Blow-Up and Global Solutions of a Wave Equation with Initial-Boundary Conditions

Ülkü DİNLEMEZ ${ }^{1, \star}$, Saghar NABDEL ${ }^{2}$
${ }^{1}$ Gazi University, Faculty of Science, Department of Mathematics, Bessevler, Ankara, Turkey
${ }^{2}$ Gazi University, Graduate School of Natural and Applied Sciences, Department of Mathematics, Bessevler, Ankara, Turkey

Received: 28/10/2014 Revised: 13/02/2015 Accepted:26/03/2015

Abstract

In this paper, we study a wave equation with interior source function and linear damping term. We obtain that the solutions of this equation are global in time and blow-up in finite time under suitable conditions.

Keywords: Global Solution, Blow-up solution, damping term

1. INTRODUCTION

In this paper, we consider the following initial-boundary value problem
$\begin{cases}u_{t t}-k u_{x x}-\left(a(x) u_{x}\right)_{x}+b u_{t}=f(u), & x \in[0,1] \times(0, T), \\ u(0, t)=u_{x}(0, t)=u(1, t)=u_{x}(1, t)=0, & t \in(0, T), \\ u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in[0,1],\end{cases}$ (1.1)
where $a(x) \in C^{1}[0,1]$ and $a(x)>0, k$ and b nonnegative constant, $f(s) \in C(\square)$.

Models of this type are of interest in applications in various areas in mathematical physics [1,2,3] as well as in geophysics and ocean acoustics, where for example, the coefficient $a(x)$ represents the "effective tension" [6].

In [1], Bayrak and Can considered the following a nonlinear wave equation with initial-boundary conditions

[^0]\[

$$
\begin{cases}u_{t t}+\alpha u_{t}+2 \beta u_{x x x x}-2\left[(a(x)+b) u_{x}\right]_{x}+\frac{\beta}{3}\left(u_{x}^{3}\right)_{x x x} & \tag{1.2}\\ \quad-\left[(a(x)+b) u_{x}^{3}\right]_{x}-\beta\left(u_{x x}^{2} u_{x}\right)_{x}=f(u), & (x, t) \in[0,1]_{\times(0, T),}, \\ u(0, t)=u(1, t)=u_{x x}(0, t)=u_{x x}(1, t)=0, & t \in(0, T), \\ u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in[0,1] .\end{cases}
$$
\]

They gave nonexistence of the global solution in time for the equation (1.2). In [2], Hao et al proved the blow-up solution in finite time and global solution in time for same equation under different conditions. In [3], Wu and Li studied a nonlinear damped system with boundary input and output. They proved that under some conditions the system has global solutions and blow up solutions. In [4], Feng et al considered the wave equation with nonlinear damping and source terms. They bounded up with the interaction between the boundary damping $-\left|y_{t}(L, t)\right|^{m-1} y_{t}(L, t)$ and the interior source $|y(t)|^{p-1} y(t)$. Then they found a sufficient condition for obtaining the blow up solution of their problem. In [5],

Dinlemez and Aktaş studied a nonlinear string equation with initial and boundary conditions. They proved that the solution is global in time and the solution with a negative initial energy blow up in finite time for their problems. In [7], Takamura and Wakasa were interested in the "almost" global-in-time existence of classical solutions in the general theory for nonlinear wave equations. Several interesting works about blow up and global solutions for nonlinear wave equations given in [8-15].

First of all we will estimate the energy of problem (1.2).

Multiplying (1.2) with u_{t} and integrating over (0.1), then we get

$$
\frac{d}{d t}\left[\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{k}{2}\left\|u_{x}\right\|_{2}^{2}+\frac{1}{2} \int_{0}^{1} a(x) u_{x}^{2} d x-\int_{0}^{1} F(u) d x\right]=-\left\|u_{t}\right\|_{2}^{2}
$$

(1.3) where

$$
F(u)=\int_{0}^{u} f(\xi) d \xi
$$

So the energy equation of the initial-boundary problem (1.2) is defined by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{k}{2}\left\|u_{x}\right\|_{2}^{2}+\frac{1}{2} \int_{0}^{1} a(x) u_{x}^{2} d x-\int_{0}^{1} F(u) d x \tag{1.4}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
\frac{d}{d t} E(t)=-b\left\|u_{t}\right\|_{2}^{2} \tag{1.5}
\end{equation*}
$$

2. MAIN RESULTS

Now we give the following theorem for global solutions.
Theorem1. Let $u(x, t)$ be a solution of the initial-boundary problem (1.2) with $a(x)>0$. There exists a positive constant A such that the function $f(s)$ satisfies

$$
\begin{equation*}
f^{2}(s) \leq A F(s) \quad \text { for } s \in \square \tag{2.1}
\end{equation*}
$$

Then the solution $u(x, t)$ is the global solution of the initial-boundary problem (1.2).
Proof: Let

$$
\begin{equation*}
G(t)=E(t)+2 \int_{0}^{1} F(u) d x \tag{2.2}
\end{equation*}
$$

Taking a derivative of $G(t)$ and using (1.5), we obtain

$$
\begin{align*}
& G^{\prime}(t)=-b\left\|u_{t}\right\|_{2}^{2}+2 \int_{0}^{1} f(u) u_{t} d x \tag{2.3}\\
& G^{\prime}(t) \leq 2 \int_{0}^{1} f(u) u_{t} d x \tag{2.4}
\end{align*}
$$

Using Cauchy-Schwartz's inequality and Young's inequality in (2.4) respectively, we get

$$
\begin{aligned}
\left|G^{\prime}(t)\right| \leq & 2 \int_{0}^{1}\left|f(u) u_{t}\right| d x \\
& \leq 2\|f(u)\|_{2}\left\|u_{t}\right\|_{2}
\end{aligned}
$$

Then we obtain

$$
\begin{equation*}
G^{\prime}(t) \leq \frac{1}{2 \eta} \int_{0}^{1} f^{2}(u) d x+2 \eta\left\|u_{t}\right\|_{2}^{2} \tag{2.5}
\end{equation*}
$$

where η is positive constant. Now we use (2.1) in (2.5), we yield

$$
\begin{equation*}
\left|G^{\prime}(t)\right| \leq \frac{A}{2 \eta} \int_{0}^{1} F(u) d x+2 \eta\left\|u_{t}\right\|_{2}^{2} \tag{2.6}
\end{equation*}
$$

From defining of $G(t)$ we have
$2 G(t)=\left\|u_{t}\right\|_{2}^{2}+k\left\|u_{x}\right\|^{2}+\int_{0}^{1} a(x) u_{x}^{2} d x+2 \int_{0}^{1} F(u) d x$.
Therefore we get

$$
\begin{equation*}
\left\|u_{t}\right\|_{2}^{2}+2 \int_{0}^{1} F(u) d x \leq 2 G(\mathrm{t}) \tag{2.7}
\end{equation*}
$$

Using (2.6), we obtain
$\left|G^{\prime}(t)\right| \leq \beta\left\{\left\|u_{t}\right\|_{2}^{2}+2 \int_{0}^{1} F(u) d x\right\}$,
where $\beta=\max \left\{\frac{A}{4 \eta}, 2 \eta\right\}$.
Thanks to (2.7) and (2.8), we have
$G^{\prime}(t) \leq 2 \beta G(t)$.
Then from the Gronwall's inequality, we have

$$
G(t) \leq G(0) e^{2 \beta t} .
$$

Thus, together with the continuous principle and the definition of $G(t)$, we complete the proof of the Theorem 1 .

Theorem 2. Let $u(x, t)$ be a solution of the initial-boundary problem (1.2). Assume that
(i) $f(s)$ satisfies the following condition

$$
\begin{equation*}
s f(s) \geq 4 F(s), \quad \text { for } s \in \square \tag{2.9}
\end{equation*}
$$

(ii) The initial values satisfy

$$
\begin{equation*}
E(0) \leq 0, \quad 0<\int_{0}^{1} u_{0}(x) u_{1}(x) d x \tag{2.10}
\end{equation*}
$$

(iii)

$$
u(x, t) \quad \text { satisfies }
$$

(2.11)

Then the solution $u(x, t)$ blows up in finite time $T_{\text {max }}$ and

$$
\begin{equation*}
T_{\max } \leq \frac{1-\gamma}{\alpha \gamma L^{\frac{\gamma}{1-\gamma}}(0)} . \tag{2.12}
\end{equation*}
$$

where α is a positive constant and γ is a positive constant such that $0<\gamma \leq \frac{1}{4}$.
Proof: Let

$$
\begin{equation*}
H(t):=-E(t) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
L(t):=H^{1-\gamma}(t)+\int_{0}^{1} u u_{t} d x . \tag{2.14}
\end{equation*}
$$

Combining (1.5), (2.10) and (2.13), we obtain

$$
\begin{equation*}
\frac{d}{d t} H(t)=b\left\|u_{t}\right\|_{2}^{2} \geq 0 \tag{2.15}
\end{equation*}
$$

therefore we get

$$
\begin{equation*}
H(t) \geq H(0) \geq 0, \quad \text { for } t \geq 0 \tag{2.16}
\end{equation*}
$$

Taking a derivative of (2.14) and using (2.15), we have

$$
\begin{equation*}
\frac{d}{d t} L(t)=b(1-\gamma) H^{-\gamma}(t)\left\|u_{t}\right\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}+\int_{0}^{1} u u_{t t} d x \tag{2.17}
\end{equation*}
$$

From the initial-boundary problem (1.2), we write

$$
\begin{equation*}
u_{t t}=k u_{x x}+\left(a(x) u_{x}\right)_{x}-b u_{t}+f(u) \tag{2.18}
\end{equation*}
$$

Then, multiplying (2.18) with u and integrating over $[0,1]$, using integration by parts and boundary conditions when necessary, we obtain

$$
\begin{equation*}
\int_{0}^{1} u u_{t t} d x=-k\left\|u_{x}\right\|_{2}^{2}-\int_{0}^{1} a(x) u_{x}^{2} d x-b \int_{0}^{1} u u_{t} d x+\int_{0}^{1} f(u) u d x \tag{2.19}
\end{equation*}
$$

And then using (2.19) in (2.17), we get

$$
\begin{equation*}
\frac{d}{d t} L(t)=(1-\gamma) H^{-\gamma}(t) b\left\|u_{t}\right\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}-k\left\|u_{x}\right\|_{2}^{2}-\int_{0}^{1} a(x) u_{x}^{2} d x-b \int_{0}^{1} u u_{x} d x+\int_{0}^{1} f(u) u d x \tag{2.20}
\end{equation*}
$$

By recalling the definitions of $E(t)$ and $H(t)$ we have

$$
\begin{equation*}
4 H(t)=-2\left\|u_{t}\right\|_{2}^{2}-2 k\left\|u_{x}\right\|_{2}^{2}-2 \int_{0}^{1} a(x) u_{x}^{2} d x+4 \int_{0}^{1} F(u) d x \tag{2.21}
\end{equation*}
$$

Hence applying (2.21) in (2.20) we write

$$
\begin{align*}
\frac{d}{d t} L(t)= & b(1-\gamma) H^{-\gamma}(t)\left\|u_{t}\right\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}-k\left\|u_{x}\right\|_{2}^{2}-\int_{0}^{1} a(x) u_{x}^{2} d x-b \int_{0}^{1} u u_{x} d x+\int_{0}^{1} f(u) u d x \\
& +4 H(t)+2\left\|u_{t}\right\|_{2}^{2}+2 k\left\|u_{x}\right\|_{2}^{2}+2 \int_{0}^{1} a(x) u_{x}^{2} d x-4 \int_{0}^{1} F(u) d x \tag{2.22}
\end{align*}
$$

then we yield

$$
\begin{equation*}
\frac{d}{d t} L(t) \geq b(1-\gamma) H^{-\gamma}(t)\left\|u_{t}\right\|_{2}^{2}+3\left\|u_{t}\right\|_{2}^{2}+k\left\|u_{x}\right\|_{2}^{2}-b \int_{0}^{1} u u_{t} d x+\int_{0}^{1}(f(u) u-4 F(u)) d x+4 H(t) \tag{2.23}
\end{equation*}
$$

By using Cauchy-Schwartz's inequaity and Young's inequality respectively, we have

$$
\begin{equation*}
\int_{0}^{1} u u_{t} d x \leq \int_{0}^{1}\left|u\left\|u_{t} \mid d x \leq\right\| u\| \| u_{t}\left\|\leq \frac{b}{2}\right\| u\left\|_{2}^{2}+\frac{1}{2 b}\right\| u_{t} \|_{2}^{2}\right. \tag{2.24}
\end{equation*}
$$

From (2.23) and (2.24), we obtain

$$
\begin{align*}
\frac{d}{d t} L(t) & \geq b(1-\gamma) H^{-\gamma}(t)\left\|u_{t}\right\|_{2}^{2}+3\left\|u_{t}\right\|_{2}^{2}+k\left\|u_{x}\right\|_{2}^{2}-\frac{b^{2}}{2}\|u\|_{2}^{2}-\frac{1}{2}\left\|u_{t}\right\|_{2}^{2} \\
& +\int_{0}^{1}(f(u) u-4 F(u)) d x+4 H(t) \tag{2.25}
\end{align*}
$$

Using (2.9) and Poincare inequality for $k\left\|u_{x}\right\|_{2}^{2}$ respectively in the equation (2.25), we get

$$
\begin{equation*}
\frac{d}{d t} L(t) \geq \frac{5}{2}\left\|u_{t}\right\|_{2}^{2}+4 H(t)+\left(\lambda k-\frac{b^{2}}{2}\right)\|u\|_{2}^{2} \geq 0 \tag{2.26}
\end{equation*}
$$

where k is positive constant such that $k>\frac{b^{2}}{\lambda}$. Thanks to (2.26) and the definition of $L(t)$, we have

$$
L(t) \geq L(0)>0
$$

Next, we will estimate $L^{\frac{1}{1-\gamma}}(t)$. Using Hölder inequality, we obtain

$$
\left|\int_{0}^{1} u u_{t} d x\right| \leq \int_{0}^{1}\left|u u_{t}\right| d x \leq\|u\|_{2}\left\|u_{t}\right\|_{2},
$$

then we get

$$
\left|\int_{0}^{1} u u_{t} d x\right|^{\frac{1}{1-\gamma}} \leq\left(\int_{0}^{1}\left|u u_{t}\right| d x\right)^{\frac{1}{1-\gamma}} \leq\|u\|_{2}^{\frac{1}{1-\gamma}}\left\|u_{t}\right\|_{2}^{\frac{1}{1-\gamma}}
$$

By Young's inequality

$$
X Y \leq \frac{\delta^{\zeta}}{\zeta} X^{\zeta}+\frac{\delta^{-\omega}}{\omega} Y^{\omega}, \quad X, Y \geq 0 \text { for all } \delta>0, \frac{1}{\zeta}+\frac{1}{\omega}=1,
$$

with $\omega=2(1-\gamma)$ and $\zeta=\frac{2(1-\gamma)}{1-2 \gamma}$, we yield

$$
\left|\int_{0}^{1} u u_{t} d x\right|^{\frac{1}{1-\gamma}} \leq C\left[\|u\|_{2}^{\frac{2}{1-2 \gamma}}+\left\|u_{t}\right\|_{2}^{2}\right]
$$

where C depends on γ. Using (2.11) and considering the relation $2<\frac{2}{1-2 \gamma} \leq 4$, we get

$$
\begin{equation*}
\left|\int_{0}^{1} u u_{t} d x\right|^{\frac{1}{1-\gamma}} \leq C\left[\|u\|_{2}^{\frac{2}{1-2 \gamma}}+\left\|u_{t}\right\|_{2}^{2}\right] \leq C\left[\|u\|_{2}^{4}+\left\|u_{t}\right\|_{2}^{2}\right] \leq C\left[\|u\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}\right] \tag{2.27}
\end{equation*}
$$

Now we estimate $L^{\frac{1}{1-\gamma}}(t)$.
It follows from the definition of $L(t)$ for all $t>0$ and using (2.27) and the following inequality for $p \geq 1, a, b>0$ $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$, we obtain

$$
\begin{align*}
L^{\frac{1}{1-\gamma}}(t) & =\left(H^{1-\gamma}(t)+\int_{0}^{1} u u_{t} d x\right)^{\frac{1}{1-\gamma}} \\
& \leq 2^{\frac{\gamma}{1-\gamma}}\left(H(t)+\left|\int_{0}^{1} u u_{t} d x\right|^{\frac{1}{1-\gamma}}\right) \\
& \leq \kappa\left[H(t)+\|u\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}\right] \tag{2.28}
\end{align*}
$$

where $\boldsymbol{\kappa}=2^{\frac{\gamma}{1-\gamma}} C$.
From (2.26) and (2.28) we get

$$
\begin{equation*}
\frac{d L(t)}{d t} \geq \alpha L^{\frac{1}{1-\gamma}}(t) \tag{2.29}
\end{equation*}
$$

where $\alpha=\frac{\mu}{\kappa}, \mu=\min \left\{\frac{5}{2},\left(\lambda k-\frac{b^{2}}{2}\right)\right\}$ and using Gronwall's inequality in (2.29), we obtain

$$
\begin{equation*}
L^{\frac{\gamma}{1-\gamma}}(t) \geq \frac{1}{L^{\frac{-\gamma}{1-\gamma}}(0)-\alpha t \frac{\gamma}{1-\gamma}} \tag{2.30}
\end{equation*}
$$

Then, (2.30) shows that $L(t)$ blows-up in time

$$
T^{*} \leq \frac{1-\gamma}{\alpha \gamma L^{\frac{\gamma}{1-\gamma}}(0)}
$$

Therefore the proof is completed.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] V. Baryak and M. Can, "Global nonexistence of solutions of the quasilinear hyperbolic equation of the vibrations of a riser", Mathematical \& Computational Applications., 2(1): 45-52, (1997).
[2] J. Hao and S. Li, Y. Zhang, "Blow up and global solution for a quasilinear riser problem", Nonlinear Analysis., 67: 974-980, (2007).
[3] J.-Q. Wu and S.-J. Li, "Global solution and blow up solution for a nonlinear damped beam with source term", Applied Mathematics., 25(4): 447-453, (2010).
[4] H. Feng, S. Li and X. Zhi, "Blow up solutions for a nonlinear wave equation with boundary damping and interior source", Nonlinear Analysis., 75: 2273-2280, (2012).
[5] Ü. Dinlemez and E. Aktaş, "Global and Blow up solutions for nonlinear hyperbolic equations with initialboundary conditions", International Journal of Differential Equations., 2014: 5, (2014).
[6] A. O. Çelebi, Ş. Gür and V. K. Kalantarov, "Structural stability and decay estimate for marine riser equations", Math. Comput. Modelling, 54(11-12): 3182-3188, (2011).
[7] H. Takamura and K. Wakasa, "Almost global solutions of semilinear wave equtions with the critical exponent in high dimensions", Nonlinear Anal., 109: 187229, (2014).
[8] J. Hao and S. Li, "Global solution and blow up solutions for a nonlinear string with boundary input and output," Nonlinear Analysis: Theory, Methods and Applications., 66(1): 131-137, (2007).
[9] A. Benaissa, S.A. Messaoudi, "Blow up of solutions of a nonlinear wave equation," J. Appl. Math., 2(2): 105108, (2002).
[10] V.A. Galaktionov, S.I. Pohozaev, "Blow-up and critical exponents for nonlinear hyperbolic equations," Nonlinear Anal., 53: 453-466, (2003).
[11] H.A. Levine, P. Pucci, J. Serrin, "Some remarks on global nonexistence for nonautonomous abstract evolution equations,"Contemp. Math., 208: 253-263, (1997).
[12] H.A. Levine, J. Serrin, "A global nonexistence theorem for quasilinear evolution equation with dissipation," Arch. Ration. Mech. Anal., 137: 341-361, (1997).
[13] S.A. Messaoudi, "Blow up in a nonlinearly damped wave equation," Math. Nachr., 231: 1-7, (2001).
[14] S.A. Messaoudi, "Blow up in solutions of a semilinear wave equation," Int. J. Appl. Math., 1 (6): 621626, (1999).
[15] Z.J. Yang, "Global existence, asymptotic behavior and blow up of solutions for a class of nonlinear wave equations with dissipative term," J. Differential Equations., 187: 520-540, (2003).

[^0]: *Corresponding author, e-mail: ulku@gazi.edu.tr

