leq \mu_{1} \leq \sqrt{m+s \sqrt{n-1}} \tag{9}
\end{equation*}
$$

where $m=\frac{1}{n} \sum_{i=1}^{n} d_{i}\left(d_{i}+1\right)$ and
$s^{2}=\frac{1}{n}\left(\sum_{i=1}^{n}\left(d_{i}^{2}+d_{i}\right)^{2}+2 \sum_{\substack{i<j \\ i \sim j}}\left(d_{i}+d_{j}\right)\left(d_{i}+d_{j}-2\left|N_{i} \cap N_{j}\right|\right)+2_{i<j}\left|N_{i} \cap N_{j}\right|^{2}\right)-m^{2}$.

Now, we reprove Lemma 3 for the Laplacian matrix L of G and hence we improve the upper bound for λ_{n-1} in (8) and the lower bound for λ_{1} in (9).

Theorem 5. Let G be a simple graph and let m and s be defined as in Theorem 4. Then

$$
\begin{equation*}
\mu_{n-1} \leq\left(m-\left(\frac{n s^{2}+2\left(\left(d_{1}+1\right)^{2}-d_{n-1}^{2}\right)\left(d_{2}^{2}-d_{n-1}^{2}\right)}{n^{2}-n}\right)^{1 / 2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1} \geq\left(m+\left(\frac{n s^{2}+2\left(d_{1}+1\right)^{2}\left(\left(d_{1}+1\right)^{2}-d_{n}^{2}\right)}{n^{2}-n}\right)^{1 / 2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

Proof. Let G be a simple graph and let m and s be defined as in Theorem 4. Then we have that

$$
\begin{aligned}
& n^{2}\left(m-\mu_{n-1}^{2}\right)^{2}=n^{2}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\mu_{i}^{2}-\mu_{n-1}^{2}\right)\right)^{2} \\
= & \sum_{i=1}^{n}\left(\mu_{i}^{2}-\mu_{n-1}^{2}\right)^{2}+\sum_{j \neq k}\left(\mu_{j}^{2}-\mu_{n-1}^{2}\right)\left(\mu_{k}^{2}-\mu_{n-1}^{2}\right)
\end{aligned}
$$

By using (1)-(3) we have that

$$
\sum_{j \neq k}\left(\mu_{j}^{2}-\mu_{n-1}^{2}\right)\left(\mu_{k}^{2}-\mu_{n-1}^{2}\right) \geq 2\left(\left(d_{1}+1\right)^{2}-d_{n-1}^{2}\right)\left(d_{2}^{2}-d_{n-1}^{2}\right)
$$

On the other hand,

$$
\sum_{i=1}^{n}\left(\mu_{i}^{2}-\mu_{n-1}^{2}\right)^{2}=\sum_{i=1}^{n}\left(\mu_{i}^{2}-m+m-\mu_{n-1}^{2}\right)^{2}=\sum_{i=1}^{n}\left[\left(\mu_{i}^{2}-m\right)\left(\mu_{i}^{2}+m-2 \mu_{n-1}^{2}\right)\right]+n\left(m-\mu_{n-1}^{2}\right)^{2}
$$

$$
=n s^{2}+n\left(m-\mu_{n-1}^{2}\right)^{2}
$$

Finally, we have that

$$
n^{2}\left(m-\mu_{n-1}^{2}\right)^{2} \geq n s^{2}+n\left(m-\mu_{n-1}^{2}\right)^{2}+2\left(\left(d_{1}+1\right)^{2}-d_{n-1}^{2}\right)\left(d_{2}^{2}-d_{n-1}^{2}\right)
$$

Solving this inequality for μ_{n-1}^{2} we obtain the inequality in (10).
Now we similarly expand $n^{2}\left(\mu_{1}^{2}-m\right)$. Then we have

$$
n^{2}\left(\mu_{1}^{2}-m\right)^{2}=\left(n \mu_{1}^{2}-\sum_{i=1}^{n} \mu_{i}^{2}\right)^{2}=\sum_{i=1}^{n}\left(\mu_{1}^{2}-\mu_{i}^{2}\right)^{2}+\sum_{j \neq k}\left(\mu_{1}^{2}-\mu_{j}^{2}\right)\left(\mu_{1}^{2}-\mu_{k}^{2}\right)
$$

By using (1)-(3), we have that

$$
\sum_{j \neq k}\left(\mu_{1}^{2}-\mu_{j}^{2}\right)\left(\mu_{1}^{2}-\mu_{k}^{2}\right) \geq 2\left(d_{1}+1\right)^{2}\left(\left(d_{1}+1\right)^{2}-d_{n}^{2}\right)
$$

We have that

$$
n^{2}\left(\mu_{1}^{2}-m\right)^{2} \geq n\left(\mu_{1}^{2}-m\right)^{2}+n s^{2}+2\left(d_{1}+1\right)^{2}\left(\left(d_{1}+1\right)^{2}-d_{n}^{2}\right)
$$

Solving this inequality for μ_{1}^{2} we obtain the inequality in (11).
In the proof of Lemma 3 in [13, Lemma 2.2], the second sum is omitted but we consider it to improve the upper bound for μ_{n-1} in (8) and the lower bound for μ_{1} in (9). Now we compare our bounds with the bounds of Maden and Büyükköse [14].

Exercise 6. Let $G=(V, E)$ with $V=\{1,2,3,4,5,6,7,8\}$ and

$$
E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{2,5\},\{2,6\},\{2,8\},\{4,5\},\{4,6\},\{4,8\},\{6,7\},\{7,8\}\}
$$

For this graph $\mu_{7}=1.13$ and $\mu_{1}=7.1$. We present aforesaid upper bounds for μ_{7} and lower bounds for μ_{1} of the graph G as follows:

	μ_{7}	(8)	(10)		μ_{1}	(9)	(11)
G	1.13	4.72	2.76		7,10	3.02	5.17

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Anderson W.N., Morley T.D., Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145.
[2] Büyükköse Ş., Bounds for singular values using matrix traces, Msc Thesis, Selçuk University, (2000).
[3] Chung F.R.K., Eigenvalues of Graphs, In Proceeding of the International Congress of Mathematician, Zürich, Switzerland, (1994) 1333-1342.
[4] Das K. Ch., An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 368 (2003) 269-278.
[5] Fiedler M., Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
[6] Li J.-S., Zhang D., A new upper bound for eigenvalues of the Laplacian matrix of a graph, Linear Algebra Appl. 265 (1997) 93-100.
[7] Li J.-S., Zhang D., On Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998) 305-307.
[8] Lu M., Zhang L., Tian F., Lower bounds of the Laplacian spectrum of graphs based on diameter, Linear Algebra Appl. 420 (2007) 400-406.
[9] Merris R., A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998) 33-35.
[10] Merris R., Laplacian matrices of Graphs: a Survey, Linear Algebra and its Applications, 1 97, 198(1994) 143-176
[11] Mohar B., The Laplacian spectrum of graphs, In Graph Theory, Combinatorics and Applications, Vol. 2 (1998) 871-898.
[12] Rojo O., Soto R., Rojo H., An always nontrivial upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 312(2000),155-159.
[13] Wolkowicz H., Styan G.P.H., Bounds for eigenvalues using traces, Linear Algebra Appl. 29 (1980) 471-506.
[14] Maden A.D., Büyükköse Ş., Bounds for Laplacian Graph Eigenvalues, Mathematical Inequalities and Applications, Vol 12, Num. 3 (2012), 529-536.
[15] Grone R., Merris R., The Laplacian spectrum of a graph, SIAM J. Discr. Math. 7 (1994) 221-229.
[16] Li J.S., Pan Y.L., A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear Multilinear Algebra 48 (2000) 117-121.

