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ABSTRACT 

Many mathematical formulations of physical phenomena contain integro-dynamic equations. In this paper, we present 
a new and simple approach to resolve linear weakly-singular Volterra integro-dynamic equations of first-order on any 

time scales. These equations occur in many applications such as in heat transfer, nuclear reactor dynamics, dynamics 

of linear viscoelastic materyal with long memory etc. In order to eliminate the singularity of the equation, nabla 
derivative is used and then transforming the given first-order integro-dynamic equations onto an first-order dynamic 

equations on time scales. The validity of the method is illustrated with an example. It has been observed that the 

numerical results efficiently approximate the exact solutions. 
 

Keywords: Time scales, İntegro-dynamic equations, Approximation of solutions. 

 

1. INTRODUCTION 

Linear and nonlinear Volterra integro-differential 

equations play an important role in mathematical modeling 

of many physical, chemical and biological phenomena in 

which it is necessary to take into account the effect of past 

history. Particularly in such field as heat transfer, nuclear 

reactor dynamics, dynamics of linear viscoelastic materials 

with long memory and thermoelectricity, optics, 

electromagnetics, electrodynamics, chemistry,  

 

electrochemistry, fluid flow, chemical reaction, population 

dynamics, statical physics, inverse scattering problems and 

many other practical applications. 

During the last decades the researchers are considered the 

two of the most important types of mathematical equations 

that have been used to mathematically describe various 

dynamic procedure. One of them is differential and integral 
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equations and the other is difference and summation 

equations, which model phenema respectively: in 

continuous time; or discrete time. The researchers have 

used either differential and integral equations or difference 

and summation equations- but not a combination equations 

of the two areas to describe dynamic models. 

Recently, it is now becaming apperent that certain 

phenomena do not involve only continuous aspect or only 

discrete aspects. Rather, they feature elements of both the 

continuous and discrete . These type of mixed processes 

can be seen, for example, in population dynamics where 

non-coincident generations [13] occurs. Additionaly, 

neither difference nor differential equations give a 

appropriate description of most population growth [9]. 

Some problems of mathematical physics are described in 

terms of nth-order linear and nonlinear Volterra 

integro-differential equation of the form 

           , , ,
0

btadytKtftytu m

t

a

i

i

n

i

 


   (1.1) 

where  ,1m  ty  is the unknown function and

 stK ,  is the kernel of integral equations in [1,16]. 

In continuous case equations of this form with degenerate, 

difference and symmetric kernels have been approached by 

different methods including piecewise polynomials [6], the 

spline collocations method [7], the homotopy perturbation 

method [15], Hear wavelets [10], the wavelet-Galerkin 

method [12], the Tau method [8], Taylor polynomials [11] , 

the sine-collocations method [18], and the combined 

Laplace transforms-adomain decomposition method [17] 

to determine exact and approximate solutions. But if Equ. 

(1.1) is weakly-singular Volterra integro-differential 

equations there is still no viable analytic approach for 

solving Equ. (1.1). Recently in [5] the authors are 

considered the approximate solutions of a class of first and 

second order weakly-singular form of Equ. (1.1) with 

kernel 
 ts

stK


 1),(  is singular as  ,st   where 

10  and in [14] D. B. Pachpatte give an 

approximate procedure for first order dynamic 

integro-differential initial value problem. 

In discrete case to our knowledge there isn't any analytic 

approaching method to the corresponding form of Equ. 

(1.1) with weakly singular kernel to discrete form and the 

time scale calculus is developed mainly to unify 

differential, difference and q calculus. Thus in this 

paper we are considered the first-order linear Volterra 

integro-dynamic equations in any time scales and we give 

an approaching method to the solution of the considered 

integro-dynamic equations with weakly singular kernel. 

 

2. SOME PRELIMINARIES 

The calculus of time scales was introduced by Aulbach and 

Hilger [2] in order to create a theory that can unify and 

extend discrete and continuos analysis. 

Definition 1 A time scale T , which inherits the standard 

topology on ,R is an arbitrary nonempty closed subset of 

the real numbers. 

Example 1 The real numbers ,R the integers ,Z  the 

natural numbers ,N  the non-negative integers ,0N  

the h numbers  ,: ZZ  khkh where 

0k  is a fixed real number, the  q numbers 

     ,0:0  ZZ kqqk k

q  where 

1q is a fixed real number     ,7,43,1   

  N 1,2  are examples of time scales. 

In [2] Aulbach and Hilger introduced also dynamic 

equations on time scales in order to unify and extend the 

theory of ordinary differential equations, difference 

equations and quantum equations (  h difference and 

q difference equations based on h calculus and q
calculus). For a general introduction to the calculus on time 

scales we refer the reader to the textbooks by Bohner and 

Peterson [3,4]. Here we give only those notions and facts 

concerned to time scales which we need for our purpose in 

this paper. 

 

Any time scale T  is a complete metric spaces with the 

metric (distance)   ||, ststd   for  Tst, . 

Consequently, according to the well-known theory of 

general metric spaces, we have for T the fundamental 

concepts such as open balls (intervals), neighborhood of 

points, open set, closed sets, and so on. Also we have for 

function RT :f  the concept of the limit, 

continuity and properties of continuous functions on 

general complete metric spaces (note that, in particular, any 

function RZ :f  is continuous at each point of  

Z ). In order to introduce and investigate the derivative for 

a function RT :f , forward and backward 

operators play important roles. 

Definition 2 For Tt  the forward jump operator   

and backward operator   is defined by respectively as 

follows 

   ,:infby  : tsst  TTT   (2.1) 
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and 

   .:supby  : tsst  TTT     

(2.2) 

In addition TT max)(max   if there exists a 

finite Tmax  and   TT minmin   if there 

exists a finite  .min T  Obviously both  t  and 

 t  are in T  when  .Tt  This is because of our 

assumptation that T  is closed subset of .R   

These jump operators enable us to classify the points  t  

of a time scale as right-dense, right-scattered, left-dense, 

and left-scattered depending on whether ,)( tt   

tt )(  ,  ,)( tt   ,)( tt   respectively, for 

any Tt .  If sup T  <   and sup T  is left-scattered 

we let  .sup TTT 
 Otherwise, we let 

.TT 
 Similarly if T  has a right-scattered 

minimum, we let  ,min TTT   otherwise, we 

let .TT   Finally, the graininess functions , :   

),0[ T  are defined by  

    . allfor   and)(:)( T ttttttt 
(2.3) 

Example 2 If ,RT   then   ttt   )(  and 

 ( ) 0t t   . If ,ZT h  then  

,)( htt    htt  and   .)( htt   

If ,qkT  then qtt )( ,   tqt 1  ,  

  ,1)( tqt   and     .1 1 tqt    

Definition 3 For RT :f  and Tt , we 

define the nabla derivative of f  at t  , denoted  tf 

, to be number (provided it exists) with the property that 

given any 0 , there is a neighborhood U  of t  

such that 

            ststtfsftf     

for all Us  . 

The following theorems delineate several properties of the 

nabla derivative; they are found in [3,4]. 

Theorem 1 Assume RT :f  is a function and 

Tt . Then we have the following: 

(i) If f  is nabla differentiable at ,t  then f is 

continuous at t  . 

(ii) If f  is continuous at t  and t  is left-scattered, then 

f  is nabla differentiable at t  with 

 
    

 
.

t

tftf
tf






 

(iii) If t  is left-dense, then f  is nabla differentiable at 

t  if and only if  the limit 

   
st

sftf

ts 




lim  

exists as a finite number.  In this case 

 
   

.lim
st

sftf
tf

ts 







 

(iv) If f is nabla differential at t , then 

       .tfttftf  
 

Theorem 2 Assume  RT :, gf  are nabla 

differential at Tt . Then: 

(i) The sum RT  :gf  is nabla differentiable 

at t  with 

       .tgtftgf 
  

(ii) The product RT :.gf  is nabla differentiable 

at t , and we get the product rules 

                   .tgtftgtftgtftgtftfg  
  

(iii) If     0tgtg 
, then 

g

f
 is nabla differentiable 

at ,t  and we get the quotient rule 

 
       

   
.

tgtg

tftgtgtf
t

g

f














 

Example 3 If RT   we have 


 ff , the usual 

derivative, and if ZT   we have the backward 

difference operator, 
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       : 1 .f t f t f t f t        

Definition 4 A function RT :f  is left-dense 

continuous (or ld-continuous) provided it is continuous at 

left-dense points in T  and its right-sided limits exists 

(finite) at right-dense points in .T   

Definition 5 It is known [3] that if f is ld-continuous, 

then there is a function  tF  such that  

   tftF 
 . In this case we define the nabla 

integral by  

     .aFbFttf

b

a

  

Definition 6 We now state some definitions and at goal we 

will define a function , called nabla exponential function, 

which solves the general first order linear nabla-dynamic 

IVP. The function  p  called  -regressive if 

    01  tpt  

for all  .Tt  Define the  -regressive class of 

functions on T  to be 

 .regressive- and continuous-ld is  ::  pp RT R  

If p R , then the first order linear dynamic equation 

 ytpy 
   ( 2.4) 

called  -regressive. In addition, if RT :f  is 

ld-continuous, then the first order inhomogenous linear 

dynamic equation 

   tfytpy 
     (2.5) 

called  -regressive. If  Rqp,  , then we define the 

circle plus and minus by 

         

 
 

   

,

.
1

p q p t q t p t q t t

p t
q t

p t t









   

  


 

 Definition 7 For ,0h  let  

  
hhh zz    Im :CZ   and  

 . : 1
hh zz  CC   Define   -cylinder 

transformation  :h h h    by 

   
1

1 ,h z Log zh
h

     

where  Log   is the principal Logarithm function. For  

0,h    we define   0 z z    for all  

CC  0z  . If  Rp  , then we define the nabla 

exponential function by 

      , exp

t

p

s

e t s p   
 

  
 
     (2.6) 

for ., Tts   

 

Theorem 3 Suppose (2.4) is   -regressive and fix  

.0 Tt   Then   0 0,py e t t   is the unique solution 

of the IVP 

    .  , 00 ytyytpy 
               (2.7) 

Next theorem gives some properties of the nabla 

exponential function, can be found in [3,4]. 

Theorem 4 Let  ,p q R , and .,, Tuts  Then 

 

(i)   0 , 1e t s    and   , 1,pe t t    

(ii)           , 1 , ,p pe t s t p t e t s     

(iii)  
 

 1

,
, ,

p
p

e t s
e t s

   

(iv)   
 

 1

,
, , ,

p
p p

e s t
e t s e s t

    

(v)       , , , ,p p pe t u e u s e t s   

(vi)       , , , ,p q p qe t s e t s e t s
   

(vii)  
 

 
 

,

,
, ,

p

q

e t s
p q

e t s
e t s

   

(viii)  
    

 

1

, ,
.

p p

p t

e t s e t s





   
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 Example 4 It is clear that    0

0,ˆ tt
ette







, where 

  is constant, for .  Now let  h   for  

.0h  Let    be a constant, i.e., 

 .1
h

C   Then  

 

0

0

1
,  for all .

1

t t

h

e t t t
h







 
  

 
 

Theorem 5 Suppose (2.5) is  -regressive. Let ,0 Tt   

and R0y . The unique solution of the IVP 

      00  , ytytfytpy 
    (2.8) 

is given by 

        
0

0 0, , .

t

p p

t

y t y e t t e f        

3. SOLUTIONS BY APPROXIMATION 

METHOD 

We propose an approximate method for solving linear and 

nonlinear weakly-singular Volterra integro-dynamic 

equations. The advantage of this method is that we remove 

the singularity of the kernel of first-order linear 

weakly-singular Volterra integro-dynamic equations at 

  tt   by judiciously applying the definition of nabla 

derivative. 

Consider the following first-order linear weakly-singular 

Volterra integro-dynamic equation 

 

       
 

  
    ,  for  and 0 1,

t

a

y s s
y t p t y t f t a t b

s t











      


     (3.1) 

where  tp  and  tf  are given functions that at least ld-continuous on     , : .a b t a t b      

Rewriting the integral part of Equ. (3.1) as 

 

  

       

  

  
  

    
  

  
1

.

t t

a a

t t

a a

y s y t y ty s s
s

s t s t

y s y ts
y t s t s

s ts t

 





 

 


 





 
 

 


   



 

 

   (3.2) 

     

Thus Equ. (3.1) can be written as 

          
  

    
  

  
1

.
t t

a a

y s y ts
y t p t y t f t y t s t s

s ts t






 






     


     (3.3) 

      

If we use the fact  
    

 
,lim

ts

tysy
ty

ts 











 we 

can take the fraction 
    

 ts

tysy








 in the second 

integral of Equ. (3.3) as approximately  .ty
 

Substituting the approximate relation into the right side of 

Equ. (3.1) we can get 

                ,thtytgtytftytpty   
  (3.4) 

where   
   ts

s
tg

t

a



  and 

     ststh
t

a





1
  . 

Therefore, Equ. (3.1) can be approximated by the following 

first-order linear dynamic equation 
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       ,tFtytPty  
   (3.5) 

where  
   

 th

tgtp
tP






1
 and  

 
 

.
1 th

tf
tF


   

Note that if RT  then Equ. (3.5) becomes first-order 

linear differential equation         tFtytPty 

and the general solution may be readily written as  

 
   

 
P t dt P t dt

y t e e F t dt c
      

. Moreover 

for RT   we can calculate  tg  and  th  as  

 
    

 

      
 

,
2

1

2
11

1








































ta
dstsststh

and

ta

ts

ds

ts

s
tg

t

a

t

a

t

a

t

a

 

which is coincide with the section 2.1 of [5]. 

For the points   tt   we can calculate  tg  and 

 th  as 

 
    

       .lim 
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s
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t

a

t
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
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
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









 

If we use Theorem 5 for Equ. (3.5) have the solution of the 

form  

       
^

, ,
t

P P
a

y t e t a c e t F            (3.6) 

under the initial condition   cay   for   tt   [3]. 

Theorem 6 Let  tp  and  tf  are given functions as 

in Equ.(3.1) and )(tx  be the solution of Equ.(3.5) under 

the condition   cax  . Then  tx  can be taken the 

approximate solution of Equ.(3.1) with the error 
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Proof Assume that )(tx  be the solution of Equ.(3.5) 

under the condition   .cax   Then by Theorem 5 we 

have  

       , , .
t

P P
a

x t e t a c e t F         

Define the operator L  such as  

   

         
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If 0)( tLx  then  tx  is exact solution of Equ.(3.1) 

under the condition   .cax   But if  0)( tLx  

then we see that the error is )()( tEtLx   and with 

some basic calculating we get  
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Remark 1 If we take   0ax  and   0tf  then 

the solution of Equ.(3.5) under the condition    0ax  

will be exact solution of Equ.(3.1). 

Example 5 Let ,)( 2
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   respectively. Thus from Theorem 

6 we find that for 10t   
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as an error. For 10a  we find that
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respectively and the error will be approximately  

( ) (10) 0.0006734070565 0.183136796 ,E t E c     

for 10t  . Finally if we choice 10a  and t
tf 1)(   

we get  ,1)(,)(
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respectively and the error will be approximately  

( ) (15) 0.002336477015 0.183136796 ,E t E c     

for  15t  . 

4. SOME REMARKS AND CONCLUSIONS 

We have reduced the solution of a class of linear 

weakly-singular Volterra integro-dynamic equations to the 

solution of ordinary dynamic equations by removing the 

singularity using an approximate nabla derivative. Then we 

have demonstrated the solution of these ordinary dynamic 

equations, which approximate the solution for the original 

weakly-singular Volterra integro-dynamic equations. 

We have considered an example for several distinct values 

of t  and a  to illustrate our new approach and have 

verified our solution, beginning with first-order linear 

weakly-singular Volterra integro-dynamic equations. 

Note: In order to calculate )(tE  in the above example 

Maple 13 software has been used. 
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