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ABSTRACT 

 

Let � be a simple connected graph and its Laplacian eigenvalues be �� � �� � ⋯ � ���� � �� 	 0. In this paper, 

we present an upper bound for the algebraic connectivity ���� of � and a lower bound for the largest eigenvalue �� 

of � in terms of the degree sequence ��, ��, . . . , �� of � and the number |�� ∩ ��| of common vertices of � and � �1 � � � � � �� and hence we improve bounds of Maden and Büyükköse [14]. 
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1. INTRODUCTION 

 
Let � 	 ��, �� be a simple graph with the vertex set � 	 ���, ��, . . . , ���  and edge set �. We use � ∼ �  to 
denote that ����  is an edge of � and �� to denote that 
the set of neighbours of �� . For �� ∈ �, the degree of	�� 
and the average of the degrees of the vertices adjacent to �� are denoted by �� and $�, respectively. We assume 
that �� � �� � ⋯ � ��  without lost of generality and 
we call ��, ��, … , ��  the degree sequence of �.  Let &��� be the adjacency matrix of � and let '��� be the 
diagonal matrix of vertex degrees. The Laplacian matrix 
of �  is (��� 	 '��� ) &��� . For the simplicity of 
notation, we write (��� 	 (.  Clearly, (  is a real 
symmetric matrix. From this fact and Geršgorin’s 
Theorem, it follows that its eigenvalues are nonnegative 
real numbers. Morever, since the sum of rows is 0, it is 
obvious that 0 is the smallest eigenvalue of ( with the 
all ones vector as an eigenvector. The Laplacian 

eigenvalues of � are the eigenvalues of the Laplacian 
matrix (  of �.  Throughout this paper, the Laplacian 
eigenvalues of � are denoted by  
 �� � �� � ⋯ � ���� � �� 	 0. 
 
In addition, by the extremal non-trivial Laplacian 
eigenvalues, we shall mean ���� and ��. It is easy to 
show that ������� 	 0  if and only if �  is not 
connected. Thus, ����  is called the algebraic 
connectivity of the graph � [5]. In [1] it is proved that if �  is an eigenvalue of (  then � � �  and that the 
multiplicity of 0 equals the number of components of �. Thus, � is a connected graph if and only if ���� *0.  
 
The Laplacian eigenvalues of a graph are important in 
the graph theory because they have a relation to 
numerous graph invariants, including connectivity, 
expanding property, isoperimetric number, maximum 
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cut, independence number, genus, diameter, mean 
distance and bandwidth-type parameters of a graph. In 
many application one needs good lower bound and upper 
bound of extremal non-trivial Laplacian eigenvalues (see 
[1], [3], [4], [6], [7], [9], [10], [11], [12], [14]).  
 
In this paper, our aim is to improve the upper bound for 
the algebraic connectivity ����  of �  and the lower 
bound for ��  of �  given by Maden and Büyükköse 
[14]. We use Theorem 1 [13] and modify the technique 
of the proof of Lemma 3 [13], we give an upper bound 
for the algebraic connectivity ���� of �  and a lower 
bound of the largest eigenvalue �� of � in terms of the 
degree sequence �� , ��, . . . , ��  of �  and the number |�� ∩ ��| of common vertices of � and � �1 � � � � ���.  

 
We always assume that � is a simple connected graph 
of order �. The known upper and lower bounds which 
we used in proof of our main theorem are following:  
 
1. Grone and Merris’ bound [15]:  
 �� � �� + 1, (1) 
where �� is the largest degree of �.  
2. Li and Pan’s bound [16]: 
 �� � ��, (2) 
where �� and �� are the second largest degree and the 
second largest Laplacian eigenvalue of �, respectively.  
3. Fidler’s bound [5]: Let � be a graph different from ,� and let �� be its minimum degree. Then  
 ���� � �� . (3) 
 

 
 
2. THE MAIN RESULT 

 
Firstly we summarize the results of Wolkowicz and Styan on the eigenvalue inequalities which are our fundamental tools in 
this paper.  

 

Theorem 1. (Theorem 2.1 [13]) Let &  be an � × �  complex matrix with real eigenvalues .�&�  and let $ 	 /01� , 2 	 3/014� ) $�. Then 

 $ ) 2√� ) 1 � .6���&� � $ ) 2√� ) 1 (4) 

 $ + 2√� ) 1 � .678�&� � $ + 2√� ) 1. (5) 

Equality holds on the left (right) of (4) if and only if equality holds on the left (right) of (5) if and only if the � ) 1 largest 
(smallest) eigenvalues are equal.  
 
In [13] Wolkowicz and Styan proved Theorem 1 by using the following lemmas.  
 

Lemma 2. (Lemma 2.1 [13]) Let 9 	 :� ) ;;<� ,  $ 	 =<;� ,  2� 	 =<>=�  where ? and . 	 �.�� ∈ ℝ� are column vectors, 

and A 	 �1,1, . . . ,1�B. Then 

 )2C�?B9? � ?B. ) $?BA 	 ?B9. � 2�?B9?. (6) 

Equality holds on the left (right) of (1) if and only if . 	 DE + FA for some scalars D and F, where D � 0 �D * 0�.  
 
It should be noted that $ and 2� defined in Theorem 1 and Lemma 2 are equivalent [13].  
 

Lemma 3. (Lemma 2.2 [13]) Let . 	 �.�, .�, . . . , .��, $ and 2 be defined as in Lemma 2 and .� � .� �. . . � .�. Then  

 .� � $ ) 2√� ) 1 � $ + 2√� ) 1 � .�. (7) 

 
Using Theorem 1 Maden and Büyükköse [14] gave upper and lower bounds for ���� and ��.  
 

Theorem 4. (Theorem 3 and Corollary 5 [14]) Let � be a simple graph. Then 

 G$ ) 2H� ) 22 � ���� � G$ ) 2H 1� ) 1 (8) 

and  

 H$ + 2√� ) 1 � �� � 3$ + 2√� ) 1, (9) 

where $ 	 �� ∑ ����K� ��� + 1� and  

2� 	 1� LM
NO���� + �����

�K� + 2OP�� + ��QP�� + �� ) 2R�� ∩ ��RQ�S��~�
+ 2�S�R�� ∩ ��R�

UV
W ) $�. 
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□ 
 
Now, we reprove Lemma 3 for the Laplacian matrix ( of � and hence we improve the upper bound for .��� in (8) and the 
lower bound for .� in (9).  
 
Theorem 5. Let � be a simple graph and let $ and 2 be defined as in Theorem 4. Then 

 ���� � X$ ) Y�2� + 2���� + 1�� ) ����� ����� ) ����� ��� ) � Z�/�\�/�
 (10) 

and 

 �� � X$ + Y�2� + 2��� + 1������ + 1�� ) ������ ) � Z�/�\�/�. (11) 

 
Proof. Let � be a simple graph and let $ and 2 be defined as in Theorem 4. Then we have that 

���$ ) ����� �� 	 �� X1� OP��� ) ����� Q�
�K� \�

 

	 OP��� ) ����� Q��
�K� + OP��� ) ����� QP�]� ) ����� Q�^]  

By using (1)-(3) we have that 
 OP��� ) ����� QP�]� ) ����� Q�^] � 2���� + 1�� ) ����� ����� ) ����� �. 
On the other hand,  OP��� ) ����� Q��

�K� 	 OP��� ) $ + $)����� Q�	�
�K� 	 O_P��� ) $QP��� + $ ) 2����� Q`�

�K� + ��$ ) ����� ��
	 �2� + ��$ ) ����� ��. 

Finally, we have that  ���$ ) ����� �� � �2� + ��$ ) ����� �� + 2���� + 1�� ) ����� ����� ) ����� �. 
 
Solving this inequality for �����  we obtain the inequality in (10).    
 
Now we similarly expand ������ ) $�. Then we have 

 

������ ) $�� 	 X���� ) O ���
�

�K� \� 	 OP��� ) ���Q��
�K� + OP��� ) ���Q�^] P��� ) �]�Q. 

By using (1)-(3), we have that 
 OP��� ) ���QP��� ) �]�Q�^] � 2��� + 1������ + 1�� ) ����. 
 
We have that  
 ������ ) $�� � ����� ) $�� + �2� + 2��� + 1������ + 1�� ) ����. 
 
Solving this inequality for ��� we obtain the inequality in (11).     □ 
 
In the proof of Lemma 3 in [13, Lemma 2.2], the second sum is omitted but we consider it to improve the upper bound for ���� in (8) and the lower bound for �� in (9). Now we compare our bounds with the bounds of Maden and Büyükköse [14].  
 

Exercise 6. Let � 	 ��, �� with � 	 �1,2,3,4,5,6,7,8� and  � 	 g�1,2�, �1,3�, �2,3�, �2,4�, �3,4�, �2,5�, �2,6�, �2,8�, �4,5�, �4,6�,�4,8�, �6,7�, �7,8�h. 
For this graph �i 	 1.13 and �� 	 7.1. We present aforesaid upper bounds for �i and lower bounds for �� of the graph � as follows:  
 

 �i (8) (10)  �� (9) (11) � 1.13 4.72 2.76  7,10 3.02 5.17 
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