Lyapunov-Type Inequalities for Two Classes of Difference Systems with Dirichlet Boundary Conditions

Mustafa Fahri AKTAŞ¹, Devrim ÇAKMAK²∗, Merve ARİTÜRK¹

¹Faculty of Sciences, Department of Mathematics, Gazi University, 06500 Teknikokullar, Ankara, TURKEY
²Faculty of Education, Department of Mathematics Education, Gazi University, 06500 Teknikokullar, Ankara, TURKEY

Received: 26/12/2014 Accepted: 13/01/2015

ABSTRACT

In this paper, we establish Lyapunov-type inequalities for two classes of difference systems which improve all existing ones in the literature. Applying our inequalities, we obtain a lower bound for the eigenvalues of corresponding systems.

AMS Subject Classification: 34C10, 39A10, 39A12.

Keywords: Difference systems; Lyapunov-type inequalities; Dirichlet boundary conditions.

1. INTRODUCTION

In 1983, Cheng [4] obtained the following inequality

\[\Im(h - a) \sum_{\tau = a}^{b-2} f_1(\tau) \geq 4, \] \hspace{1cm} (1.1)

where \(f_1(n) \geq 0 \) for all \(n \in \mathbb{Z} \) and

\[\Im(z) = \begin{cases} \frac{z^2 - 1}{z}, & \text{if } z - 1 \text{ is even} \\ \frac{z}{z}, & \text{if } z - 1 \text{ is odd} \end{cases} \] \hspace{1cm} (1.2)

if the second-order difference equation

\[-\Delta^2 u_1(n) = f_1(n)u_1(n + 1) \] \hspace{1cm} (1.3)

*Corresponding author, e-mail: dcakmak@gazi.edu.tr
has a real solution \(u_1(n) \) satisfying Dirichlet boundary conditions
\[
u_1(a) = 0 = u_1(b), u_1(n) \neq 0, n \in \mathbb{Z}[a,b], \tag{1.4}\]
a, b \in \mathbb{Z} with \(a \leq b - 2 \), and \(\mathbb{Z}[a,b] = (a, a + 1, a + 2, ..., b - 1, b) \), \(f_1 \) is a real-valued function defined on \(\mathbb{Z} \). The inequality (1.1) is a discrete analogue of the following so-called Lyapunov inequality
\[
(b - a) \int_a^b |f_1(s)| \, ds > 4 \tag{1.5}
\]
if Hill’s equation
\[
-u_1''(t) = f_1(t)u_1(t), \tag{1.6}
\]
where \(f_1 \in C([a,b], \mathbb{R}) \), has a real solution \(u_1(t) \) such that Dirichlet boundary conditions
\[
u_1(a) = 0 = u_1(b), u_1(t) \neq 0, t \in (a,b), \tag{1.7}
\]
where \(a, b \in \mathbb{R} \) with \(a < b \) [7].

In 2012, Zhang and Tang [15] obtained the following Lyapunov-type inequality for the 2k-th order difference equations
\[
-\Delta^{2k}u_1(n) = (-1)^{k-1}f_1(n)u_1(n + 1) \tag{1.8}
\]
with the boundary conditions
\[
\Delta^{2i}u_1(a) = 0 = \Delta^{2i}u_1(b), i = 0,1,..., k - 1; u_1(n) \neq 0, n \in \mathbb{Z}[a,b], \tag{1.9}
\]
where \(k \in \mathbb{N} \), \(n \in \mathbb{Z} \) and \(f_1(n) \) is a real-valued function defined on \(\mathbb{Z} \).

Theorem A. If (1.8) has a solution \(u_1(n) \) satisfying the boundary conditions (1.9), then the following inequality
\[
\sum_{\tau = a}^{b-1} |f_1(\tau)| (\tau - a + 1)(b - \tau - 1) \geq \frac{2^{3(k-1)}}{(b - a)^{2k-3}} \tag{1.10}
\]
holds.

It is easy to see that the inequality (1.10) is rewritten as
\[
\sum_{\tau = a}^{b-2} |f_1(\tau)| (\tau - a + 1)(b - \tau - 1) \geq \frac{2^{3(k-1)}}{(b - a)^{2k-3}}. \tag{1.11}
\]

Now, throughout the paper for the sake of brevity, we denote
\[
\zeta_i(n) = \sum_{\tau = a}^{n} r_{\tau}^{1/\{1 - p_i\}}(\tau) \quad \text{and} \quad \eta_i(n) = \sum_{\tau = a}^{b-2} r_{\tau}^{1/\{1 - p_i\}}(\tau) \tag{1.12}
\]
for \(i = 1,2,\ldots, m \).

In 2012, Zhang and Tang [14] obtained Lyapunov-type inequalities for the following systems
\[
\begin{cases}
-\Delta(r_1(n)\Delta u_1(n)|^{p_1-2}\Delta u_1(n)) = f_1(n)|u_1(n + 1)|^{\alpha_1}u_2(n + 1)\cdot \cdot \cdot |u_m(n + 1)|^{\alpha_m} \\
-\Delta(r_2(n)\Delta u_2(n)|^{p_2-2}\Delta u_2(n)) = f_2(n)|u_1(n + 1)|^{\beta_1}u_2(n + 1)\cdot \cdot \cdot |u_m(n + 1)|^{\beta_m} \tag{1.13}
\end{cases}
\]
and
\[
\begin{cases}
-\Delta(r_1(n)\Delta u_1(n)|^{p_1-2}\Delta u_1(n)) = f_1(n)|u_1(n + 1)|^{\alpha_1}u_2(n + 1)\cdot \cdot \cdot |u_m(n + 1)|^{\alpha_m} \\
-\Delta(r_2(n)\Delta u_2(n)|^{p_2-2}\Delta u_2(n)) = f_2(n)|u_1(n + 1)|^{\beta_1}u_2(n + 1)\cdot \cdot \cdot |u_m(n + 1)|^{\beta_m} \\
-\Delta(r_m(n)\Delta u_m(n)|^{p_m-2}\Delta u_m(n)) = f_m(n)|u_1(n + 1)|^{\alpha_1}u_2(n + 1)\cdot \cdot \cdot |u_m(n + 1)|^{\alpha_m} \cdot \cdot \cdot |u_m(n + 1)|^{\alpha_m}. \tag{1.14}
\end{cases}
\]

For the sake of convenience, we give the following hypotheses:

\((H_1) \) \(r_i(n) \) and \(f_i(n) \) are real-valued functions and \(r_i(n) > 0, \forall n \in \mathbb{Z} \) and \(i = 1,2,\ldots, m \),

\((H_2) \) \(1 < p_1, p_2, \alpha_1, \beta_1 < \infty, \alpha_2, \beta_2 \geq 0 \) satisfy \(\frac{\alpha_1}{p_1} + \frac{\alpha_2}{p_2} = 1 \) and \(\frac{\beta_1}{p_1} + \frac{\beta_2}{p_2} = 1 \).
(Hₙ) 1 < pₖ < ∞, and αₖ ≥ 0 for k = 1, 2, ..., m satisfy \(\sum_{k=1}^{m} \frac{αₖ}{pₖ} = 1 \).

Theorem B. Let \(a, b \in \mathbb{Z} \) with \(a \leq b - 2 \). Suppose that hypotheses (H₂) with \(i = 1, 2 \) and (H₂) are satisfied. If the system (1.13) has a solution \((u₁(n), u₂(n)) \) satisfying Dirichlet boundary conditions

\[
u_i(a) = 0 = u_i(b), \quad u_i(n) \neq 0, \quad n \in \mathbb{Z}[a, b], \quad i = 1, 2,
\]

then the following inequality

\[
\left(\sum_{t=a}^{b-2} \frac{(Lᵢ(t)‖ni(t)‖_{pᵢ-1}(t))^{pᵢ-1}}{ξᵢ^{pᵢ-1}(t) + ηᵢ^{pᵢ-1}(t)} fᵢ⁺(t) \right) \frac{αᵢ}{pᵢ} \left(\sum_{t=a}^{b-2} \frac{(Lᵢ(t)‖ni(t)‖_{pᵢ-1}(t))^{pᵢ-1}}{ξᵢ^{pᵢ-1}(t) + ηᵢ^{pᵢ-1}(t)} fᵢ⁺(t) \right) \geq 1
\]

holds, where \(fᵢ⁺(n) = \max\{0, fᵢ(n)\}, \quad i = 1, 2 \).

Theorem C. Let \(a, b \in \mathbb{Z} \) with \(a \leq b - 2 \). Suppose that hypotheses (H₁) and (H₂) are satisfied. If the system (1.14) has a solution \((u₁(n), u₂(n), ..., uₘ(n)) \) satisfying Dirichlet boundary conditions

\[
u_i(a) = 0 = u_i(b), \quad u_i(n) \neq 0, \quad n \in \mathbb{Z}[a, b], \quad i = 1, 2, ..., m,
\]

then the following inequality

\[
\prod_{k=1}^{m} \prod_{l=1}^{m} \left(\sum_{t=a}^{b-2} \frac{(L_k(t)‖ni(t)‖_{p_k-1}(t))^{p_k-1}}{ξ_k^{p_k-1}(t) + η_k^{p_k-1}(t)} f_k⁺(t) \right) \frac{α_k}{p_k} \geq 1
\]

holds, where \(f_k⁺(n) = \max\{0, f_k(n)\}, \quad i = 1, 2, ..., m \).

Remark 1.1. It is clear that the system (1.13) with (1.4), (H₂), and the condition \(α₂=0 \) or \(β₁=0 \), or the system (1.14) with (1.4) and (H₂) for \(m = 1 \) reduces to the following problem

\[
\Delta(\{rₙ\}Δ₁u₁(n))|^{p₁-2}Δ₁u₁(n) = f₁(n)|u₁(n+1)|^{p₁-2}u₁(n+1)
\]

\[
u₁(a) = 0 = u₁(b).
\]

Moreover, when \(α₁ = p₁ \) for \(i = 1, 2, ..., m \) and for \(k \neq i, αₖ = 0 \) for \(k = 1, 2, ..., m \), we obtain a single equation similar to the equation (1.19) from the system (1.14).

Aktas et al. [1], Aktas [2], Canmak and Tiryaki [5, 6], Tang and He [9], and Tiryaki et al. [11] established Lyapunov-type inequalities for the continuous cases of systems (1.13) and/or (1.14) and their special cases. For some of the most recent works on Lyapunov-type inequalities, the reader is referred to [4, 6, 8-10, 12]. Motivated by the above-mentioned papers, we establish Lyapunov-type inequalities for systems (1.13) and (1.14) which are better than that of Zhang and Tang [14].

2. MAIN RESULTS

One of the main results of this paper for the system (1.13) is as follows.

Theorem 2.1. Let \(a, b \in \mathbb{Z} \) with \(a \leq b - 2 \). Suppose that hypotheses (H₁) with \(i = 1, 2 \) and (H₂) are satisfied. If the system (1.13) has a solution \((u₁(n), u₂(n)) \) satisfying Dirichlet boundary conditions (1.15), then the following inequality

\[
\left(\sum_{t=a}^{b-2} \frac{(L₁(t)‖ni(t)‖_{p₁-1}(t))^{p₁-1}}{ξ₁^{p₁-1}(t) + η₁^{p₁-1}(t)} f₁⁺(t) \right) \frac{α₁}{p₁} \left(\sum_{t=a}^{b-2} \frac{(L₁(t)‖ni(t)‖_{p₁-1}(t))^{p₁-1}}{ξ₁^{p₁-1}(t) + η₁^{p₁-1}(t)} f₁⁺(t) \right) \geq 1
\]

holds, where \(f₁⁺(n) = \max\{0, f₁(n)\} \) for \(i = 1, 2 \).
Proof. Let \(u_i(\alpha) = 0 = u_i(b) \) and \(u_i(n) \neq 0, n \in \mathbb{Z}[a, b], i = 1, 2 \) hold. Multiplying the first equation of system (1.13) by \(u_1(n+1) \) and the second equation of system (1.13) by \(u_2(n+1) \), summing from \(a \) to \(b-2 \) and taking into account that \(u_i(\alpha) = 0 = u_i(b) \) for \(i = 1, 2 \), we get

\[
\sum_{t=a}^{b-1} r_1(t) |\Delta u_1(t)|^{p_1} = \sum_{t=a}^{b-2} f_1(t) |u_1(t+1)|^{\alpha_1} |u_2(t+1)|^{\alpha_2} \leq \sum_{t=a}^{b-2} f_1^+(t) |u_1(t+1)|^{\alpha_1} |u_2(t+1)|^{\alpha_2}
\]

(2.2)

and

\[
\sum_{t=a}^{b-1} r_2(t) |\Delta u_2(t)|^{p_1} = \sum_{t=a}^{b-2} f_2(t) |u_1(t+1)|^{\beta_1} |u_2(t+1)|^{\beta_2} \leq \sum_{t=a}^{b-2} f_2^+(t) |u_1(t+1)|^{\beta_1} |u_2(t+1)|^{\beta_2}
\]

(2.3)

It follows from (1.12), (1.15), and Hölder’s inequality that

\[
|u_i(n+1)|^{p_i} = \left(\sum_{t=a}^{n} r_i(t) |\Delta u_i(t)|^{p_i} \right)^{1/p_i} \leq \left(\sum_{t=a}^{n} (\Delta u_i(t))^{p_i} \right)^{1/p_i}
\]

(2.4)

and

\[
\left(\sum_{t=n+1}^{b-1} r_i(t) |\Delta u_i(t)|^{p_i} \right)^{1/p_i} \leq \sum_{t=a}^{b-1} r_i(t) |\Delta u_i(t)|^{p_i}
\]

(2.5)

for \(i = 1, 2 \) and \(a \leq n \leq b-1 \). Adding (2.4) and (2.5), we have

\[
|u_i(n+1)|^{p_i} \leq \left(\frac{\zeta_i(n) \eta_i(n)}{\zeta_i^{p_i-1}(n) + \eta_i^{p_i-1}(n)} \right)^{1/p_i} \sum_{t=a}^{b-1} r_i(t) |\Delta u_i(t)|^{p_i}
\]

(2.6)

for \(i = 1, 2 \) and \(a \leq n \leq b-1 \). If we take the \(\frac{\alpha_1}{p_1} \)-th and \(\frac{\beta_1}{p_1} \)-th powers of both sides of the inequality (2.6) with \(i = 1 \), we have

\[
|u_1(n+1)|^{\alpha_1} \leq \left(\frac{\zeta_1(n) \eta_1(n)}{\zeta_1^{p_1-1}(n) + \eta_1^{p_1-1}(n)} \right)^{\frac{\alpha_1}{p_1}} \left(\sum_{t=a}^{b-1} r_1(t) |\Delta u_1(t)|^{p_1} \right)^{\frac{\alpha_1}{p_1}}
\]

(2.7)

and

\[
|u_1(n+1)|^{\beta_1} \leq \left(\frac{\zeta_1(n) \eta_1(n)}{\zeta_1^{p_1-1}(n) + \eta_1^{p_1-1}(n)} \right)^{\frac{\beta_1}{p_1}} \left(\sum_{t=a}^{b-1} r_1(t) |\Delta u_1(t)|^{p_1} \right)^{\frac{\beta_1}{p_1}}
\]

(2.8)

respectively. Thus, from (2.2), we have

\[
|u_1(n+1)|^{\alpha_1} \leq \left(\frac{\zeta_1(n) \eta_1(n)}{\zeta_1^{p_1-1}(n) + \eta_1^{p_1-1}(n)} \right)^{\frac{\alpha_1}{p_1}} \left(\sum_{t=a}^{b-2} f_1^+(t) |u_1(t+1)|^{\alpha_1} |u_2(t+1)|^{\alpha_2} \right)^{\frac{\alpha_1}{p_1}}
\]

(2.9)

and
Similarly, if we take the \(\frac{\alpha_2}{p_2}\)-th and \(\frac{\beta_2}{p_2}\)-th powers of both sides of the inequality (2.6) with \(i = 2\), we have

\[
|u_2(n + 1)|^{\alpha_2} \leq \left(\frac{(\xi_2(n)\eta_2(n))^{p_2-1}}{\xi_2^{p_2-1}(n) + \eta_2^{p_2-1}(n)} \right)^{\frac{\alpha_2}{p_2}} \left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_2}|u_2(t + 1)|^{\beta_2} \right) \tag{2.12}
\]

and

\[
|u_2(n + 1)|^{\beta_2} \leq \left(\frac{(\xi_2(n)\eta_2(n))^{p_2-1}}{\xi_2^{p_2-1}(n) + \eta_2^{p_2-1}(n)} \right)^{\frac{\beta_2}{p_2}} \left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_2}|u_2(t + 1)|^{\beta_2} \right) \tag{2.13}
\]

respectively. Multiplying both sides of (2.13) by \(f_2^+(n)|u_1(n + 1)|^{\beta_1}\), summing from \(a\) to \(b - 2\), we have

\[
\left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \right)^{\frac{1}{1 - \frac{\beta_1}{p_1}}} \leq \sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \tag{2.14}
\]

By using (2.12) in (2.11) and (2.10) in (2.14), we have

\[
\left(\sum_{t=a}^{b-2} f_1^+(t)|u_1(t + 1)|^{\alpha_1}|u_2(t + 1)|^{\alpha_2} \right)^{\frac{1}{1 - \frac{\alpha_1}{p_1}}} \leq M_1 \left(\sum_{t=a}^{b-2} f_1^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \right) \tag{2.15}
\]

and

\[
\left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \right)^{\frac{1}{1 - \frac{\beta_1}{p_1}}} \leq M_2 \left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \right) \tag{2.16}
\]

where

\[
M_1 = \sum_{t=a}^{b-2} f_1^+(t) \left(\frac{(\xi_1(t)\eta_1(t))^{p_1-1}}{\xi_1^{p_1-1}(t) + \eta_1^{p_1-1}(t)} \right)^{\frac{\alpha_1}{p_1}} \left(\frac{(\xi_2(t)\eta_2(t))^{p_2-1}}{\xi_2^{p_2-1}(t) + \eta_2^{p_2-1}(t)} \right)^{\frac{\alpha_2}{p_2}} \tag{2.17}
\]

and

\[
M_2 = \sum_{t=a}^{b-2} f_2^+(t) \left(\frac{(\xi_1(t)\eta_1(t))^{p_1-1}}{\xi_1^{p_1-1}(t) + \eta_1^{p_1-1}(t)} \right)^{\frac{\beta_1}{p_1}} \left(\frac{(\xi_2(t)\eta_2(t))^{p_2-1}}{\xi_2^{p_2-1}(t) + \eta_2^{p_2-1}(t)} \right)^{\frac{\beta_2}{p_2}} \tag{2.18}
\]

respectively. If we take \(e_1\)-th and \(e_2\)-th powers of both sides of inequalities (2.15) and (2.16), and multiplying the resulting inequalities, we obtain

\[
\left(\sum_{t=a}^{b-2} f_1^+(t)|u_1(t + 1)|^{\alpha_1}|u_2(t + 1)|^{\alpha_2} \right)^{\frac{1}{1 - \frac{\alpha_1}{p_1}}} \left(\sum_{t=a}^{b-2} f_2^+(t)|u_1(t + 1)|^{\beta_1}|u_2(t + 1)|^{\beta_2} \right)^{\frac{1}{1 - \frac{\beta_1}{p_1}}} \leq M_1^{\frac{\alpha_1}{p_1}} \left(\sum_{t=a}^{b-2} f_1^+(t)|u_1(t + 1)|^{\alpha_1}|u_2(t + 1)|^{\alpha_2} \right) \tag{2.19}
\]

Next, we prove that
If (2.20) is not true, then
\[0 < \sum_{r=a}^{b-2} f_1^+(r)|u_1(r+1)|^{\alpha_1}|u_2(r+1)|^{\alpha_2}. \]
(2.20)

From (2.2) and (2.21), we have
\[0 \leq \sum_{r=a}^{b-1} r_1(r)|\Delta u_1(r)|^{p_1} = \sum_{r=a}^{b-2} f_1(r)|u_1(r+1)|^{\alpha_1}|u_2(r+1)|^{\alpha_2} \leq \sum_{r=a}^{b-2} f_1^+(r)|u_1(r+1)|^{\alpha_1}|u_2(r+1)|^{\alpha_2} = 0. \]
(2.22)

It follows from (H_i) with \(i = 1 \) that
\[\Delta u_1(n) \equiv 0 \]
(2.23)
for \(a \leq n \leq b - 1 \). Combining (2.6) for \(i = 1 \) with (2.23), we obtain that \(u_1(n) \equiv 0 \) for \(a \leq n \leq b \), which contradicts (1.15) with \(i = 1 \). Therefore, (2.20) holds. Similarly, we have
\[0 < \sum_{r=a}^{b-2} f_2^+(r)|u_1(r+1)|^{\beta_1}|u_2(r+1)|^{\beta_2}. \]
(2.24)

Now, we choose \(e_1 \) and \(e_2 \) such that
\[0 < \sum_{r=a}^{b-2} f_1^+(r)|u_1(r+1)|^{\alpha_1}|u_2(r+1)|^{\alpha_2} \quad \text{and} \quad 0 < \sum_{r=a}^{b-2} f_2^+(r)|u_1(r+1)|^{\beta_1}|u_2(r+1)|^{\beta_2} \]
(2.25)
cancel out in the inequality (2.19), i.e. solve the homogeneous linear system
\[\begin{cases} (1 - \frac{\alpha_1}{p_1}) e_1 - \frac{\beta_1}{p_1} e_2 = 0 \\ \alpha_2 e_1 - (1 - \frac{\beta_2}{p_2}) e_2 = 0. \end{cases} \]
(2.26)

We observe that by hypotheses \(\frac{\alpha_1}{p_1} + \frac{\alpha_2}{p_2} = 1 \) and \(\frac{\beta_1}{p_1} + \frac{\beta_2}{p_2} = 1 \), this system admits a nontrivial solution, indeed all equations are equivalent to \((1 - \frac{\alpha_1}{p_1}) e_1 = \frac{\beta_1}{p_1} e_2 \) and \(\alpha_2 e_1 = (1 - \frac{\beta_2}{p_2}) e_2 \). Hence, we may take \(e_1 = \frac{\beta_1}{p_1} \) and \(e_2 = \frac{\alpha_2}{p_2} \), and we get the inequality (2.1) which completes the proof.

The following result gives the new Lyapunov-type inequality for the system (1.14).

Theorem 2.2. Let \(a, b \in \mathbb{Z} \) with \(a \leq b - 2 \). Suppose that hypotheses (H_2) and (H_3) are satisfied. If the system (1.14) has a solution \((u_1(n), u_2(n), \ldots, u_m(n)) \) satisfying Dirichlet boundary conditions (1.17), then the following inequality
\[\sum_{i=1}^{m} \left(\sum_{r=a}^{b-2} f_i^+(r) \left(\frac{\xi_k(r)\eta_k(r)}{\xi_k^{p_k-1}(r) + \eta_k^{p_k-1}(r)} \right)^{\frac{1}{p_i}} \right)^{p_i} \geq 1 \]
(2.27)
holds, where \(f_i^+(n) = \max(0, f_i(n)) \) for \(i = 1, 2, \ldots, m \).

Proof. Let \(u_i(a) = 0 = u_i(b) \) and \(u_i(n) \not\equiv 0, n \in \mathbb{Z}[a, b], i = 1, 2, \ldots, m \) hold. Multiplying the \(i \)-th equation of system (1.14) by \(u_i(n+1) \) and summing from \(a \) to \(b - 2 \) and taking into account that \(u_i(a) = 0 = u_i(b) \) for \(i = 1, 2, \ldots, m \), we get
\[\sum_{r=a}^{b-1} r_1(r)|\Delta u_i(r)|^{p_i} = \sum_{r=a}^{b-2} f_i(r) \left(\frac{\xi_k(r)\eta_k(r)}{\xi_k^{p_k-1}(r) + \eta_k^{p_k-1}(r)} \right)^{\frac{1}{p_i}} \leq \sum_{r=a}^{b-2} f_i^+(r) \left(\frac{\xi_k(r)\eta_k(r)}{\xi_k^{p_k-1}(r) + \eta_k^{p_k-1}(r)} \right)^{\frac{1}{p_i}} \]
(2.28)
for \(i = 1, 2, \ldots, m \). By using \(u_i(a) = 0, (1.12) \) and Hölder’s inequality, we get
\[|u_i(n+1)|^{p_i} = \left| \sum_{r=a}^{b} \Delta u_i(r) \right|^{p_i} \leq \]
for $i = 1, 2, ..., m$ and $a \leq n \leq b - 1$. Similarly, by using $u_i(b) = 0$, (1.12) and Hölder’s inequality, we get

$$|u_i(n + 1)|^{p_i} \leq \eta_i^{p_i-1}(n) \sum_{r=a+1}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}$$

(2.30)

for $i = 1, 2, ..., m$ and $a \leq n \leq b - 1$. Adding (2.29) and (2.30), we have

$$|u_i(n + 1)|^{p_i} \leq \left(\frac{\zeta_i(n)}{\zeta_i(n)}\right)^{p_i-1}(n) + \eta_i^{p_i-1}(n) \sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}$$

(2.31)

for $i = 1, 2, ..., m$ and $a \leq n \leq b - 1$. If we take the $\frac{a_i}{p_i}$-th power of both sides of the inequality (2.31), we obtain

$$|u_i(n + 1)|^{a_i} \leq \left(\frac{\zeta_i(n)}{\zeta_i(n)}\right)^{a_i/p_i} \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{a_i/p_i}$$

(2.32)

Multiplying both sides of (2.31) by $f_i^+(n) \prod_{k=1}^{m} |u_k(n + 1)|^{a_k}$, summing from a to $b - 2$, we have

$$\sum_{r=a}^{b-2} f_i^+(\tau) \prod_{k=1}^{m} |u_k(\tau + 1)|^{a_k} \leq \sum_{r=a}^{b-2} \frac{\zeta_i(\tau)}{\zeta_i(\tau)} \eta_i^{p_i-1}(\tau) \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{a_i/p_i} \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right) f_i^+(\tau) \prod_{k=1}^{m} |u_k(\tau + 1)|^{a_k}$$

(2.33)

for $i = 1, 2, ..., m$. By using (2.28) in (2.33), we have

$$\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i} \leq \sum_{r=a}^{b-1} \frac{\zeta_i(\tau)}{\zeta_i(\tau)} \eta_i^{p_i-1}(\tau) \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{a_i/p_i} \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right) f_i^+(\tau) \prod_{k=1}^{m} |u_k(\tau + 1)|^{a_k}$$

(2.34)

for $i = 1, 2, ..., m$. Therefore, by using (2.31) in (2.34), we have

$$\left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{1/a_i} \leq \prod_{k=1}^{m} \left(\sum_{r=a}^{b-1} r_k(\tau)|\Delta u_k(\tau)|^{p_k}\right)^{a_k/a_k} \prod_{k=1}^{m} \left(\frac{\zeta_k(\tau)}{\zeta_k(\tau)} \eta_k^{p_k-1}(\tau) \right)^{a_k/p_k}$$

(2.35)

for $i = 1, 2, ..., m$. If we take the ϵ_i-th power of both side of the inequalities (2.35) for $i = 1, 2, ..., m$, and multiplying the resulting inequalities, we obtain

$$\prod_{i=1}^{m} \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{1/a_i} \leq \prod_{i=1}^{m} \left(\sum_{r=a}^{b-1} r_k(\tau)|\Delta u_k(\tau)|^{p_k}\right)^{a_k/a_k} \prod_{k=1}^{m} \left(\frac{\zeta_k(\tau)}{\zeta_k(\tau)} \eta_k^{p_k-1}(\tau) \right)^{a_k/p_k}$$

(2.36)

and hence

$$\prod_{i=1}^{m} \left(\sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}\right)^{1/a_i} \leq \prod_{i=1}^{m} \left(\sum_{r=a}^{b-1} r_k(\tau)|\Delta u_k(\tau)|^{p_k}\right)^{a_k/a_k} \prod_{k=1}^{m} \left(\frac{\zeta_k(\tau)}{\zeta_k(\tau)} \eta_k^{p_k-1}(\tau) \right)^{a_k/p_k}$$

(2.37)

It is easy to see that by using similar technique to the proof of Theorem 2.1, we obtain the following inequality

$$0 < \sum_{r=a}^{b-1} r_i(\tau)|\Delta u_i(\tau)|^{p_i}$$

(2.38)
for \(i = 1, 2, \ldots, m \). Now, we choose \(e_i \) such that \(0 < \sum_{r=d}^{b-1} r f_i(t) |\Delta u_i(t)|^{p_i} \) for \(i = 1, 2, \ldots, m \) cancel out in the inequality (2.37), i.e. solve the homogeneous linear system

\[
\begin{aligned}
(p_1 - \alpha_1) e_1 - \alpha_1 e_2 & - \alpha_1 e_3 - \cdots - \alpha_1 e_m = 0 \\
-\alpha_2 e_1 + (p_2 - \alpha_2) e_2 - \alpha_2 e_3 - \cdots - \alpha_2 e_m &= 0 , \\
-\alpha_M e_1 - \alpha_M e_2 - \cdots - (p_m - \alpha_M) e_m &= 0 .
\end{aligned}
\]

(2.39)

We observe that by hypothesis \(\sum_{i=1}^{m} \frac{e_i}{p_i} = 1 \), this system admits a nontrivial solution, indeed all equations are equivalent to

\[
\alpha_i \left(\sum_{k=1}^{m} e_k \right) = e_i \left(\sum_{k=1}^{m} \frac{e_k}{p_k} \right)
\]

for \(i = 1, 2, \ldots, m \). Hence, we may take \(e_i = \frac{e_i}{p_i} \) for \(i = 1, 2, \ldots, m \), and we get the inequality (2.27) which completes the proof.

Remark 2.1. It is easy to see that if we use generalized Hölder’s inequality to the inequalities (2.1) and (2.27), then they reduce to the inequalities (1.16) and (1.18) obtained by Zhang and Tang [14], respectively. Thus, they are sharper than (1.16) and (1.18). Moreover, if we take \(r_1(n) = 1 \) and \(p_i = 2 \) in the problem (1.19)-(1.20), then Theorems 2.1, 2.2, B, and C are equivalent. In this case, from the inequalities (1.16), (1.18), (2.1), and (2.27), we get

\[
\sum_{r=d}^{b-1} f_i^+(r) (r - a + 1) (b - r - 1) \geq b - a .
\]

(2.40)

If we also take \(m = 2 \) in the system (1.14), and \(\beta_1 = \alpha_1 \) and \(\beta_2 = \alpha_2 \) in the system (1.13), then Theorems 2.1 and 2.2 are equivalent.

Remark 2.2. Note that since \(f_i^+(n) \leq \| f_i(n) \| \), the inequality (2.40) is better than the inequality (1.11) with \(k = 1 \). Moreover, by using

\[
M(n) = (n - a + 1) (b - n - 1) \leq \max_{a \leq n < b - 1} M(n) = M \left(\frac{a + b}{2} - 1 \right) = \left(\frac{b - a}{2} \right)^2
\]

in the inequality (2.40), we get

\[
\sum_{r=d}^{b-1} f_i^+(r) \geq \frac{4}{b - a} .
\]

(2.41)

Therefore, if we take \(f_i(n) \geq 0 \), then when \(b - a - 1 \) is odd, (2.41) is the same as (1.1). However, (2.41) is worse than (1.1) when \(b - a - 1 \) is even.

Now, we apply our Lyapunov-type inequalities to obtain a lower bound for the first eigencurve in the generalized spectra. Let \(a, b \in \mathbb{Z} \) with \(a \leq b - 2 \). We consider here the following difference system

\[
\begin{aligned}
-\Delta (|\Delta u_1(n)|^{p_1-2} \Delta u_1(n)) &= \lambda_1 a_1 q(n) |u_1(n + 1)|^{a_1} |u_1(n + 1)|^{a_1} \cdots |u_1(n + 1)|^{a_1} \\
-\Delta (|\Delta u_2(n)|^{p_2-2} \Delta u_2(n)) &= \lambda_2 a_2 q(n) |u_2(n + 1)|^{a_2} |u_2(n + 1)|^{a_2} \cdots |u_2(n + 1)|^{a_2} \\
-\Delta (|\Delta u_m(n)|^{p_m-2} \Delta u_m(n)) &= \lambda_m a_m q(n) |u_m(n + 1)|^{a_m} |u_m(n + 1)|^{a_m} \cdots |u_m(n + 1)|^{a_m} ,
\end{aligned}
\]

(2.42)

where \(q(n) > 0, \lambda_i \in \mathbb{R}, p_i \) and \(a_i \) are the same as those in the hypothesis \((H_i) \), and \(u_i \) satisfies Dirichlet boundary conditions

\[
u_i(a) = 0 = u_i(b), u_i(n) \neq 0, n \in \mathbb{Z}[a + 1, b - 1], i = 1, 2, \ldots, m .
\]

(2.43)

We define the generalized spectrum \(S \) of a nonlinear difference system as the set of vector \((\lambda_1, \lambda_2, \ldots, \lambda_m) \in \mathbb{R}^m \) such that the eigenvalue problem (2.42)-(2.43) admits a nontrivial solution.

Boundary problem (2.42)-(2.43) is a generalization of the following \(p_1 \)-Laplacian difference equation

\[
-\Delta (|\Delta u_1(n)|^{p_1-2} \Delta u_1(n)) = \lambda_1 p_1 q(n) |u_1(n + 1)|^{p_1} \Delta u_1(n + 1)
\]

(2.44)

with Dirichlet boundary conditions

\[
u_1(a) = 0 = u_1(b), u_1(n) \neq 0, n \in \mathbb{Z}[a + 1, b - 1] .
\]

(2.45)

where \(p_1 > 1, \lambda_1 \in \mathbb{R} \), and \(q(n) > 0 \). When \(p_1 = 2 \), Atkinson [3, Theorems 4.3.1 and 4.3.5] investigated the existence of eigenvalues for (2.44)-(2.45), see also [13].

Let \(f_i(n) = \lambda_i a_i q(n) \) for \(i = 1, 2, \ldots, m \). Then we can apply Theorem 2.2 to boundary problem (2.42)-(2.43) and obtain a lower bound for the \(m \)-th component of any generalized eigenvalue \((\lambda_1, \lambda_2, \ldots, \lambda_m) \) of the system (2.42).
Theorem 2.3. Let $a, b \in \mathbb{Z}$ with $a \leq b - 2$. Assume that $1 < p_i < \infty, a_i > 0$ satisfy $\sum_{i=1}^{m} \frac{a_i}{p_i} = 1$, and $q(n) > 0$ for all $n \in \mathbb{Z}$. Then there exists a function $h(\lambda_1, \lambda_2, \ldots, \lambda_{m-1})$ such that $|\lambda_m| \geq h(\lambda_1, \lambda_2, \ldots, \lambda_{m-1})$ for every generalized eigenvalue $(\lambda_1, \lambda_2, \ldots, \lambda_{m-1})$ of problem (2.42)-(2.43), where $h(\lambda_1, \lambda_2, \ldots, \lambda_{m-1})$ is given by

$$h(\lambda_1, \lambda_2, \ldots, \lambda_{m-1}) = \frac{1}{a_m} \left[\prod_{k=1}^{m-1} (\lambda_k \alpha_k) \sum_{r=0}^{b-2} q(r) \prod_{k=1}^{m} \left(\frac{\zeta_k(t) \eta_k(t) \rho_{k-1}(t)}{\zeta_k \rho_{k-1}(t) + \eta \rho_{k-1}(t)} \right) \right].$$

Proof. For the eigenvalue $(\lambda_1, \lambda_2, \ldots, \lambda_{m-1})$, (2.42)-(2.43) has a nontrivial solution $(u_1(n), u_2(n), \ldots, u_m(n))$. That is the system (1.14) with $f_i(n) = \lambda_i a_i q(n)$ has a solution $(u_1(n), u_2(n), \ldots, u_m(n))$ satisfying (1.17), it follows from (2.27) that $f_i(n) = \lambda_i a_i q(n)$, for all $n \in \mathbb{Z}, i = 1, 2, \ldots, m$, and that

$$1 \leq \prod_{i=1}^{m} \left[\sum_{r=0}^{b-2} f_i^2(t) \prod_{k=1}^{m} \left(\frac{\zeta_k(t) \eta_k(t) \rho_{k-1}(t)}{\zeta_k \rho_{k-1}(t) + \eta \rho_{k-1}(t)} \right) \right] \leq \prod_{i=1}^{m} \left[\sum_{r=0}^{b-2} q(t) \prod_{k=1}^{m} \left(\frac{\zeta_k(t) \eta_k(t) \rho_{k-1}(t)}{\zeta_k \rho_{k-1}(t) + \eta \rho_{k-1}(t)} \right) \right].$$

Hence, we have

$$|\lambda_m| \geq \frac{1}{a_m} \left[\prod_{k=1}^{m-1} (\lambda_k \alpha_k) \sum_{r=0}^{b-2} q(r) \prod_{k=1}^{m} \left(\frac{\zeta_k(t) \eta_k(t) \rho_{k-1}(t)}{\zeta_k \rho_{k-1}(t) + \eta \rho_{k-1}(t)} \right) \right].$$

This completes the proof. □

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES
