Common Fixed Point Theorems Via(ψ, α, β)-Weak Contractions

Sumitra DALAL1, Sunny CHAUHAN$^{2, *}$, Shikha CHAUDHARI3

1Department of Mathematics, Jazan University, KSA.
2Near Nehru Training Centre, H. No. 274, NaiBasti B-14, Bijnor-246701, Uttar Pradesh, India.
3Government Degree College, Champawat, Uttarakhand, India.

Received: 07/01/2015 Accepted: 06/11/2015

ABSTRACT
In this paper, we prove some common fixed point theorems for a pair of weakly compatible mappings satisfying (ψ, α, β)-weak contractions in fuzzy metric spaces employing a control function. Our results improve and generalize several previously known relevant results of the existing literature. Some illustrative examples are also furnished to substantiate our main results.

Keywords: fuzzy metric space; control functions; coincidence point; weakly compatible mappings; common fixed point.

1. INTRODUCTION
The notion of fuzzy sets was introduced by Zadeh [21] which proved a turning point in the development of Mathematics as the advent of Fuzzy Set Theory sets out the fuzzyfication of almost entire Mathematics. The strength of Fuzzy Mathematics lies in its thought provoking applications. Fuzzy Mathematics has a wide range of applications in applied sciences which include neural network theory, stability theory, mathematical programming, modeling theory, engineering sciences, medical sciences (medical genetics, nervous system), image processing, control theory, communication etc.

After the development of core part of fuzzy set theory, the notion of Fuzzy metric space was introduced by several authors in several ways. The noted paper due to

In recent years, several researchers utilized weak contractions to generalize Banach Contraction Principle while Boyd and Wong [3] introduced the notion of ϕ-contractions for the same. In 1997, Alber and Guerre-
Definition 2.1 [21] A fuzzy set A in X is a function with domain X with values in $[0,1]$.

Definition 2.2 [16] A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if $(0,1,*)$ is a topological abelian monoid with unit 1 such that $a*b \leq c*d$ whenever $a \leq c$ and $b \leq d, \forall a,b,c,d \in [0,1]$.

Examples of t-norm are as follows:

(i) $a*b = ab$

(ii) $a*b = \min\{a,b\}$

Definition 2.3 [7] The 3-tuple (X,M,\ast) is called a fuzzy metric space if X is an arbitrary set, \ast is a continuous t-norm and M is a fuzzy set on $X^2 \times [0,\infty)$ satisfying the following conditions: for all $x,y,z \in X$ and $s,t \geq 0$

(FM-1) $M(x,y,t) > 0$ and $M(x,y,0) = 0$,

(FM-2) $M(x,y,t) = 1$ if $x = y$,

(FM-3) $M(x,y,t) = M(y,x,t)$,

(FM-4) $M(x,y,t) \ast M(y,z,s) \leq M(x,z,t+s),$

(FM-5) $M(x,y,t); (0,\infty) \rightarrow [0,1]$ is continuous.

Definition 2.4 [8] Let (X,M,\ast) be a fuzzy metric space. Then a sequence (x_n) is said to be

(i) convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n,x,t) = 1$ for all $t > 0$,

(ii) G-Cauchy sequence (i.e., Cauchy sequence in sense of Grabiec [8]) if $\lim_{n \to \infty} M(x_{n+p},x_n,t) = 1$ for all $t > 0$ and each $p > 0$.

Definition 2.5 Let (X,M,\ast) be a fuzzy metric space and f and g be self mappings defined on X. A point x in X is called a coincidence point of f and g iff $fx = gx$.

Definition 3.1 [12] Let $f, g: X \rightarrow X$ be a pair of mappings such that

(i) $f(X) \subseteq g(X)$,

(ii) $g(X)$ is a complete subspace of X.

(iii) $\psi\left(\frac{1}{M(fx,gy)} - 1\right) \leq \alpha\left(\frac{1}{M(gx,gy)} - 1\right) - \beta\left(\frac{1}{M(gx,gy)} - 1\right)$

where α and β are altering functions while $\Psi: [0,\infty) \rightarrow [0,\infty)$ is continuous.

Then the pair (f,g) has a coincidence point.

Proof. Let (x_n) be a sequence in X. Then using condition (i), define a sequence

$$y_n = f x_n = g x_{n+1}, n \geq 1.$$

Without loss of generality, we may assume $y_n \neq y_{n+1}$ for all $n \in \mathbb{N}$; otherwise f and g have a coincidence point and there is nothing to prove. In case $y_n = y_{n+1}$, firstly we assert that $M(y_n,y_{n+1},t) \geq M(y_{n-1},y_n,t)$. Let if possible, $M(y_n,y_{n+1},t) < M(y_{n-1},y_n,t)$, it implies $\left(\frac{1}{M(y_{n-1},y_n,t)} - 1\right) > \left(\frac{1}{M(Y_{n-1},y_n,t)} - 1\right)$ as ψ is increasing, we have $\psi\left(\frac{1}{M(y_n,y_{n+1},t)} - 1\right) > \psi\left(\frac{1}{M(y_{n-1},y_n,t)} - 1\right)$ so that

$$\psi\left(\frac{1}{M(y_{n-1},y_n,t)} - 1\right) \leq \psi\left(\frac{1}{M(y_n,y_{n+1},t)} - 1\right)$$

$$= \psi\left(\frac{1}{M(f x_n, f x_{n+1})} - 1\right) \leq \alpha\left(\frac{1}{M(g x_n, g x_{n+1})} - 1\right) - \beta\left(\frac{1}{M(g x_n, g x_{n+1})} - 1\right)$$

$$= \alpha\left(\frac{1}{M(y_{n-1},y_n,t)} - 1\right) - \beta\left(\frac{1}{M(y_{n-1},y_n,t)} - 1\right)$$

or,
\[\psi \left(\frac{1}{M(y_{n-1}, y_{n+1}, t)} \right) - 1 \leq a \left(\frac{1}{M(y_{n-1}, y_{n+1}, t)} \right) - 1 \]
\[\beta \left(\frac{1}{M(y_{n-1}, y_{n+1}, t)} \right) \] (2)

yielding thereby \(M(y_{n-1}, y_{n+1}, t) = 1 \), which is a contradiction. Thus \(M(y_{n-1}, y_{n+1}, t) \) is an increasing sequence of positive real numbers in \([0, 1]\).

Let \(\gamma(t) = \lim_{n \to \infty} M(y_{n}, y_{n+1}, t) \), then we show that \(\gamma(t) = 1 \) for all \(t > 0 \). If not, then there exists some \(t > 0 \) such that \(\gamma(t) < 1 \). Taking \(n \to \infty \) in (2), we get
\[\psi \left(\frac{1}{\gamma(t)} - 1 \right) \leq a \left(\frac{1}{\gamma(t)} - 1 \right) - \beta \left(\frac{1}{\gamma(t)} - 1 \right) \]
then we have \(\gamma(t) = 1 \). Therefore
\[\lim_{n \to \infty} M(y_{n}, y_{n+1}, t) = 1 \]
for each, positive integer \(p \)
\[M(y_{n}, y_{n+p}, t) \geq M \left(y_{n+p}, y_{n+p+1}, \frac{t}{p} \right) \]
\[\geq \left[\frac{1}{M(f(x, y), t)} \right] \]
Therefore, \(\{y_n\} \) is a G-Cauchy sequence. Suppose that \(g(X) \) is a complete subspace of \(X \), the sequence \(\{y_{2n+1}\} \) contained in \(g(X) \) must get a limit \(z \) in \(g(X) \).

Let \(\in g^{-1}(z) \), then \(g u = z \). As \(\{y_n\} \) is a G-Cauchy sequence containing a convergent sequence \(\{y_{2n+1}\} \), therefore the sequence \(\{y_n\} \) also converges implying thereby the convergence of \(\{y_{2n}\} \) being a subsequence of the convergent sequence \(\{y_n\} \).

Now we assert that \(u \) is a coincidence point of \(f \) and \(g \). Using (iii), we have
\[\psi \left(\frac{1}{M(f(x, u), t)} - 1 \right) \leq a \left(\frac{1}{M(g(x), g(u), t)} - 1 \right) - \beta \left(\frac{1}{M(g(x), g(u), t)} - 1 \right) \]
On making \(n \to \infty \), we get \(z = f u = g u = z \) which shows that \(u \) is a coincidence point of \(f \) and \(g \). The proof is similar when \(f(X) \) is a complete subspace of \(X \). This concludes the proof.

The following example illustrates Theorem 3.1.

Example 3.1 Let \(X = [0, 10] \) equipped with \(\ast + \ast = ab \) and \(M(x, y, t) = \frac{1}{t + |x-y|} \) for all \(x, y \in X \) and \(t > 0 \).

Define the mappings \(f, g : X \to X \) by \(f(x) = \frac{x}{4} \) and \(g(x) = 5 - \frac{x}{4} \) for all \(x \in X \). Define \(\psi, \alpha, \beta : [0, \infty) \to [0, \infty) \) as \(\psi(t) = 3t \), \(\alpha(t) = 4t \) and \(\beta(t) = 2t \), then we notice that \(\psi(t) = \alpha(t) + \beta(t) = t > 0 \). One can see that the condition (iii) can easily be verified.

\[M(f(x), f(y), t) = \frac{t}{t + |x-y|} \]
\[\left[\frac{1}{M(f(x), f(y), t)} - 1 \right] = \frac{|x-y|}{4t} \]
\[M(g(x), g(y), t) = \frac{t}{t + |x-y|} \]
\[\left[\frac{1}{M(g(x), g(y), t)} - 1 \right] = \frac{|x-y|}{2t} \]
\[\alpha \left(\frac{1}{M(f(x), f(y), t)} - 1 \right) = \beta \left(\frac{1}{M(g(x), g(y), t)} - 1 \right) \]
Hence, the mappings \(f \) and \(g \) have a point of coincidence \(x = \frac{20}{3} \) which is not a common fixed point. Therefore the necessity of weak compatibility is required to ensure the existence of common fixed point.

Theorem 3.2 Let \((X, M, \ast) \) be a fuzzy metric space and \(f, g : X \to X \) be two mappings. Suppose that the conditions (i)-(iii) of Theorem 3.1 are satisfied. Then \(f \) and \(g \) have a common fixed point \(x \) in \(X \) provided that the pair \((f, g) \) is weakly compatible.

Proof. By Theorem 3.1, the mappings \(f \) and \(g \) have a point of coincidence \(u \) in \(X \) such that \(f u = g u = z \). As \(f(u) = z \) and \(g(u) = z \), then we have \(f u = g u \) and hence \(f z = g z \). We now assert that \(f z = z \). If not, then using (iii), we have
\[\psi \left[M(f(z, f(z)), t) - 1 \right] \leq a \left[M(f(z, f(z)), t) - 1 \right] - \beta \left[M(f(z, f(z)), t) - 1 \right] \]
Taking limit as \(n \to \infty \), we get
\[\psi \left(\frac{1}{M(z, z)} - 1 \right) \leq a \left(\frac{1}{M(z, z)} - 1 \right) - \beta \left(\frac{1}{M(z, z)} - 1 \right) \]
then we get \(z = f z = g z \) hence the result follows.

Example 3.2 Let \(X = [-1, 2] \) equipped with \(a \ast + b = ab \) and \(M(x, y, t) = \frac{t}{t + |x-y|} \) for all \(x, y \in X \) and \(t > 0 \).

Define the mappings \(f, g : X \to X \) as follows
\[f(x) = \begin{cases} 0, & \text{if } x \leq 0; \\ \frac{x}{2}, & \text{if } x > 0. \end{cases} \]
\[g(x) = \begin{cases} 0, & \text{if } x \leq 0; \\ \frac{x}{2}, & \text{if } x > 0. \end{cases} \]
Define \(\psi, \alpha, \beta : [0, \infty) \to [0, \infty) \) as \(\psi(t) = t \), \(\alpha(t) = 2t \) and \(\beta(t) = \frac{3t}{2} \), then we can see that \(\psi(t) - \alpha(t) + \beta(t) = \frac{t}{2} > 0 \). One can easily verify condition (iii). Discuss the following subcases.

Case 1: when \(x, y \leq 0 \) or \(x, y > 0 \) then we have \(M(f(x), y, t) = 1 = M(g(x), g(x), t) \) and condition (iii) is trivial.

Case 2: If \(x \leq 0, y > 0 \) then we have \(M(f(x), y, t) = \frac{t}{t+\frac{y}{2}} \Rightarrow \left(\frac{1}{M(f(x), y, t)} - 1 \right) = \frac{t}{2t} M(g(x), g(y), t) = \frac{1}{t+\frac{y}{2}} \Rightarrow \)
Case 3: If $x > 0, y \leq 0$, then case is similar to previous one and other subcases are also true. Hence all the conditions of Theorem 3.2 are satisfied and 0 is a common fixed point of the mappings f and g.

Now we utilized the notion of pair-wise commuting due to Imdad et al. [9].

Definition 3.1 Two families of self mappings $(f_i)_{i=1}^m$ and $(g_k)_{k=1}^n$ are said to be pair-wise commuting if

(i) $f_if_j = f_jf_i$ for all $i, j \in \{1, 2, ..., m\}$,

(ii) $g_ig_l = g_lg_i$ for all $i, k \in \{1, 2, ..., n\}$,

(iii) $f_ig_k = g_kf_i$ for all $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$.

Our next result is defined for two finite families of self mappings.

Corollary 3.1 Let $(f_i)_{i=1}^m$ and $(g_k)_{k=1}^n$ be two finite families of self mappings of a fuzzy metric space (X, M_\ast) with $f = f_1f_2...f_m$ and $g = g_1g_2...g_n$ satisfying conditions (i)-(iii) of Theorem 3.1. Then the pair (f, g) has a point of coincidence.

Moreover $(f_i)_{i=1}^m$ and $(g_k)_{k=1}^n$ have a common fixed point if the pair (f_i, g_k) commutes pair-wise where $i = \{1, 2, ..., m\}$ and $k = \{1, 2, ..., n\}$.

Proof. The proof of this theorem can be completed on the lines of a theorem by Imdad et al. [9].

Corollary 3.2 Let f, g be two self mappings of a fuzzy metric space (X, M_\ast). Suppose that

(i) $f^m(X) \subseteq g^n(X)$,

(ii) $g^m(X)$ is a complete subspace of X,

(v) $\left(\frac{1}{M(f^mX \cap g^nX)} - 1\right) \leq \alpha \left(\frac{1}{M(g^nX \cap f^mX)} - 1\right) - \beta \left(\frac{1}{M(g^nX \cap f^mX)} - 1\right),$

where m, n are fixed positive integers and ψ, α are altering distance functions and $\beta \colon [0, \infty) \to [0, \infty)$ is continuous with $\beta(t) > 0$ for $t > 0$ and $\beta(0) = 0$ and $\psi(t) - \alpha(t) + \beta(t) > 0$ for all $t > 0$.

Then f and g have a unique common fixed point provided $g = gf$.

ACKNOWLEDGEMENT

The authors are highly thankful to Professor Duran TÜRKOGULLU and the editorial board members of “Gazi University Journal of Science” for supporting this research work.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

